
Distributed String Sorting Algorithms

Master’s Thesis of

Matthias Schimek

Department of Informatics
Institute of Theoretical Informatics
Karlsruhe Institute of Technology

Reviewer: Prof. Dr. Peter Sanders

Advisor: Dr. Timo Bingmann

Time Period: 7th January 2019 – 8th July 2019

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own work, unless
otherwise acknowledged in the text.

Karlsruhe, 8th July 2019

This work was performed on the supercomputer ForHLR funded by the Ministry of Science, Research
and the Arts Baden-Württemberg and by the Federal Ministry of Education and Research.

iii

Abstract

Although there has been extensive work on sequential and shared-memory parallel string
sorting, the problem has not yet been thoroughly studied for distributed systems. In this
thesis we present two new distributed string sorting algorithms. Our first algorithm distributed
Merge String Sort extends the – to our knowledge – only distributed string sorting algorithm
with longest common prefix-related optimizations. Furthermore, we present a new approach to
compute an ordered partition of a distributed string array such that the number of characters
in each set of the partition has about the same value.

Our second algorithm distributed Prefix-Doubling String Sort addresses a major problem
of distributed string sorting: the communication of characters which are not required to
establish a lexicographical order of the input. Distributed Bloom filters are applied to
approximately compute the distinguishing prefixes of the input without exchanging the actual
strings. Afterwards, the algorithm operates on the (approximate) distinguishing prefixes
only. By this means, a significant amount of communication can be saved provided that the
distinguishing prefixes are short compared to the strings themselves.

Furthermore, we introduce a new string generator producing string data sets with the ratio
of the distinguishing prefix length to the entire string length being an input parameter. Our
evaluation on up to 1280 processors shows that the presented algorithms clearly outperform
their competitors on both generated and real-world data.

Deutsche Zusammenfassung

Obwohl in den letzten Jahren das Sortieren von Zeichenketten sowohl im Sequentiellen als auch
auf parallelen Systemen mit gemeinsamen Speicher intensiv untersucht wurde, ist das Problem
auf verteilten Systemen ohne gemeinsamen Speicher noch weitgehend unbehandelt. In der
vorliegenden Arbeit werden zwei Algorithmen für das verteilte Sortieren von Zeichenketten
vorgestellt. Der erste Algorithmus, distributed Merge String Sort, erweitert den einzigen
bisher publizierten verteilten Algorithmus zum Sortieren von Zeichenketten um Optimierungen,
welche die Eigenschaften längster gemeinsamer Präfixe der Eingabe ausnutzen. Darüberhinaus
wird ein neuer Algorithmus zum Berechnen einer geordneten Partition verteilter Zeichenketten
präsentiert, welcher sicherstellt, dass die Anzahl an Zeichen in jeder Teilmenge der Partition
annähernd identisch ist.

Der zweite Algorithmus, distributed Prefix-Doubling String Sort, geht eines der Hauptprobleme
beim Sortieren von Zeichenketten auf verteilten Systemen an, das darin besteht, nur die für das
Sortieren der Zeichenketten tatsächlich benötigten Teile derselben zu kommunizieren. Zu diesem
Zweck werden verteilte Bloomfilter verwendet, die es erlauben, die für die Sortierung relevanten
Präfixe der Zeichenketten approximativ zu berechnen, ohne diese als ganze auszutauschen. Ab
diesem Zeitpunkt werden im Algorithmus nur noch Operationen auf den zuvor berechneten
Präfixen durchgeführt. Hierdurch kann ein erheblicher Anteil des Kommunikationsvolumens
eingespart werden – vorausgesetzt, dass die für die Sortierung relevanten Präfixe im Vergleich
zu den (Gesamt-)Zeichenketten kurz sind.

