
ar
X

iv
:2

00
1.

08
51

6v
1

 [
cs

.D
C

]
 2

3
Ja

n
20

20

Communication-Efficient String Sorting

Timo Bingmann, Peter Sanders, Matthias Schimek

Karlsruhe Institute of Technology, Karlsruhe, Germany

{bingmann,sanders}@kit.edu, matthias schimek@gmx.de

Abstract—There has been surprisingly little work on algo-
rithms for sorting strings on distributed-memory parallel ma-
chines. We develop efficient algorithms for this problem based
on the multi-way merging principle. These algorithms inspect
only characters that are needed to determine the sorting order.
Moreover, communication volume is reduced by also communi-
cating (roughly) only those characters and by communicating
repetitions of the same prefixes only once. Experiments on up to
1280 cores reveal that these algorithm are often more than five
times faster than previous algorithms.

Index Terms—distributed-memory algorithm, string sorting,
communication-efficient algorithm

I. INTRODUCTION

Sorting, i.e., establishing the global ordering of n elements

s0, . . . sn−1, is one of the most fundamental and most fre-

quently used subroutines in computer programs. For example,

sorting is used for building index data structures like B-trees,

inverted indices or suffix arrays, or for bringing data together

that needs to be processed together. Often, the elements

have string keys, i.e., variable length sequences of characters,

or, more generally, multiple subcomponents that are sorted

lexicographically. For example, this is the case for sorted

arrays of strings that facilitate fast binary search, for prefix

B-trees [1], [2], or when using string sorting as a subroutine

for suffix sorting (i.e., the problem of sorting all suffixes of

one string). Using string sorting for suffix sorting can mean

to directly sort the suffixes [3], or to sort shorter strings as a

subroutine. For example, the difference cover algorithm [4] is

theoretically one of the most scalable suffix sorting algorithms.

An implementation with large difference cover could turn out

to be the most practical variant but it requires an efficient

string sorter for medium length strings.

Sorting strings using conventional atomic sorting algorithms

(that treat keys as indivisible objects) is inefficient since

comparing entire strings can be expensive and has to be done

many times in atomic sorting algorithms. In contrast, efficient

string sorting algorithms inspect most characters of the input

only once during the entire sorting process and they inspect

only those characters that are needed to establish the global

ordering. Let D denote the distinguishing prefix, which is

the minimal number of characters that need to be inspected.

Efficient sequential string sorting algorithms come close to the

lower bound of Ω(D) for sorting the input. When characters

are black boxes, that can only be compared but not further

inspected, we get a lower bound of Ω(D + n logn). Such

comparison-based string sorting algorithms will be the main

focus of our theoretical analysis. Our implementations also

include some optimizations for integer alphabets.

Surprisingly, there has been little previous work on parallel

string sorting using p processors, a.k.a. processing elements

(PEs). Here one would like to come close to time O(D/p) – at

least for sufficiently large inputs. Our extensive previous work

[5]–[7] concentrates on shared-memory algorithms. However,

for large data sets stored on nodes of large compute clusters,

distributed-memory algorithms are needed. While in principle

the shared-memory algorithms could be adapted, they neglect

that communication volume is the limiting factor for the

scalability of algorithms to large systems [8]–[10].

The present paper largely closes this gap by developing

such communication-efficient string sorting algorithms. After

discussing preliminaries (Section II) and further related work

(Section III), we begin with a very simple baseline algorithm

based on Quicksort that treats strings as atomic objects (Sec-

tion IV). We then develop genuine string sorting algorithms

that are based on multi-way mergesort that was previously

used for parallel and external sorting algorithms [11]–[15]. The

data on each PE is first sorted locally. It is then partitioned into

p ranges so that one range can be moved to each PE. Finally,

each PE merges the received fragments of data. The appeal of

multi-way merging for communication-efficient sorting is that

the local sorting exposes common prefixes of the local input

strings. Our Distributed String Merge Sort (MS) described in

Section V exploits this by only communicating the length of

the common prefix with the previous string and the remaining

characters. The LCP values also allow us to use the multiway

LCP-merging technique we developed in [7] in such a way that

characters are only inspected once. In addition, we develop a

partitioning scheme that takes the length of the strings into

account in order to achieve better load balancing.

Our second algorithm Distributed Prefix-Doubling String

Merge Sort (PDMS) described in Section VI further improves

communication efficiency by only communicating characters

that may be needed to establish the global ordering of the data.

The algorithm also has optimal local work for a comparison-

based string sorting algorithm. See Theorem 5 for details. The

key idea is to apply our communication-efficient duplicate

detection algorithm [10] to geometrically growing prefixes of

each string. Once a prefix has no duplicate anymore, we know

that it is sufficient to transmit only this prefix.

In Section VII, we present an extensive experimental evalu-

ation. We observe several times better performance compared

to previous approaches; in particular for large machines and

strings with high potential for saving communication band-

width. Section VIII concludes the paper including a discussion

of possible future work.

http://arxiv.org/abs/2001.08516v1
bingmann, sanders
@kit.edu
matthias_schimek@gmx.de

II. PRELIMINARIES

Our input is an array S := [s0, ..., sn−1] of n strings with

total length N . Sorting S amounts to permuting it so that

a lexicographical order is established. A string s of length

ℓ = |s| is an array [s[0], . . . , s[ℓ − 2], 0] where 0 is a

special end-of-string character outside the alphabet.1 String

arrays are usually represented as arrays of pointers to the

beginning of the strings. Thus, entire strings can be moved or

swapped in constant time. The first ℓ characters of a string

are its length ℓ prefix. Let LCP(s1, s2) denote the length

of the longest common prefix (LCP) of s1 and s2. For a

sorted array of strings S, we define the corresponding LCP

array [⊥, h1, h2, . . . , h|S|−1] with hi := LCP(si−1, si). The

string sorting algorithms we describe here produce the LCP-

array as additional output. This is useful in many applications.

For example, it facilitates building a search tree that allows

searching for a string pattern s in time O(|s| + logn) [1], [2].

The distinguishing prefix length DIST(s) of a string s is the

number of characters that must be inspected to differentiate

it from all other strings in the set S. We have DIST(s) =
maxt∈S,t6=s LCP(s, t)+1. The sum of the distinguishing prefix

lengths D is a lower bound on the number of characters that

must be inspected to sort the input.

Our model of computation is a distributed-memory machine

with p PEs. Sending a message of m bits from one PE to

another PE takes time α+βm [16], [17].2 Analyzing the com-

munication cost of our algorithms is mostly based on plugging

in the cost of well-known collective communication operations.

When h is the maximum amount of data sent or received

at any PE, we get O(α log p+ βh) for broadcast, reduction,

and all-to-all broadcast (a.k.a. gossiping). For personalized

all-to-all communication we have a tradeoff between low

communication volume (cost O(αp+ βh)) and low latency

(cost O(α log p+ βh log p)); e.g., [17].

Table I summarizes the notation, concentrating on the sym-

bols that are needed for the result of the algorithm analysis.

A. Sequential String Sorting for the Base Case

In [6] an extensive evaluation of sequential string sorting

algorithms is given in which a variant of MSD String Radix

Sort has been found to be among the fastest algorithms on

many data sets. We are using this algorithm for our implemen-

tations. This recursive algorithm considers subproblems where

all strings have a common prefix length ℓ. The strings are then

partitioned based on their (ℓ + 1)-st character. The recursion

stops when the subproblem contains less then σ strings. This

takes time O(D) (not counting the base case problems).

