panthema / 2009 / digup / digup-0.6.50 / src / md5.c (Download File)
/*****************************************************************************
 * Functions to compute MD5 message digest.                                  *
 *                                                                           *
 * Copyright (C) 1995-1997,1999-2001,2004-2006,2008                          *
 *     by Free Software Foundation, Inc.                                     *
 *                                                                           *
 * This file was taken from coreutils-7.4 and adapted for digup.             *
 *                                                                           *
 * This program is free software; you can redistribute it and/or modify it   *
 * under the terms of the GNU General Public License as published by the     *
 * Free Software Foundation; either version 3, or (at your option) any       *
 * later version.                                                            *
 *                                                                           *
 * This program is distributed in the hope that it will be useful,           *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of            *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
 * GNU General Public License for more details.                              *
 *                                                                           *
 * You should have received a copy of the GNU General Public License         *
 * along with this program; if not, write to the Free Software Foundation,   *
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.        *
 *                                                                           *
 * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.                 *
 *****************************************************************************/

/* $Id$ */

#include "md5.h"

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

#if HAVE_ENDIAN_H

#include <endian.h>
#define WORDS_ARE_BIGENDIAN (__BYTE_ORDER == __BIG_ENDIAN)

#elif HAVE_SYS_PARAM_H

#include <sys/param.h>
#define WORDS_ARE_BIGENDIAN (BYTE_ORDER == BIG_ENDIAN)

#else
#error "Cannot determine system endianness."
#endif

#if WORDS_ARE_BIGENDIAN
# define SWAP(n)								\
    (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
#else
# define SWAP(n) (n)
#endif

#define BLOCKSIZE 4096

#if BLOCKSIZE % 64 != 0
# error "invalid BLOCKSIZE"
#endif

/* This array contains the bytes used to pad the buffer to the next
   64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };


/* Initialize structure containing state of computation.
   (RFC 1321, 3.3: Step 3)  */
void
md5_init_ctx (struct md5_ctx *ctx)
{
    ctx->A = 0x67452301;
    ctx->B = 0xefcdab89;
    ctx->C = 0x98badcfe;
    ctx->D = 0x10325476;

    ctx->total[0] = ctx->total[1] = 0;
    ctx->buflen = 0;
}

/* Copy the 4 byte value from v into the memory location pointed to by *cp,
   If your architecture allows unaligned access this is equivalent to
   * (uint32_t *) cp = v  */
static inline void
set_uint32 (char *cp, uint32_t v)
{
    memcpy (cp, &v, sizeof v);
}

/* Put result from CTX in first 16 bytes following RESBUF.  The result
   must be in little endian byte order.  */
void *
md5_read_ctx (const struct md5_ctx *ctx, void *resbuf)
{
    char *r = resbuf;
    set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
    set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
    set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
    set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));

    return resbuf;
}

/* Process the remaining bytes in the internal buffer and the usual
   prolog according to the standard and write the result to RESBUF.  */
void *
md5_finish_ctx (struct md5_ctx *ctx, void *resbuf)
{
    /* Take yet unprocessed bytes into account.  */
    uint32_t bytes = ctx->buflen;
    size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;

    /* Now count remaining bytes.  */
    ctx->total[0] += bytes;
    if (ctx->total[0] < bytes)
	++ctx->total[1];

    /* Put the 64-bit file length in *bits* at the end of the buffer.  */
    ctx->buffer[size - 2] = SWAP (ctx->total[0] << 3);
    ctx->buffer[size - 1] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));

    memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);

    /* Process last bytes.  */
    md5_process_block (ctx->buffer, size * 4, ctx);

    return md5_read_ctx (ctx, resbuf);
}

/* Compute MD5 message digest for LEN bytes beginning at BUFFER.  The
   result is always in little endian byte order, so that a byte-wise
   output yields to the wanted ASCII representation of the message
   digest.  */
void *
md5_buffer (const char *buffer, size_t len, void *resblock)
{
    struct md5_ctx ctx;

    /* Initialize the computation context.  */
    md5_init_ctx (&ctx);

    /* Process whole buffer but last len % 64 bytes.  */
    md5_process_bytes (buffer, len, &ctx);