Weiterhin wird ein Zeichenketten-Generator vorgestellt, welcher es erlaubt, Datensätze mit
einem vorgegebenen Verhältnis zwischen Länge der für die Sortierung relevanten Präfixe und
der Länge der Zeichenketten zu erzeugen. In der abschließenden Evaluation auf bis zu 1280
Prozessoren wird gezeigt, dass distributed Merge String Sort und distributed Prefix-Doubling
String Sort deutlich bessere Laufzeiten als die Konkurrenzalgorithmen besitzen. Diese werden
sowohl auf generierten als auch nicht-künstlichen Datensätzen erreicht.

v

Acknowledgements

I would like to thank my advisor, Dr. Timo Bingmann, for his guidance, helpful advice and
encouraging support through each stage of this thesis. I also would like to thank Michael
Axtmann for the interesting discussions about MPI, related problems on distributed systems and
possible solutions to them. Special thanks go to Philipp Ronecker for his help in proofreading
this thesis.

vii

Contents

1 Introduction 1
1.1 Contribution . 1

2 Preliminaries and Related Work 3
2.1 Definitions . 3
2.2 Model of Communication . 4
2.3 Collective Communication Operations . 4

2.3.1 Broadcast . 4
2.3.2 (All-)Reduce . 5
2.3.3 Prefix Sum . 5
2.3.4 (All-)Gather . 5
2.3.5 Alltoall . 5

2.4 Related Work . 5

3 Techniques and Subroutines 9
3.1 Sequential String Sorting . 9

3.1.1 Multikey Quicksort . 9
3.1.2 (LCP-) Insertion Sort . 10
3.1.3 Most-Significant-Digit String Radix Sort . 10

3.2 Distributed Sorting of Small Sets . 10
3.2.1 Centralized Sequential Sorting . 10
3.2.2 Hypercube Quicksort . 11

3.3 Distributed Ordered Partitioning . 11
3.3.1 General Approach . 12
3.3.2 Regular Sampling . 13
3.3.3 String-Based Sampling . 15
3.3.4 Character-Based Sampling . 15
3.3.5 Local Input Arrays of Different Size . 18
3.3.6 Running Time . 19

3.4 LCP Compression . 19
3.5 Multiway-(LCP)-Merging . 20

3.5.1 LCP Compare . 21
3.5.2 Losertree . 21
3.5.3 LCP Losertree . 22

4 Distributed Merge String Sort 25
4.1 Description of the Algorithm . 25

4.1.1 Local Sorting . 26
4.1.2 Distributed Ordered Partitioning . 26
4.1.3 String Exchange . 27
4.1.4 Merging . 29

4.2 Total Running Time . 29

ix

Contents

5 Distributed Prefix-Doubling String Sort 31
5.1 Description of the Algorithm . 33

5.1.1 Local Sorting . 33
5.1.2 Distinguishing Prefix Computation . 33

5.1.2.1 Distributed Duplicate Detection . 33
5.1.2.2 Prefix-Doubling Algorithm for Computing Distinguishing Prefixes . 35

5.1.3 Distributed Ordered Partitioning . 39
5.1.4 String Exchange . 40
5.1.5 Merging . 40

5.2 Total Running Time . 41

6 Implementation Details 43
6.1 Memory Layout of Strings . 43
6.2 Sequential String Sorting . 43
6.3 Sending Strings/LCP Values with MPI . 45
6.4 LCP Losertree . 47
6.5 Distinguishing Prefix Computation . 47

6.5.1 Hashing . 47
6.5.2 Local Duplicate Detection . 47
6.5.3 Sorting/Merging of Hash Values . 48

6.6 Hypercube Quicksort . 48

7 Experimental Evaluation 49
7.1 Data . 49

7.1.1 DNGenerator . 49
7.1.2 Skewed DNGenerator . 51
7.1.3 Other Data Sets . 52

7.2 Evaluation Setup . 52
7.2.1 Distribution of the Data . 52
7.2.2 Algorithms . 53

7.3 Evaluation . 54
7.3.1 DN-Data Weak Scaling . 54
7.3.2 DN-Data Strong Scaling . 59
7.3.3 CommonCrawl . 60
7.3.4 Wikipedia . 64
7.3.5 Suffixes . 64

7.4 Summary . 65

8 Conclusion 69
8.1 Future Work . 70

Bibliography 71

Appendix 73
A Running Times and Communication . 73
B Speed-up . 73

x

List of Figures

1.1 Illustration of a distributed string sorting algorithm. 2

2.1 String array S consisting of 8 strings. The distinguishing prefixes are coloured red.
We have L(S) = 20, D(S) = 39 and ‖S‖ = 68. 4