These small subproblems are sorted using Multikey Quicksort

[18]. This is an adaptation of Quicksort to strings that needs

expected time O(D + n logn). Our implementation, in turn,

uses LCP insertion sort [6] as a based case for constant size

1Our algorithms can also be adapted to the case without 0-termination
where the inputs specify string lengths instead.

2Usually, the unit is a different one, e.g., machine words. Here we use
bits in order to be able to make more precise statements with respect to the
number of characters to be communicated.

TABLE I
SUMMARY OF NOTATION FOR THE ALGORITHM ANALYSIS

Symbol Meaning

n total number of input strings
N total number of input characters
σ alphabet size
D total distinguishing prefix size
n̂ max. number of strings on any PE

N̂ max. number of characters on any PE

D̂ max. number of distinguishing prefix characters on any PE

ℓ̂ length of the longest input string

d̂ length of the longest distinguishing prefix

p number of processing elements (PEs)
α message startup latency
β time per bit of communicated data

inputs. This algorithm has complexity O(D + n2). Putting

these components together leads to a base case sorter with

cost O(D + n log σ). We have modified these algorithms so

that they produce an LCP array as part of the output at no

additional cost. The modified implementations have been made

available as part of the tlx library [19].

Our study [6] identifies several other efficient sequential

string sorters. Which ones are best depends on the charac-

teristics of the input. For example, for large alphabets and

skewed inputs strings, sample sort [5] might be better. The

resulting asymptotic complexity for such purely comparison-

based algorithms is O(D + n logn) which represents a lower

bound for string sorting based on character comparisons.

B. Multiway LCP-Merging

We are using our LCP loser tree [7]. This is a generalization

of the binary merging technique proposed by Ng and Kakehi

[20] building on the (atomic) loser tree data structure [21].

A K-way (atomic) loser tree (a.k.a. tournament tree) is a

binary tree with K leaves. Each leaf is associated with one

current element of a sorted sequence of objects – initially

the smallest element in that sequence. This current element

is passed up the tree. Internal nodes store the larger of the

elements passed up to them (the loser) and pass up the smaller

element (the winner) to the next level. The element passed up

by the root is the globally smallest element. This element is

output in each step. The sequence corresponding to the win-

ner’s leaf is advanced to the next element. The data structure

invariant of the loser tree can be reestablished in logarithmic

time by repairing it step by step while going upwards from

the winner’s leaf to the root. This also determines the next

element to be output.

Loser trees are adapted to strings by associating each sorted

sequence with its LCP array. Moreover, internal nodes store

the intermediate LCP length of the compared strings. The

output is the sorted sequence representing all input sequences

plus the corresponding LCP array. The number of charac-

ter comparisons for multiway LCP-merging of m strings is

bounded by m logK +∆L where ∆L is the total increment

of the LCP-array entries of the input strings. Embedded

into a string sorting algorithm this leads to total complexity

O(D + n logn) for sorting n strings.

2

C. Distributed Multiway Mergesort

A starting point for our algorithms is the distributed-memory

mergesort algorithm by Fischer and Kurpicz [15] as a sub-

routine for suffix array construction. The data is first sorted

locally using a sequential string sorting algorithm. It is then

partitioned globally by p− 1 splitter strings f1,. . . , fp−1 such

that PE i gets all the strings s with fi < s ≤ fi+1 (with

f0 denoting an “infinitely” small string and fp an “infinitely”

large one). Fischer and Kurpicz choose these splitters based

on a deterministic sampling technique where each PE chooses

p− 1 samples equidistantly from its sorted local input. After

gathering the samples on PE 0, the splitters are chosen

equidistantly from the globally sorted sample. They use an

ordinary (not LCP-aware) loser tree for merging strings.

III. MORE RELATED WORK

This paper is based on the master’s thesis of Matthias

Schimek [22]. There has been intensive work on sequential

string sorting. Refer to [6], [23], [24] for an overview of results

and comparative studies. There are very fast PRAM algorithms

for sorting strings of total length N with work O(N logN)
(O(N log logN) for integer characters), e.g., [25], [26]. Note

that our results need only linear work in the (possibly much

smaller) distinguishing prefix length D rather than in the total

input size N . The previous algorithms use a doubling tech-

nique similar to the one used by Manber and Myers [27] for

suffix sorting: Use integer sorting to build lexicographic names

of substrings with a length that doubles in every iteration. The

doubling technique in our PDMS-algorithm is much simpler

– it only requires hashing of prefixes of the strings. Also,

doubling is not inherent in this technique but only one special

case. To achieve better approximation of distinguishing prefix

lengths one can also uses smaller multipliers. Neelima et al.

[28] study string sorting on GPUs.

IV. PARALLEL STRING SORTING BASED ON

ATOMIC PARALLEL QUICKSORT

This section serves two purposes. We describe a simple

parallel string sorting algorithm whose analysis can serve as a

basis for comparing it with the more sophisticated algorithms

below. We also use this algorithm as a subroutine in the others.

This algorithm – hQuick– is a rather straightforward

adaptation of an atomic sorting algorithm based on a Quicksort

variant introduced in [29]. We therefore only outline it, focus-

ing on the changes needed for string sorting. Let d = ⌊log p⌋.

The algorithm employs only 2d ≥ p/2 PEs which it logically

arranges as a d-dimensional hypercube. The algorithm starts

by moving each input string to a random hypercube node.

hQuick proceeds in d iterations. In iteration i = d, . . . , 1,

the remaining task is to sort the data within i-dimensional

subcubes of this hypercube. To establish the loop invariant

for the next iteration, a pivot string s is determined as a

good approximation of the median of the strings within each

subcube. This is done using a special kind of tree reduction.

One subcube will then work on the strings ≤ s and one works

on the strings > s. A tie breaking scheme enforces that the

PE 1 PE 2 PE 3

distributed partitioning algorithm

all-to-all character and LCP exchange

sort locally sort locally sort locally

LCP-merge LCP-merge LCP-merge

Fig. 1. Standard distributed mergesort scheme, which we augmented in every
step with string-specific optimizations.

pivot is unique. When the loop has terminated, the remaining

problem is to locally sort the data on one PE.

Theorem 1. With the notation from Table I,

Algorithm hQuick needs local work O(nℓ̂/p logn),
latency O(α log2 p), and bottleneck communication volume

O((N̂ + nℓ̂/p log p+ ℓ̂ log2 p) log σ) bits in expectation.3

Before turning to the analysis, we interpret what this theo-

rem says. Algorithm hQuick is not very efficient because

all the data is moved a logarithmic number of times and

because using an approximation of the median as a pivot only

balances the number of strings but not their total length. Also,

string comparisons do not exploit information on common

prefixes that may be implicitly available. On the other hand,

the algorithm has only polylogarithmic latency which makes

it a good candidate for sorting small inputs.

Proof. The term N̂ log σ is due to the initial random place-

ment of the input. We assume here that afterwards the pivot

selection ensures (in expectation) that in each iteration, each

PE works on O(n/p) strings in expectation. See [29] for

the details which transfer from the atomic algorithm. We

make the conservative assumption that each string incurs work

and communication volume ℓ̂ in each iteration. Similarly, we

assume that local sorting takes time O(nℓ̂/p logn). The term

ℓ̂ log σ log2 p in the communication volume stems from the

reduction operation that, in each iteration, needs to transmit up

to ℓ̂ characters along a reduction tree of logarithmic depth.