    /* Put result in desired memory area.  */
    return md5_finish_ctx (&ctx, resblock);
}


void
md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx)
{
    /* When we already have some bits in our internal buffer concatenate
       both inputs first.  */
    if (ctx->buflen != 0)
    {
	size_t left_over = ctx->buflen;
	size_t add = 128 - left_over > len ? len : 128 - left_over;

	memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
	ctx->buflen += add;

	if (ctx->buflen > 64)
	{
	    md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);

	    ctx->buflen &= 63;
	    /* The regions in the following copy operation cannot overlap.  */
	    memcpy (ctx->buffer,
		    &((char *) ctx->buffer)[(left_over + add) & ~63],
		    ctx->buflen);
	}

	buffer = (const char *) buffer + add;
	len -= add;
    }

    /* Process available complete blocks.  */
    if (len >= 64)
    {
#if !_STRING_ARCH_unaligned
# define alignof(type) offsetof (struct { char c; type x; }, x)
# define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
	if (UNALIGNED_P (buffer))
	    while (len > 64)
	    {
		md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
		buffer = (const char *) buffer + 64;
		len -= 64;
	    }
	else
#endif
	{
	    md5_process_block (buffer, len & ~63, ctx);
	    buffer = (const char *) buffer + (len & ~63);
	    len &= 63;
	}
    }

    /* Move remaining bytes in internal buffer.  */
    if (len > 0)
    {
	size_t left_over = ctx->buflen;

	memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
	left_over += len;
	if (left_over >= 64)
	{
	    md5_process_block (ctx->buffer, 64, ctx);
	    left_over -= 64;
	    memcpy (ctx->buffer, &ctx->buffer[16], left_over);
	}
	ctx->buflen = left_over;
    }
}


/* These are the four functions used in the four steps of the MD5 algorithm
   and defined in the RFC 1321.  The first function is a little bit optimized
   (as found in Colin Plumbs public domain implementation).  */
/* #define FF(b, c, d) ((b & c) | (~b & d)) */
#define FF(b, c, d) (d ^ (b & (c ^ d)))
#define FG(b, c, d) FF (d, b, c)
#define FH(b, c, d) (b ^ c ^ d)
#define FI(b, c, d) (c ^ (b | ~d))

/* Process LEN bytes of BUFFER, accumulating context into CTX.
   It is assumed that LEN % 64 == 0.  */

void
md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx)
{
    uint32_t correct_words[16];
    const uint32_t *words = buffer;
    size_t nwords = len / sizeof (uint32_t);
    const uint32_t *endp = words + nwords;
    uint32_t A = ctx->A;
    uint32_t B = ctx->B;
    uint32_t C = ctx->C;
    uint32_t D = ctx->D;

    /* First increment the byte count.  RFC 1321 specifies the possible
       length of the file up to 2^64 bits.  Here we only compute the
       number of bytes.  Do a double word increment.  */
    ctx->total[0] += len;
    if (ctx->total[0] < len)
	++ctx->total[1];

    /* Process all bytes in the buffer with 64 bytes in each round of
       the loop.  */
    while (words < endp)
    {
	uint32_t *cwp = correct_words;
	uint32_t A_save = A;
	uint32_t B_save = B;
	uint32_t C_save = C;
	uint32_t D_save = D;

	/* First round: using the given function, the context and a constant
	   the next context is computed.  Because the algorithms processing
	   unit is a 32-bit word and it is determined to work on words in
	   little endian byte order we perhaps have to change the byte order
	   before the computation.  To reduce the work for the next steps
	   we store the swapped words in the array CORRECT_WORDS.  */

#define OP(a, b, c, d, s, T)					\
	do							\
        {							\
	    a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T;	\
	    ++words;						\
	    CYCLIC (a, s);					\
	    a += b;						\
        }							\
	while (0)

	/* It is unfortunate that C does not provide an operator for
	   cyclic rotation.  Hope the C compiler is smart enough.  */
#define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))

	/* Before we start, one word to the strange constants.
	   They are defined in RFC 1321 as