2.2 Illustration of the distributed string sorting algorithm by Fischer and Kurpicz [11]. . 6

3.1 Illustration of the distributed partitioning algorithm. 13
3.2 Illustration of the proof of Theorem 3.2. 14
3.3 String array S with corresponding character array C(S). 16
3.4 Character-based sampling: Shift of the number controlled by the sample set elements

when respecting string boundaries. 16
3.5 LCP Losertree with eight input sequences. 22

5.1 String array S consisting of 3 words existing in the English language. The distin-
guishing prefixes are coloured in red. We have D(S) = 3 and ‖S‖ = 87. 31

5.2 Distributed single shot Bloom filter: the bit array with 30 entries is distributed over
the 3 PEs such that each PE is responsible for 10 indices. Each PE has 3 elements
that are inserted into the Bloom filter via the hash function h at positions marked
with (unique hash value) or (at least two hash values). The duplicate hash
values are communicated back to their origin PEs. 34

6.1 Memory layout of a string array consisting of 4 strings. 44
6.2 Comparison of different variants how strings and LCP values can be sent together.

Plots shows (from left to right) the running times for 100000, 500000 and 1000000
strings per PE. 46

7.1 Two string arrays generated with DNGenerator. The distinguishing prefix is coloured
red. 51

7.2 String array generated by SkewedDNGenerator. The distinguishing prefixes are
coloured red. 51

7.3 Running times and number of bytes sent per string in the DToN weak-scaling experiment. 55
7.4 Running times and number of bytes sent per string in the skewed DToN weak-scaling

experiment. 58
7.5 Running times and number of bytes sent per string in the strong-scaling experiment

on DToN data. 59
7.6 Running times and number of bytes sent per string in the strong-scaling experiment

on skewed DToN data. 61
7.7 Running times and number of bytes sent per string in the strong-scaling experiment

on CommonCrawl (left-hand side) and CommonCrawlR (right-hand side). . . . 63
7.8 Running times and number of bytes sent per string in the strong-scaling experiment

on Wiki (left-hand side) and WikiReduced (right-hand side). 66

xi

List of Figures

7.9 Running times and number of bytes sent per string in the strong-scaling experiment
on Suffixes. 67

xii

List of Tables

4.1 Upper bound on the expected length of the critical path of dMSS. 30

5.1 Upper bound on the expected length of the critical path of dPDSS. 41

7.1 Internals of the data sets CommonCrawl,Wiki, Suffixes and the data sets derived
from them. 52

A.1 Running time in [sec] (first column) and number of bytes sent per string (second
column) for all p in the DNGenerator-weak-scaling experiment. 74

A.2 Running time in [sec] (first column) and number of bytes sent per string (second
column) for all p in the SkewedDNGenerator-weak-scaling experiment. 75

A.3 Running time in [sec] (first column) and number of bytes sent per string (second
column) for all p in the DNGenerator-strong-scaling experiment. 76

A.4 Running time in [sec] (first column) and number of bytes sent per string (second
column) for all p in the SkewedDNGenerator-strong-scaling experiment. 77

A.5 Running time in [sec] (first column) and number of bytes sent per string (second
column) for all p on the real-world instances. 78

B.6 Speed-up for all p in the DNGenerator/SkewedDNGenerator-weak-scaling experiment. 79
B.7 Speed-up for all p in the DNGenerator/SkewedDNGenerator-strong-scaling experiment. 80
B.8 Speed-up for all p in the real-world-strong-scaling experiments. 81

xiii

List of Algorithms

3.1 Character Sampling . 18

3.2 LCP Compression . 20

3.3 LCP Decompression . 20

3.4 LCP Compare . 21

5.1 Distinguishing Prefix Computation . 36

5.2 Reduction to Distinguishing Prefixes . 39

6.1 LCP Computation within MSD String Radix Sort . 44

6.2 LCP Computation within Multikey Quicksort . 45

6.3 7-Bit Compression . 47

6.4 Local Duplicate Detection . 48

7.1 DNGenerator . 50

xv

1. Introduction

Sorting is one of the most important algorithmic operations with a large variety of applications [1, 3].
Most sorting algorithms assume their input elements to be atomic, i.e. elements of fixed size that
can be compared or swapped in constant time. These assumptions do not hold for strings as input to
these algorithms. Comparing two strings is a potentially costly operation whose time complexity can
be linear in the length of the strings. Therefore, sorting strings is an algorithmic challenge different
from atomic key sorting. Dedicated string sorting algorithms try to use the internal structure of
strings like longest common prefixes to reduce the number of such expensive operations.