3This conservative bound ensues if n/p strings of length ℓ̂ are concentrated
on a single PE. Randomization makes this unlikely. However, the ordering of
the strings might enforce such a distribution at the end. Hence, it may be
possible to improve the work and communication bounds by a factor log p.

3

V. DISTRIBUTED STRING MERGE SORT

Algorithm MS is based on the standard mergesort scheme

(see Figure 1) for distributed memory but we need to augment

it in every step with string-specific optimizations. Each PE i
starts with a string array Si as input and the goal is to sort

the union S of all inputs such that afterwards strings of PE i
are larger than those on PE i − 1, smaller than those on PE

i + 1, and locally sorted. We also output the LCP array. The

MS algorithm follows the following four steps (see Fig. 2 for

an illustration):

1) Sort the string set locally using a sequential string

sorting algorithm which also saves the local LCP array

(see Section II-A for details).

2) Determine p− 1 global splitters f1, . . . , fp−1 such that

PE i gets bucket bi containing all strings s with fi <
s ≤ fi+1 assuming sentinels f0 = −∞ and fp = +∞.

3) Perform an all-to-all exchange of string and LCP data,

optionally applying LCP compression.

4) Merge the p received sorted subsequences locally with

our efficient LCP-aware loser tree.

The following subsections discuss details of these steps.

A. String-Based or Character-Based Partitioning

When determining the splitters fi in step 2) the goal is to

balance the result among all PEs. In the case of strings, this

can mean to balance the number of strings or the number

of characters each PE receives. For MS we thus devised a

string-based and an alternative character-based partitioning

step to determine splitters. Both assume a given oversampling

parameter v. Furthermore, because we sort the local string sets

Si in step 1), we can use regular sampling [30], [31] instead

of randomly selecting samples.

String-based partitioning performs the following steps:

1) Each PE i chooses v evenly spaced samples Vi from its

strings Si. Assuming |Si| is divisible by v+1, then we

can choose the strings Si[ωj− 1] with ω = |Si|/(v+1)
for j = 1, . . . , v.

2) The pv samples are globally sorted into array V . Then,

p − 1 splitters fi = V [vj − 1] are selected for i =
1, . . . , p − 1. This sorting and selection can be imple-

mented trivially by sending all samples to one PE, or

using distributed sorting and selection algorithms. In

both cases the complete set of splitters is communicated

to all PEs.

To prove that buckets are well-balanced, we first show a

lemma reformulating the density of samples in a subsequence.

Lemma 1.1. For i = 1, . . . , p let S ′
i = {s ∈ Si | a ≤ s ≤ b}

be an arbitrary contiguous subarray of Si. If |S ′
i ∩ Vi| = k,

then |S ′
i| ≤ (k + 1)ω with ω = |Si|/(v + 1).

Proof. If k = 0, then all elements of S ′
i are fully contained

between two consecutive sample elements of Vi, thus |S ′
i| < ω.

If k = 1, then let x be the element in S ′
i ∩ Vi and we have

S ′
i = S ′

i,< ∪ {x} ∪ S ′
i,>. For S ′

i,< and S ′
i,> the case k = 0

applies and thus we have |S ′
i| ≤ (ω − 1) + 1+ (ω − 1) ≤ 2ω.

a l p h a

o r d e r

a l p s

a l g a e

s o r t e r

s n o w

a l g o

s o r b e t

s o r t e d

o r a n g e

s o u l

o r g a n

Step 1: sort locally with LCP array output

a l g a e

a l p h a2

a l p s3

o r d e r0

a l g o

s n o w0

s o r b e t1

s o r t e r3

o r a n g e

o r g a n2

s o r t e d0

s o u l2

Step 2: sample regularly: { alpha, snow, organ },

select splitters: { alpha, organ }, and find splits.

a l g a e

a l p h a2

a l p s3

o r d e r0

a l g o

s n o w0

s o r b e t1

s o r t e r3

o r a n g e

o r g a n2

s o r t e d0

s o u l2

Step 3: all-to-all exchange with LCP compression

a l g a e

- - p h a2

a l g o

a l p s

o r d e r0

o r a n g e

- - g a n2

s n o w

- o r b e t1

- - - t e r3

s o r t e d

- - u l2

Step 4: multiway merge locally with LCP loser tree

a l g a e

a l g o3

a l p h a2

a l p s

o r a n g e0

o r d e r2

o r g a n2

s n o w

s o r b e t1

s o r t e d3

s o r t e r5

s o u l2

Fig. 2. Steps of Algorithm MS shown on example strings. The small numbers
and shaded blue area after Step 1 are the calculated LCPs. The green lines
after Step 2 are the two splitting positions. In Step 3, characters shown as “-”
are omitted due to LCP compression.

If k ≥ 2, then we can split S ′
i into (k+1) parts such that the

first and last contain at most ω − 1 elements and the others

exactly ω − 1 between the splitters. Thus |S ′
i| ≤ k((ω − 1) +

1) + (ω − 1) ≤ (k + 1)ω.

Theorem 2. All buckets bj contain at most n
p + n

v elements.

Proof. Let Bj
i := {s ∈ Si | fj−1 < s ≤ fj} be the elements

in bucket bj on PE i, Vj
i := {s ∈ Vi | fj−1 < s ≤ fj} the

samples therein, and vji := |Vj
i | their number. By definition

|Bj
i ∩ Vi| = vji and by applying Lemma 1.1 we get |Bj

i | ≤
(vji + 1)ω. Since fj−1 and fj are globally separated by v − 1
samples,

∑p
i=1 v

j
i = v. We can now bound bj by summing

over all PEs: |bj | =
∑p

i=1 |B
j
i | ≤

∑p
i=1(v

j
i + 1)ω = ω(v +

p) = |Si|
(v+1) (v+p) = |S|

(v+1)p (v+p) < |S|
vp (v+p) = n

v +
n
p .

For character-based partitioning, we have to switch our

focus from the string arrays Si to the underlying character

arrays C(Si). For simplicity assume that |C(Si)| is divisible

4

by v+1 and let ω′ = |C(Si)|/(v+1). We furthermore assume

ℓ̂ ≤ ω′, otherwise strings are very long and too few to draw v
samples.

For character-based partitioning, each PE i again chooses v
sample strings Vi from its string set, but this time the strings

are regularly sampled such that C(Si) is evenly spaced between

them. For this chose the first strings starting at or following

the characters at ranks jω′− 1 in C(Si) for j = 1, . . . , v. This

can be efficiently calculated by keeping an array containing

the length of each string while sorting Si in Step 1. As before,

the pv sample strings are globally sorted into V and p − 1
splitters fi are selected.

The following lemma states that at most an imbalance of ℓ̂
is introduced due to the shift to the next string. Using it we can

then show a character-based lemma equivalent to Lemma 1.1.

Lemma 2.1. If ℓ̂ ≤ ω′, then the splitters Vi selected by

character-based partitioning split Si into v + 1 non-empty

local buckets Sj
i . The number of characters in each bucket

Sj
i is at most ω′ + ℓ̂.

Proof. We have Sj
i := {s ∈ Si | Vi[j − 1] < s ≤ Vi[j]}

assuming Vi is sorted. Since the initially chosen equally spaced

characters have a distance of ω′ ≥ ℓ̂, the splitters in Vi are

distinct and thus each Sj
i contains at least the splitter. On the

other hand, the furthest possible shift from the character-based

split point to the next string is ℓ̂, hence each bucket contains

at most ω′ + ℓ̂ characters.