	   T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64

	   Here is an equivalent invocation using Perl:

	   perl -e 'foreach(1..64){printf "0x%08x\n", int (4294967296 * abs (sin $_))}'
	*/

	/* Round 1.  */
	OP (A, B, C, D, 7, 0xd76aa478);
	OP (D, A, B, C, 12, 0xe8c7b756);
	OP (C, D, A, B, 17, 0x242070db);
	OP (B, C, D, A, 22, 0xc1bdceee);
	OP (A, B, C, D, 7, 0xf57c0faf);
	OP (D, A, B, C, 12, 0x4787c62a);
	OP (C, D, A, B, 17, 0xa8304613);
	OP (B, C, D, A, 22, 0xfd469501);
	OP (A, B, C, D, 7, 0x698098d8);
	OP (D, A, B, C, 12, 0x8b44f7af);
	OP (C, D, A, B, 17, 0xffff5bb1);
	OP (B, C, D, A, 22, 0x895cd7be);
	OP (A, B, C, D, 7, 0x6b901122);
	OP (D, A, B, C, 12, 0xfd987193);
	OP (C, D, A, B, 17, 0xa679438e);
	OP (B, C, D, A, 22, 0x49b40821);

	/* For the second to fourth round we have the possibly swapped words
	   in CORRECT_WORDS.  Redefine the macro to take an additional first
	   argument specifying the function to use.  */
#undef OP
#define OP(f, a, b, c, d, k, s, T)			\
	do						\
	{						\
	    a += f (b, c, d) + correct_words[k] + T;	\
	    CYCLIC (a, s);				\
	    a += b;					\
	}						\
	while (0)

	/* Round 2.  */
	OP (FG, A, B, C, D, 1, 5, 0xf61e2562);
	OP (FG, D, A, B, C, 6, 9, 0xc040b340);
	OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
	OP (FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
	OP (FG, A, B, C, D, 5, 5, 0xd62f105d);
	OP (FG, D, A, B, C, 10, 9, 0x02441453);
	OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
	OP (FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
	OP (FG, A, B, C, D, 9, 5, 0x21e1cde6);
	OP (FG, D, A, B, C, 14, 9, 0xc33707d6);
	OP (FG, C, D, A, B, 3, 14, 0xf4d50d87);
	OP (FG, B, C, D, A, 8, 20, 0x455a14ed);
	OP (FG, A, B, C, D, 13, 5, 0xa9e3e905);
	OP (FG, D, A, B, C, 2, 9, 0xfcefa3f8);
	OP (FG, C, D, A, B, 7, 14, 0x676f02d9);
	OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);

	/* Round 3.  */
	OP (FH, A, B, C, D, 5, 4, 0xfffa3942);
	OP (FH, D, A, B, C, 8, 11, 0x8771f681);
	OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
	OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
	OP (FH, A, B, C, D, 1, 4, 0xa4beea44);
	OP (FH, D, A, B, C, 4, 11, 0x4bdecfa9);
	OP (FH, C, D, A, B, 7, 16, 0xf6bb4b60);
	OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
	OP (FH, A, B, C, D, 13, 4, 0x289b7ec6);
	OP (FH, D, A, B, C, 0, 11, 0xeaa127fa);
	OP (FH, C, D, A, B, 3, 16, 0xd4ef3085);
	OP (FH, B, C, D, A, 6, 23, 0x04881d05);
	OP (FH, A, B, C, D, 9, 4, 0xd9d4d039);
	OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
	OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
	OP (FH, B, C, D, A, 2, 23, 0xc4ac5665);

	/* Round 4.  */
	OP (FI, A, B, C, D, 0, 6, 0xf4292244);
	OP (FI, D, A, B, C, 7, 10, 0x432aff97);
	OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
	OP (FI, B, C, D, A, 5, 21, 0xfc93a039);
	OP (FI, A, B, C, D, 12, 6, 0x655b59c3);
	OP (FI, D, A, B, C, 3, 10, 0x8f0ccc92);
	OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
	OP (FI, B, C, D, A, 1, 21, 0x85845dd1);
	OP (FI, A, B, C, D, 8, 6, 0x6fa87e4f);
	OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
	OP (FI, C, D, A, B, 6, 15, 0xa3014314);
	OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
	OP (FI, A, B, C, D, 4, 6, 0xf7537e82);
	OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
	OP (FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
	OP (FI, B, C, D, A, 9, 21, 0xeb86d391);

	/* Add the starting values of the context.  */
	A += A_save;
	B += B_save;
	C += C_save;
	D += D_save;
    }

    /* Put checksum in context given as argument.  */
    ctx->A = A;
    ctx->B = B;
    ctx->C = C;
    ctx->D = D;
}

/*****************************************************************************/