There has been been extensive work on sequential and also on shared-memory parallel string sorting
[5]. However, the rise of Big Data makes it necessary to parallelize algorithms beyond the limited
scope of shared-memory systems. Therefore, we investigate distributed string sorting in this thesis.
This topic has not been given much attention yet, we are only aware of one publication [11] discussing
distributed string sorting.

Figure 1.1 shows the general flow of a distributed string sorting algorithm. Unlike in sequential or
shared-memory-parallel string sorting, the input string array is assumed to be distributed over the
processing elements (PE) such that only a fraction Si of the global string array is located on PE i at
the beginning. Then the distributed string sorting algorithm is executed, communication between
different PEs must be done using explicit messages as different PEs do not share memory. In the
end, the output of the algorithm is also distributed over all PEs, i.e. on PE i an output array Oi is
located. The output arrays are locally and globally sorted. In the context of Figure 1.1 this means
that all strings in O1 are smaller than or equal to the strings in O2 and all strings in O2 are smaller
than or equal to the strings in O3. Locally refers to the sortedness of each of the string arrays. The
number of strings in each of the output arrays depends on the used algorithm.

The main differences between shared-memory and distributed parallelism are the larger number of
processors and the necessity to communicate via messages in distributed systems, which is usually
more expensive. This implies that an efficient distributed string sorting algorithm must on the one
hand exploit the properties of strings to avoid repeated costly operations on the strings in local
operations. On the other hand it should also try to reduce the communication volume as much as
possible.

1.1 Contribution
In this thesis we present two new distributed string sorting algorithms. In Section 4 we introduce
distributed Merge String Sort (dMSS), an extension of [11]. Opposed to the original algorithm, we

1

1. Introduction

PE 1 PE 2 PE 3

S1 S2 S3

Distributed String Sorting

O1 O2 O3

Figure 1.1: Illustration of a distributed string sorting algorithm.

also compute the longest common prefixes while sorting the input. These are then used to avoid
repeated costly comparisons of the whole strings. Additionally, the knowledge of these prefixes
enables us to apply a simple and fast compression on the strings in order to reduce the amount of
communication. Furthermore, we present a new distributed partitioning approach that enables us to
redistribute the input over the PEs such that each PE has about same amount of characters in the
output sets.

In Section 5 distributed Prefix-Doubling String Sort (dPDSS) is presented. In this algorithm
characters that are not required to sort the strings are cut off before the strings are exchanged.
Applying additionally the same compression technique and the partitioning approach already used in
dMSS the communication volume of our algorithm can be considerably smaller than the total number
of characters of the input string array. Since only the distinguishing prefixes of the input strings
are communicated, this algorithm’s output is not the sorted string array itself but the permutation
defining the sorted order of the strings.

The presented algorithms will be evaluated on various generated and real-world data sets in Section
7.

2

2. Preliminaries and Related Work

2.1 Definitions
A string array S is an array S := [s0, ..., sn−1] of |S| := n strings. A string s of length l = |s|
is a (zero-based) array of l − 1 characters over the alphabet Σ := {c0, . . . , cσ−1} of size σ, i.e.
s := [c0, c1, . . . , cl−2, 0] with ci ∈ Σ. The last character of a string is always the end-of-string
character 0. The end-of-string character is not part of the alphabet. String arrays are usually
represented as arrays of pointers to the beginning of the strings. Using this indirection, moving one
or swapping two strings can be achieved in constant time by moving or swapping the corresponding
pointers. The expression ci with 0 < i and c ∈ Σ denotes i repetitions of the character c. By ‖S‖ we
denote the total sum of all characters of the strings contained in S. The length of the longest string
in a string array is denoted by lmax.