Lemma 2.2. For i = 1, . . . , p let S ′
i = {s ∈ Si | a ≤ s ≤ b}

be an arbitrary contiguous subarray of Si. If |S ′
i ∩ Vi| = k,

then |C(S ′
i)| ≤ (k + 1)(ω′ + ℓ̂) with ω′ = |C(Si)|/(v + 1).

Proof. Let ω̂ := ω′ + ℓ̂. If k = 0, then all elements of S ′
i

are fully contained in one of the sets S ′
i , hence |C(S ′

i)| ≤ ω̂
by Lemma 2.1. The remaining proof for k = 1 and k ≥ 2 is

analogous to the proof of Lemma 1.1 with ω̂ taking the role

of ω due to Lemma 2.1.

With the two lemmas we can reiterate Theorem 2 to bound

the size of buckets for characters-based partitioning.

Theorem 3. All buckets bj contain at most N
p + N

v +(p+ v)ℓ̂
characters.

Proof. Applying Lemma 2.2 with the same arguments as in

the proof of Theorem 2 yields |bj | =
∑p

i=1 |B
j
i | ≤

∑p
i=1(v

j
i +

1)(ω′ + ℓ̂) = (ω′ + ℓ̂)(v + p) = |C(Si)|
(v+1) (v + p) + ℓ̂(v + p) =

|C(S)|
(v+1)p (v + p) + ℓ̂(v + p) < |C(S)|

vp (v + p) + ℓ̂(v + p) = N
v +

N
p + ℓ̂(v + p) .

B. Data Exchange

Lemma 3.1. The data exchange phase of Algorithm MS

(Step 3) with LCP compression has bottleneck communica-

tion volume O((N̂ + pℓ̂) log σ + n̂ log ℓ̂) bits when character-

based sampling is used.

Proof. The term n̂ log ℓ̂ stems from the LCP values. N̂ is

an obvious upper bound for the string data on each PE. By

Theorem 3, character-based sampling with v = Θ(p) samples

per PE guarantees O(N/p+ pℓ̂) ≤ O(N̂ + pℓ̂) characters on

the receiving side.

Note that LCP compression is of no help in establishing

non-trivial worst case bounds on the communication volume.

The reason is that local LCP values may be very short even if

every string has long LCPs with strings located on other PEs.

The situation is even worse with string based sampling since

it may happen that some PE gets n/p very long strings.

C. Overall Analysis of Algorithm MS

We now analyze Algorithm MS with character-based sam-

pling and using algorithm hQuick for sorting the sample.

Theorem 4. With the notation from Table I, Algo-

rithm MS can be implemented to run using local work

O(N̂ + n̂ logn+ pℓ̂ logn), latency O(αp), and bottleneck

communication volume O((N̂ + pℓ̂ log p) log σ) bits.

Once more, we first interpret this result. When the input is

balanced with respect to the number of strings and number of

characters (i.e., n̂ = O(n/p) and N̂ = O(N/p)), and if it is

sufficiently large (i.e., N = Ω(p2ℓ̂)), we get an algorithm

that is as efficient as we can expect from a method that

communicates all the data. Hence, for large inputs this is a

big improvement over hQuick. In the worst case, we have no

advantage from LCP compression even if D ≪ N . However,

by using character-based sampling, we achieve load balancing

guarantees. Using parallel sorting of the sample saves us a

factor p in the minimal efficient input size compared to [15]

since a deterministic sampling approach needs samples of

quadratic size.

Proof. After local sorting (in time O(D̂ + n̂ log n̂)), each

PE samples v = Θ(p) strings locally which have maxi-

mal length ℓ̂. These O(p2) strings are then sorted using

algorithm hQuick. By Theorem 1, this incurs local work

O(pℓ̂ logn), latency O(α log2 p), and communication volume

O(pℓ̂ log σ log p) bits. The splitter strings are then gossiped to

all PEs. This contributes latency α log p and communication

volume pℓ̂ log σ bits.

The local data is then partitioned in time O(p log(n̂)ℓ̂) using

binary search. By Theorem 3, each of the resulting p × p
messages has size O(N̂/p+ pℓ̂). Moreover, no PE receives

more than O(N/p+ pℓ̂) characters. Hence, the ensuing all-to-

all data exchange contributes latency O(αp) and communica-

tion volume O((N̂ + pℓ̂) log σ) bits. Finally, the received data

is merged in time O(N/p log p). Adding all these terms and

making some simplifications yields the claimed result.

VI. DISTRIBUTED PREFIX-DOUBLING

STRING MERGE SORT

We now refine algorithm MS so that it can take advantage

of the case D ≪ N . The idea is to find an upper bound

for the distinguishing prefix length of each input string. We

do this as a Step (1 + ε) after local sorting (Step 1) but

before determining splitters (Step 2). The required global

5

communication is expensive but it pays off in theory and in

Section VII we will see that this algorithm also works well

in practice. We not only save in communication volume in

Step 3 but knowing the distinguishing prefix lengths also aids

(character-based) splitter determination in finding splitters that

balance the actual amount of work that needs to be done.

Algorithm PDMS does not solve exactly the same problem

as Algorithm MS. Whereas MS permutes the strings into

sorted order, PDMS only computes the permutation without

completely executing it – it only permutes the distinguishing

prefixes (and can indicate the origin of these prefixes). Note

that some applications do not need the complete information;

for example, when string sorting is used as a subroutine in suf-

fix sorting [3], [4], [15]. The locally available information also

suffices to build a sorted array of the strings for pattern search

or to build a search tree [1], [2]. The resulting search data

structures support many operations (e.g., counting matches)

based on local information.

Theorem 5. With the notation from Table I, Algorithm PDMS

can be implemented to run using local work O(D̂ + n̂ logn),
latency O(αp log d̂), and bottleneck communication volume

(1 + ε)D̂ log σ +O(n̂ log p+ pd̂ log σ log p)

bits, in expectation and assuming that the all-to-all commu-

nication in Step 3 incurs bottleneck communication volume

h when the maximum sum of local message sizes is h.4

The latency can be reduced to O(α(p+ log p log d̂)) when

increasing the term n̂ log p in the communication volume to

n̂ log2 p.

Again, we interpret the result before proving it. Compared

to Algorithm MS, we now achieve local work and bottleneck

communication volume that is close to a worst case lower

bounds if the input is sufficiently large and sufficiently evenly

distributed over the PEs. The price we pay is a logarithmic

factor in the latency which correspondingly increases the input

size that is required to achieve overall efficiency.

Proof. We only discuss the differences to Algorithm MS and

refer to Theorem 4 for remaining details. The work for Step 1

is O(D̂ + n̂ log n̂) using any efficient sequential comparison-

based string sorting algorithm.

The analysis of Step 2 is similar to that in Theorem 4 except

that we are now using samples and splitter strings of length at

most d̂. Also, we do not use the total string lengths as the basis

for sampling but the length of the approximated distinguish-

ing prefix lengths. Using Algorithm hQuick on the sample

now incurs local work O(pd̂ log p), latency O(α log2 p), and

communication volume O(pd̂ log σ log p) bits.

Refer to Theorem 6 for the analysis of Step 1 + ε.

The all-to-all exchange in Step 3 incurs latency α log p
and communication volume (1+ε/2)D̂ log σ for those strings

whose prefix length has been successfully approximated within

4It seems to be an open problem whether there is an algorithm achieving
this. We make this assumption in order to be able to concisely work out the
impact of the tuning parameter ǫ.

a factor 1 + ε/2. We add an additional volume εD̂/2 · log σ
to account for the o(1) term in the analysis of Step 1 + ε
and for the prefix lengths that are overestimated due to false

positives in the duplicate detection. This works out by setting

an appropriate false positive rate ≈ 1/2. Overall, we calculate

bottleneck communication volume (1 + ε)D̂ for Step 3.

In Step 4, the received data is merged in time O(D/p log p).
Adding all these terms and making some simplifications yields

the claimed result.

A. Approximating Distinguishing Prefix Lengths

Determining whether a prefix of an input string is a dis-

tinguishing prefix is equivalent to finding out whether there

are any duplicates of it. Duplicate detection is a well studied

problem. There is no known deterministic solution to the

problem apart from communicating the entire prefix. However,

we can use randomization. We calculate hash values (a.k.a.

fingerprint) of the prefixes to be considered and determine

which fingerprints are unique. The corresponding prefixes are

now certain to be distinguishing prefixes. Errors are on the

safe side – two fingerprints may be accidentally identical

which would lead to falsely declaring their corresponding

prefixes to be non-distinguishing. By judiciously choosing the

fingerprint size, by compressing fingerprints, and by iterating

the process with a short fingerprint in the first iteration and

a long fingerprint in the second iteration (where only few

candidates remain), we can do duplicate detection using only

O(log p) bits of communication volume for each prefix to be

checked [10].

To approximate the distinguishing prefix length of a string

s, we start from some initial guess ℓs and then let the guessed

length grow geometrically by a factor (1+ε) in each iteration.

With our default value of ε = 1 we get prefix doubling which

we use to name sorting algorithm PDMS. Fig. 3 shows an

illustration of PDMS and we fill in the remaining details in

the proof of the following theorem.

Theorem 6. With the notation from Table I, distinguishing

prefix lengths can be found using local work O(D̂), latency

O(αp log d̂), and bottleneck communication volume O(n̂ log p)
bits, in expectation. The latency term can be reduced to

O(α log p log d̂) at the price of increasing the term n̂ log p
in the communication volume to n̂ log2 p.

Proof. Determining approximate distinguishing prefix sizes

starts with an initial guess ℓ = Θ(⌈log p/ logσ⌉) bits and

iteratively multiplies ℓ by a factor 1 + ε/2 taking all strings

into account whose first ℓ characters are not proven to

be unique yet. Hence, the overall number of iterations is

log1+ε/2 d̂ = O(log d̂). Each iteration incurs a latency of αp
and communication volume O(log p) for each string that has

not been eliminated yet. Summing the communication volume

for a particular string s with distinguishing prefix length

DIST(s) yields communication volume O(log p)+o(DIST(s)).
Overall, we account communication volume O(n̂ log p).

The above discussion assumes that the all-to-all communi-

cation of fingerprints is done by directly delivering them to

6

Step 1: sort locally (with LCP array output)

a l g a e

a l p h a

a l p s

o r d e r

a l g o

s n o w

s o r b e t

s o r t e r

o r a n g e

o r g a n

s o r t e d

s o u l

Step 1 + ε (depth 1): approximate distinguishing prefix

a l g a e

a l p h a

a l p s

o r d e r

a l g o

s n o w

s o r b e t

s o r t e r

o r a n g e

o r g a n

s o r t e d

s o u l

Step 1 + ε (depth 2): using distributed duplicate detection

a l g a e

a l p h a

a l p s

o r d e r

a l g o

s n o w

s o r b e t

s o r t e r

o r a n g e

o r g a n

s o r t e d

s o u l

Step 1 + ε (depth 4): repeat until all prefixes

a l g a e

a l p h a

a l p s

o r d e r

a l g o

s n o w

s o r b e t

s o r t e r

o r a n g e

o r g a n

s o r t e d

s o u l

Step 1 + ε (depth 8): are unique.

a l g a e

a l p h a

a l p s

o r d e r

a l g o

s n o w

s o r b e t

s o r t e r

o r a n g e

o r g a n

s o r t e d

s o u l

Step 2: sample regularly: { alph, sn, orga },

select splitters: { alph, orga }, and find splits.

a l g a e

a l p h a

a l p s

o r d e r

a l g o

s n o w

s o r b e t

s o r t e r

o r a n g e

o r g a n

s o r t e d

s o u l

Step 3: all-to-all exchange with LCP compression

a l g a e

- - p h a

a l g o

a l p s

o r d e r

o r a n g e

- - g a n

s n o w

- o r b e t

- - - t e r

s o r t e d

- - u l

Step 4: multiway merge locally with LCP loser tree

a l g a e

a l g o

a l p h a

a l p s

o r a n g e

o r d e r

o r g a n

s n o w

s o r b e t

s o r t e d

s o r t e r

s o u l

Fig. 3. Steps of Algorithm PDMS shown on example strings. String prefixes
marked blue are duplicates, while red prefixes are unique. In Step 3, only the
approximate distinguishing prefix is transmitted, the omitted characters are
marked gray.

their destination. We can reduce the latency of this all-to-all

to α log p by delivering the data indirectly, e.g., using a hyper-

cube based all-to-all [17]. This increases the communication

volume by a factor log p however.

Theorem 6 may also be useful outside string sorting al-

gorithms in order to analyze the input with respect to its

distinguishing prefixes. A simple application might be to

choose an algorithm for suffix sorting based on approximations

of D – when D/n is small, we can use string sorting based

algorithms, otherwise, more sophisticated algorithms are better.

We might also use this information to choose the difference

cover size in an implementation of the DC algorithm [4].

B. Average Case Analysis of Algorithm PDMS and Beyond

Neither Algorithm MS, nor Algorithm PDMS can profit

from LCP compression in the worst case. This is because there

may be inputs where all input strings have only very short

local LCP values but very long distinguishing prefix lengths

due to similar strings on other PEs. In order to understand

why LCP-compression is nevertheless useful in practice, we

now outline an average case analysis. To keep things simple

let us first consider random bit strings where 0s or 1s are

chosen independently with probability 1/2. Among n strings

uniformly distributed over p PEs, the distinguishing prefix

lengths will be about logn. Locally, the LCP values will be

about log(n/p). Hence, LCP compression saves us log(n/p)
bits per string. Thus, only about logn− log(n/p) = log p bits

actually need to be transferred.

Therefore, for random inputs, the communication volume

of Algorithm PDMS is dominated by the O(log n) bits com-

municated for LCP-values, string IDs, etc. We now outline

how to obtain an algorithm beyond PDMS that reduces this

cost by data compression. Local LCP-values “on-the-average”

only differ by a constant requiring O(1) bits to communicate

them using a combination of difference encoding and variable-

bit-length codes. We also cannot afford to transfer string IDs

(logn bits) or long associated information. However, we can

still view this as a sorting algorithm with a similar API as

Algorithm PDMS: To reconstruct an output string s and its

associated information, a PE remembers from which PE i
string s was received and at which position j in the array

of strings received from PE i it was located. PE i can then

be queried for the suffix and associated information of s. This

complication also explains why the logarithm of the number of

permutations of the inputs (logn! ≈ n logn, i.e., about logn
bits per input string), is not a lower bound for our view on the

sorting problem – we do not compute a full permutation but

only a data structure that allows querying this permutation at

a cost of O(log n) bits of communication per query.