We use the access operator on a string s in two different ways: s[i] returns the ith character of a
string, s[i, j] denotes the character subarray [s[i], . . . , s[j]] for 0 ≤ i ≤ j < |s|. Furthermore, we
define s[i, j) := [s[i], . . . , s[j − 1]] and s[i,] := [s[i], . . . , s[|s| − 1]]. The concatenation of two arrays of
characters a := [a0, . . . , ai] and a2 := [a′0, . . . , a′j] is denoted by a1 + a2 := [a0, . . . , ai, a

′
0, . . . , a

′
j]. A

prefix of a string s of length l is the subarray s[0, l), provided |s| ≥ l. Sorting a string array means
to permute the strings of the array such that a lexicographical order is established.

Let s1 and s2 be two strings. By lcp(s1, s2) we denote the length of their longest common prefix. If
s1 = s2 we set lcp(s1, s2) = |s1| − 1. For a sorted array of strings S, we define the corresponding
LCP array H(S) := [⊥, h1, h2, . . . , h|S|−1] with hi := lcp(si−1, si) for 1 ≤ i < |S|. The sum of all
values in H(S) excluding the first entry is denoted by L(S).

The distinguishing prefix dpS(s) of a string s in an array S is the number of characters that must be
inspected to differentiate it from any other string t in S, i.e. distS(s) = max

t∈S,t 6=s
(lcp(s, t) + 1). The

sum of the lengths of the distinguishing prefixes of a set S is D(S). This value D(S) is a lower bound
on the number of characters that must be inspected to sort the array S. Hence, it is a lower bound
on the number of character comparisons in comparison-based string sorting algorithms. Figure 2.1
depicts a string array S consisting of 8 strings. The distinguishing prefixes are coloured red and the
values of the LCP array H(S) are shown. This example reveals that L(S) and D(S) are related, but
not equal. For a string array S the sum D(S) comprises all characters counted in L(S) plus further
characters. Lemma 2.1 describes this relation quantitatively.

Lemma 2.1 (Relation between L(S) and D(S) [5]). For any string array S with n := |S|

n+ L(S) ≤ D(S) ≤ 2L(S) + n

3

2. Preliminaries and Related Work

s0

s1

s2

s3

s4

s5

s6

s7

⊥

2

5

0

1

4

6

2

a l g o r i t h m 0

c o m p u t e r 0

a l p h a b e t 0

c o p y 0

c o m p u t i n g 0

c o m p l e t e 0

a l p h a 0

c h a r a c t e r 0

s0

s1

s2

s3

s4

s5

s6

s7

a l g o r i t h m 0

c o m p u t e r 0

a l p h a b e t 0

c o p y 0

c o m p u t i n g 0

c o m p l e t e 0

a l p h a 0

c h a r a c t e r 0sort⇒

S H(S) S

Figure 2.1: String array S consisting of 8 strings. The distinguishing prefixes are coloured red. We
have L(S) = 20, D(S) = 39 and ‖S‖ = 68.

holds.

Note that the only relationship between D(S) and ‖S‖ is D(S) ≤ ‖S‖. The number of characters is
not bounded by D(S) and there are data sets with ‖S‖ � D(S).

A last remark on pseudo-code used in the thesis: we use a mathematical set notation style when
appropriate, e.g. an expression like A← [i2 | 0 ≤ i ≤ 3] sets A to the array [0, 1, 4, 9]. Furthermore,
arrays or variables are not declared or allocated explicitly before their first usage, e.g. an expression
like S[i]← s allocates an array S and sets its ith entry to s.

2.2 Model of Communication
In this thesis the linear model of communication [13] is assumed. Sending a message of m data
units (usually bits or bytes) from one Processing Element (PE) to another PE takes α+ βm time.
The constant α is the so called start-up latency and β the speed at which one data unit can be
transferred. Furthermore, we define that a PE is single ported, i.e. it can only communicate with one
other PE at a time. We assume such a communication to be full duplex, i.e. a PE can send to and
receive from its communication partner simultaneously. Additionally, we define c to be the number
of bits required to transmit one character and w bits are required to communicate an integer.

2.3 Collective Communication Operations
Collective communication operations are operations in which more than two PEs participate. Since
we make use of some collective communication operations in our algorithms, we will give a brief
overview of the time complexity in which these operations can be executed. We will only state the
time complexity of the operations up to constant factors. The number of PEs in the distributed
system is denoted by p.