Let us now turn to more general input models. Assume now

that the characters come from a random source with entropy

H . Distinguishing prefix sizes are now about log1/H n and

LCP values are log1/H n/p so that only log1/H p characters

need to be transmitted. By additionally compressing those, we

can get down to about log p bits once more. This argument not

7

only works for random sources where characters are chosen

independently but also, e.g., for Markov chains.

VII. EXPERIMENTS

A. Inputs

We now present experiments based on two large real world

data sets (COMMONCRAWL and DNAREADS) and a synthetic

data set (D/N) with tunable ratio r = D/N ; see [22] for

details. In Section VII-E, we summarize results for further

inputs. The i-th string from the D/N input consists of an

appropriate number of repetitions of the first character of

Σ followed by a base σ encoding of i followed by further

characters to achieve the desired string length (500 in the

numbers reported here). Value r = 0 means that i begins

immediately and r = 1 means that i stands at the end of the

string.

Input COMMONCRAWL consists of the concatenation of

the first 200 files from CommonCrawl (2016-40)5 This data

consists of 82 GB of text dumps of websites. Each line of these

files represents one input string. Here we have D/N = 0.68,

alphabet size 242, average line length 40 characters, and

average LCP 23.9 (60 % of each line).

As an example for small alphabets and bioinformatics appli-

cations, we consider input DNAREADS which consists of reads

of DNA sequences from the 1000 Genomes Project6. Sorting

such inputs is relevant as preprocessing for genome assembly

or for building indices on the raw data. We concatenated the

low coverage whole genome sequence (WGS) reads from the

lexicographically smallest six samples (HG00099, HG00102,

HG00107, HG00114, HG00119, HG00121). We extracted the

reads from the FastQ files discarding quality information and

concatenated them in lexicographic order of their accession

identifier. Reads containing any other character than A, C, G,

and T were dropped. The resulting data set contains 125 GB

base pairs in 1.27 million read strings with an alphabet size of

four and D/N = 38%. On average a DNA read line is 98.7

base pairs long with an average LCP of 29.2 (30 % of each

line). Compared to the COMMONCRAWL input, DNAREADS

has a considerably lower percentage of characters in the LCPs

and distinguishing prefix. This is due to the DNA base pair

sequences being more random than text on web pages.

The COMMONCRAWL and DNAREADS data was split such

that each PE gets about the same number of characters. The

strings from D/N are randomly distributed over the PEs.

B. Hardware

All experiments were performed on the distributed-memory

cluster ForHLR I. This cluster consists of 512 compute nodes.

Each of these nodes contains two 10-core Intel Xeon proces-

sors E5-2670 v2 (Sandy Bridge) with a clock speed of 2.5 GHz

and have 10×256 KB of level 2 cache and 25 MB level 3 cache.

Each node possesses 64 GB of main memory and an adapter

to connect to the InfiniBand 4X FDR interconnect.7 Intel MPI

5commoncrawl.s3.amazonaws.com/crawl-data/CC-MAIN-2016-40/wet.paths.gz
6www.internationalgenome.org/data-portal/sample
7wiki.scc.kit.edu/hpc/index.php/ForHLR - Hardware and Architecture

Library 2018 was used as implementation of the MPI standard.

All programs were compiled with GCC 8.2.0 and optimization

flags -O3 and -march=native. We create one MPI process

on each available core, i.e., hardware threads are not used.

C. Algorithms

We compare the following algorithms:

FKmerge is the distributed multiway string mergesort of

Fischer and Kurpicz [15]; see also Section II-C. This is the

only distributed-memory string sorter that we could find.

hQuick: As an example for a fast atomic sorting algo-

rithm we use our adaptation of distributed hypercube atomic

Quicksort by Axtmann et al. [29]. We adapted its original im-

plementation [32] by replacing point-to-point communication

of fixed length with point-to-point communication of variable

length. See also Section IV.

MS-simple is our Distributed String Merge Sort from

Section V with no LCP related optimizations at all.

MS is our Algorithm MS with LCP compression.

PDMS-Golomb is an implementation of our Distributed

Prefix-Doubling String Merge Sort (PDMS) from Section VI

that uses Golomb coding for communicating hash values.

PDMS is the same as PDMS-Golomb except without using

Golomb compression for communicating hash values.

All these algorithms use string based sam-

pling. Our C++ implementations of all these

algorithms is available as open source from

https://github.com/mschimek/distributed-string-sorting.

D. Results

Fig. 4 shows a weak scaling experiment with 250 MB of

data on each core using different ratios D/N . As expected,

the atomic sorting algorithm hQuick is outclassed by the

string sorting algorithms. The only previous distributed string

sorter FKmerge works well up to 320 cores (16 nodes)

but scalability then quickly deteriorates. We attribute this to

high communication costs and a bottleneck due to centralized

sorting of samples. This is also consistent with the increasing

communication volume observed in the lower part of the

plot that shows communication volume. Already the most

simple variant of our MS algorithm MS-simple consistently

outperforms FKmerge and hQuick, and scales reasonably

well – the execution time with 64 nodes (1280 cores) is only

about twice that of the execution time with 2 nodes (40 cores).

This ratio gets smaller as D/N grows since there is more

internal work to be done. Enabling the LCP optimization in

MS yields further consistent improvements. Not surprisingly,

the advantages get more pronounced with increasing D/N
since this implies longer common prefixes. The prefix doubling

algorithms (PDMS-Golomb and PDMS) yield a further large

improvement when D/N is not too large because we get a

large saving in communication volume. For large D/N , the

prefix doubling yields no useful bounds on the distinguishing

prefix length and hence the moderate overheads for finding

these values makes the algorithms slightly slower than MS.

Using or not using Golomb compression of hash values is of

8

commoncrawl.s3.amazonaws.com/crawl-data/CC-MAIN-2016-40/wet.paths.gz
www.internationalgenome.org/data-portal/sample
wiki.scc.kit.edu/hpc/index.php/ForHLR_-_Hardware_and_Architecture
https://github.com/mschimek/distributed-string-sorting

0

5

10

15

ti
m

e
(s

)
D

N
= 0

D

N
= 0.25

D

N
= 0.5

D

N
= 0.75

D

N
= 1.0

2
0

4
0

8
0

1
6
0

3
2
0

6
4
0

1
,2
8
0

0

200

400

600

number of PEs

b
y

te
s

se
n

t
p

er
st

ri
n

g

2
0

4
0

8
0

1
6
0

3
2
0

6
4
0

1
,2
8
0

number of PEs

2
0

4
0

8
0

1
6
0

3
2
0

6
4
0

1
,2
8
0

number of PEs

2
0

4
0

8
0

1
6
0

3
2
0

6
4
0

1
,2
8
0

number of PEs

2
0

4
0

8
0

1
6
0

3
2
0

6
4
0

1
,2
8
0

number of PEs

FKmerge hQuick MS-simple MS PDMS-Golomb PDMS

Fig. 4. Running times and bytes sent per string for the weak-scaling experiment with five generated D

N
inputs with 500 000 strings of length 500 per PE.

little consequence on running time. We see on the lower part

of the figure that it also has little influence on communication

volume. Apparently, the communication overhead for finding

distinguishing prefixes is rather small anyway. On the largest

configuration (1280 PEs, 64 nodes, 320 GB of data) the best

shown algorithm is 5.3–8.6 times faster than FKmerge.

A look at the communication volumes in the lower part

of the plot underlines the great communication efficiency of

combining LCP compression with prefix doubling (algorithms

PDMS-Golomb and PDMS). Using LCP compression only

(Algorithm MS) is only effective when the LCPs are long.

Fig. 5, left panel, shows strong scaling results for the

COMMONCRAWL instance. Here we cannot show results for

the competing code FKmerge since it crashes. Apparently

it does not correctly handle inputs with many repeated input

strings. The ranking of the remaining algorithms is similar as

for the D/N -instances. For p ≥ 480, the algorithms based

on prefix doubling are 5.4–6.1 times faster than hQuick

and MS is a factor 4.5–4.6 faster. The algorithms with LCP

compression are 2.6–3.5 times faster than MS-simple. This

indicates that the LCP optimizations are very effective for

the COMMONCRAWL-instance while prefix doubling does not

help here. This is consistent with the large D/N -ratio of 0.68

for this instance where prefix doubling cannot be effective. The

running times keep going down until the largest configuration

tried. However, efficiency is rapidly deteriorating. The reason

for the difference to the above weak scaling result may be

that the COMMONCRAWL-instance is a factor four smaller for

p = 1280. Hence, experiments with larger real world inputs

are interesting topics for future work.

Fig. 5, right panel, shows the corresponding results for the

DNAREADS input. Here, algorithms MS and MS-simple are

slightly faster than the prefix doubling algorithms, despite

considerable savings in communication volume. Algorithm

FKmerge works now but does not scale so well.

E. Summary of Further Experiments

We now outline the results of further experiments in [22].

Character-based sampling is inconsequential for the D/N
instances since their uniform length and random distribution

makes load balancing easy. For COMMONCRAWL, our initial

implementation is detrimental indicating further improvement

potential. In particular, we have to carefully handle repeated

short substrings. A tendency of character-based sampling to

select long splitter keys indicates that one should perhaps

consider using prefixes of samples as splitters.

Besides the COMMONCRAWL and DNAREADS instances,

we also tried an instance consisting of 71 GB of Wikipedia

pages. The results are similar to the COMMONCRAWL instance

so that we do not show them here.

As a first attempt in the direction of suffix sorting, we

considered the first 3000 lines of the above Wikipedia instance

as a single string and used all their suffixes as input. This

instance has N ≈ 104 · 109 and D ≈ 10.4 · 106, i.e.,

9

0

10

20

30
ti

m
e

(s
)

COMMONCRAWL

1
6
0

3
2
0

4
8
0

6
4
0

9
6
0

1
,2
8
0

20

30

40

50

number of PEs

b
y

te
s

se
n

t
p

er
st

ri
n

g

0

5

10

15

20

ti
m

e
(s

)

DNAREADS

1
6
0

3
2
0

4
8
0

6
4
0

9
6
0

1
,2
8
0

40

60

80

100

number of PEs

b
y

te
s

se
n

t
p

er
st

ri
n

g

FKmerge hQuick MS-simple MS PDMS-Golomb PDMS

Fig. 5. Running times and number of bytes sent per string in strong-scaling for COMMONCRAWL (82 GB) and DNAREADS (125 GB) inputs.

D/N ≈ 0.0001. This is a very easy instance (execution time

about 0.2 seconds on 160 PEs) for algorithm PDMS and a

fairly difficult instance for all the other algorithms. Algorithm

PDMS is about 30 times faster than the other algorithms for

p = 160. For larger p this advantage shrinks because larger

inputs would be needed to achieve scalability. However, these

inputs would be very expensive for the other algorithms so that

we did not pursue suffix instances given our limited compute

resources.

We also generated skewed variants of our D/N -instances

as follows: The 20 % smallest of these strings are padded

with additional characters that make them 4 times longer (now

2000 characters) but without contributing to the distinguishing

prefixes. The relative ranking of the algorithms hQuick,

FKmerge, MS, and PDMS remains the same. Among the

variants of MS, those with character-based sampling now

profit because they avoid deteriorating load balance due to

the skewed distribution of output string lengths.

VIII. CONCLUSIONS AND FUTURE WORK

With Algorithm PDMS, we have developed a distributed-

memory string sorting algorithm that efficiently sorts large data

sets both in theory and practice. The algorithm is several times

faster than the best previous algorithms and scales well for

sufficiently large inputs.

One approach to further optimize the algorithm is to im-

prove splitter selection. Analogous to the work done for atomic

sorting [29] one could remove load balancing problems due

to duplicate strings by tie breaking techniques. One could also

consider whether it helps to look for short splitter strings. The

bounds could also be improved by going from deterministic

sampling to random sampling. This requires less samples and,

in expectation, the sample strings have average length rather

than length ℓ̂. Adapting the techniques from [11], [14] for

perfect splitting in atomic sorting to string sorting could also

be interesting. Probably this only makes sense if we also use

a refined cost model that takes both the number of strings and

their distinguishing prefix lengths into account.

To speed up sorting of the sample but also for other

applications, it is interesting to look for parallel string sorting

algorithms for small inputs that are faster than hQuick.

One approach would be to adapt the key idea of Multikey

Quicksort to look not at entire strings as pivots [18]. In

[6] this is refined by looking at several characters at once.

Probably for a distributed algorithm one should look at up

to O(α log p/(β log σ)) characters at a time to find the right

balance between latency and communication volume.

An interesting observation is that algorithms based on data

partitioning rather than merging are successful both for atomic

sorting [29] and shared-memory string sorting [6]. We have

chosen a merging based algorithm here since it is not clear

how to do LCP compression without locally sorting first.

The large D/N values in our practical inputs are in part due

to many repeated keys. Perhaps one could design string sorting

algorithms that do not communicate duplicate keys. One could

modify Algorithm PDMS so that it detects likely duplicates

and decides to communicate only one copy of each duplicate

to their common destination PE. A problem with this approach

is that we cannot guarantee that these strings are duplicates.

We could enforce a very small false positive rate but we would

10

end up with a result that is only approximately sorted.

The average-case upper bound of O(log p) bits per string

from Section VI-B is intriguing from a theoretical point of

view. For atomic sorting, the average case and the worst case

running time share the same upper and lower bounds. Does

this extend to the communication complexity of string sorting?

Are there algorithms that need o(D/n) communication volume

in the worst case? What are the lower bounds? D/n? log p?

Something in between? The answer will likely depend on the

small print in how we define our sorting problem. It should

also be noted here that the lower bound for the easier problem

of duplicate detection is conjectured to be log p [10] but that

this is also still an open problem for distributed communication

complexity with point-to-point communication.

The algorithm for approximating distinguishing prefixes

from Section VI-A is an overkill if we only need information

on global values like D/n or its variance. These values can be

approximated more efficiently by sampling. A simple approach

is to gossip a small sample of the input strings. Then, without

further communication, their distinguishing prefix sizes can

be computed locally. However, this way we can only process

small samples which might be insufficient when d̂ ≫ D/n –

a small sample is insufficient if D/n is dominated by a small

number of strings with very large DIST(s).8 More efficiently,

we can take a Bernoulli sample of prefixes of keys rather than

input strings. This allows us to still use distributed hashing

and thus makes the algorithm more scalable. Also this might

reduce the amount of local work.

ACKNOWLEDGMENT

We used the ForHLR I cluster funded by the Ministry of

Science, Research and the Arts Baden-Württemberg and by

the Federal Ministry of Education and Research.

REFERENCES

[1] R. Bayer and K. Unterauer, “Prefix B-trees,” ACM Transactions on

Database Systems (TODS), vol. 2, no. 1, pp. 11–26, 1977.
[2] G. Graefe and P. . Larson, “B-tree indexes and CPU caches,” in 17th

Int. Conference on Data Engineering (ICDE), 2001, pp. 349–358.
[3] N. Futamura, S. Aluru, and S. Kurtz, “Parallel suffix sorting,” in 9th

International Conference on Advanced Computing and Communications.
McGraw-Hill, 2001, pp. 76–81.

[4] J. Kärkkäinen, P. Sanders, and S. Burkhardt, “Linear work suffix array
construction,” Journal of the ACM, vol. 53, no. 6, pp. 1–19, 2006.

[5] T. Bingmann and P. Sanders, “Parallel string sample sort,” in 21st
European Symposium on Algorithms (ESA), ser. LNCS, vol. 8125.
Springer, 2013, pp. 169–180.

[6] T. Bingmann, “Scalable string and suffix sorting: Algorithms, techniques,
and tools,” Ph.D. dissertation, Karlsruhe Institute of Technology, 2018.

[7] T. Bingmann, A. Eberle, and P. Sanders, “Engineering parallel string
sorting,” Algorithmica, vol. 77, no. 1, pp. 235–286, Jan 2017.

[8] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E. Elno-
hazy, M. Hall, R. Harrison, W. Harrod, K. Hill et al., “Exascale software
study: Software challenges in extreme scale systems,” DARPA IPTO, Air

Force Research Labs, Tech. Rep, pp. 1–153, 2009.
[9] S. Borkar, “Exascale computing – a fact or a fiction?” in IEEE 27th Int.

Symposium on Parallel and Distributed Processing, May 2013.
[10] P. Sanders, S. Schlag, and I. Müller, “Communication efficient algo-

rithms for fundamental big data problems,” in IEEE Int. Conference on
Big Data, 2013, pp. 15–23.

8Initial calculations indicate that a sample of size Θ(ε−2nd̂/D) is needed
to approximate D with standard deviation εD.

[11] P. J. Varman, S. D. Scheufler, B. R. Iyer, and G. R. Ricard, “Merging
multiple lists on hierarchical-memory multiprocessors,” Journal on
Parallel & Distributed Computing, vol. 12, no. 2, pp. 171–177, 1991.

[12] M. Rahn, P. Sanders, and J. Singler, “Scalable distributed-memory
external sorting,” in 26th IEEE International Conference on Data

Engineering (ICDE), 2010, pp. 685–688.
[13] H. Sundar, D. Malhotra, and G. Biros, “HykSort: A new variant of

hypercube quicksort on distributed memory architectures,” in 27th ACM

Int. Conference on Supercomputing (ICS), 2013, pp. 293–302.
[14] M. Axtmann, T. Bingmann, P. Sanders, and C. Schulz, “Practical

massively parallel sorting,” in 27th ACM Symposium on Parallelism in

Algorithms and Architectures, 2015, pp. 13–23.
[15] J. Fischer and F. Kurpicz, “Lightweight distributed suffix array con-

struction,” in 212st Meeting on Algorithm Engineering and Experiments

(ALENEX). SIAM, 2019, pp. 27–38.
[16] P. Fraigniaud and E. Lazard, “Methods and problems of communication

in usual networks,” Disr. Appl. Math., vol. 53, no. 1–3, pp. 79–133,
1994.

[17] P. Sanders, K. Mehlhorn, M. Dietzfelbinger, and R. Dementiev, Sequen-

tial and Parallel Algorithms and Data Structures – The Basic Toolbox.
Springer, 2019.

[18] J. L. Bentley and R. Sedgewick, “Fast algorithms for sorting and
searching strings,” in 8th ACM-SIAM Symp. on Discr. Alg. (SODA), 1997,
pp. 360–369.

[19] T. Bingmann, “TLX: Collection of sophisticated C++ data structures,
algorithms, and miscellaneous helpers,” 2018, panthema.net/tlx.

[20] W. Ng and K. Kakehi, “Merging string sequences by longest common
prefixes,” IPSJ Digital Courier, vol. 4, pp. 69–78, 2008.

[21] D. Knuth, “Sorting and searching,” The art of computer programming,
vol. 3, p. 513, 1998.

[22] M. Schimek, “Distributed string sorting algorithms,” Master’s thesis,
Karlsruhe Institute of Technology, 2019, doi:10.5445/IR/1000098432.

[23] J. Kärkkäinen and T. Rantala, “Engineering radix sort for strings,” in
Symp. on String Processing and Inf. Retrieval (SPIRE), 2008, pp. 3–14.

[24] R. Sinha and A. Wirth, “Engineering burstsort: Toward fast in-place
string sorting,” J. of Exp. Algorithmics (JEA), vol. 15, pp. 2–5, 2010.

[25] T. Hagerup, “Optimal parallel string algorithms: sorting, merging and
computing the minimum,” in 26th ACM Symposium on Theory of
Computing (STOC), 1994, pp. 382–391.

[26] J. F. JáJá and K. W. Ryu, “An efficient parallel algorithm for the single
function coarsest partition problem,” Theoretical Computer Science, vol.
129, no. 2, pp. 293–307, 1994.

[27] U. Manber and G. Myers, “Suffix arrays: a new method for on-line
string searches,” siam Journal on Computing, vol. 22, no. 5, pp. 935–
948, 1993.

[28] B. Neelima, A. S. Narayan, and R. G. Prabhu, “String sorting on multi
and many-threaded architectures: A comparative study,” in Int. Conf. on

High Perf. Comp. & Appl. (ICHPCA), Dec 2014, pp. 1–6.
[29] M. Axtmann and P. Sanders, “Robust massively parallel sorting,” in 19th

Meeting on Alg. Eng. & Exp. (ALENEX). SIAM, 2017, pp. 83–97.
[30] H. Shi and J. Schaeffer, “Parallel sorting by regular sampling,” Journal

of parallel and distributed computing, vol. 14, no. 4, pp. 361–372, 1992.
[31] X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, and H. Shi, “On the

versatility of parallel sorting by regular sampling,” Parallel Computing,
vol. 19, no. 10, pp. 1079–1103, 1993.

[32] M. Axtmann, “Karlsruhe distributed sorting library (KaDiS),” 2019,
github.com/MichaelAxtmann/KaDiS, retrieved Oct. 7, 2019.

11

panthema.net/tlx
github.com/MichaelAxtmann/KaDiS

	I Introduction
	II Preliminaries
	II-A Sequential String Sorting for the Base Case
	II-B Multiway LCP-Merging
	II-C Distributed Multiway Mergesort

	III More Related Work
	IV Parallel String Sorting Based on Atomic Parallel Quicksort
	V Distributed String Merge Sort
	V-A String-Based or Character-Based Partitioning
	V-B Data Exchange
	V-C Overall Analysis of Algorithm MS

	VI Distributed Prefix-Doubling String Merge Sort
	VI-A Approximating Distinguishing Prefix Lengths
	VI-B Average Case Analysis of Algorithm PDMS and Beyond

	VII Experiments
	VII-A Inputs
	VII-B Hardware
	VII-C Algorithms
	VII-D Results
	VII-E Summary of Further Experiments

	VIII Conclusions and Future Work
	References