2.3.1 Broadcast

In the broadcast operation one PE wants to send a message of length m to all other PEs. There is a
lower bound on the running time of α log(p) + βm since the PEs reached by the initial PE can only
double in each round and the whole message must leave the sending PE at least once. This lower
bound is reached by algorithms like the 23-broadcast algorithm up to a constant factor [23].

4

2.4. Related Work

2.3.2 (All-)Reduce

Let ⊕ be an associative binary operator on a datatype T. Assume that PE i possesses a vector Mi

with m elements of type T. In a reduce operation M := ⊕i≤pMi is computed. After the computation
the result M is located on a dedicated root PE. An adaption of the 23-broadcast algorithm can be
used to execute a reduce operation in O (α log(p) + βm) [23]. The allreduce operation has the same
asymptotic complexity as we can simply combine one reduce with one broadcast operation.

2.3.3 Prefix Sum

Again, let ⊕ be an associative operator. As above, PE i possesses a vector Mi consisting of m
elements of type T. We want to calculate the prefix sum si := ⊕i≤pMi for PE i and 1 ≤ i ≤ p. As for
the last two collective operations a variant of the 23-algorithm can be applied. Hence, this problem
has a time complexity in O (α log(p) + βm) [23].

2.3.4 (All-)Gather

In the gather operation one designated PE (often called the root) collects a message from all other
PEs. A lower bound for this problem is given by α log(p) + β(p− 1)m. The summand β(p− 1)m is
due to the fact that the root must receive all p− 1 messages and can only receive one data unit at a
time. Since the number of messages aggregated on any PE can at most double in each communication
round and the root must receive all p messages, there are at least log(p) start-ups necessary for this
task.

In the allgather operation each PE i wants to communicate its message mi to all other PEs. Thus,
after the allgather operation each PE possesses all messages m1, . . . ,mp. Since an allgather algorithm
also solves the gather communication task, the same lower bound holds.

The gather problem can be solved in α log(p)+β(p−1)m using a binomial tree communication graph
[10]. As combining one gather and one broadcast operation yields an algorithm for the allgather
operation, we find the time complexity for this problem to be in O(α log(p) + βpm) for arbitrary p.

2.3.5 Alltoall

In this problem each PE i has a message mij of length m for every PE j. There is a lower bound on
the time complexity of β(p− 1)m since each PE has to send at least (p− 1) messages of size m. For
arbitrary p the 1-factor algorithm can be used with a time complexity in O(p(α+ βm)) [22]. This
algorithm basically consists of p communication rounds in which each PE exchanges a message with
a dedicated partner.

The 1-factor algorithm solves the regular alltoall operation, i.e. each message has the same length. In
our algorithms we will not always have this situation. Instead, we are confronted with the irregular
alltoall problem. As before, each PE has a message for any other PE but this time the length of
these messages can vary. A naïve solution is to pad each message to the length of longest message
and apply the algorithm for the regular problem. However, this might incur an unnecessary increase
in runtime. If instead we assume that the length of a message can vary, but the overall amount of
data to be sent and received from each PE M is identical, the 2-phase algorithm can be applied [21].
This algorithm partitions the data into regular messages of length M/p and exchanges/recomposes
them in two rounds using an algorithm for the regular alltoall problem. Hence, the time complexity
in this case is also in O(p(α+ βm)) if the 1-Factor algorithm is used as the base algorithm.

2.4 Related Work
In the following we will describe the – to our knowledge – only published distributed string sorting
algorithm by Fischer and Kurpicz [11], on which our dMSS algorithm is based. Figure 2.2 illustrates

5

2. Preliminaries and Related Work

PE 1 PE 2 PE 3

Distributed Partitioning Algorithm

String Exchange

local sorting local sorting local sorting

y y

merging merging merging

Figure 2.2: Illustration of the distributed string sorting algorithm by Fischer and Kurpicz [11].

the execution of the algorithm. At the beginning we assume that the input is already distributed
over the PEs. In a first step the input to each PE is sorted locally. Then a distributed partitioning
algorithm divides the input into p buckets. More precisely, the partitioning algorithm determines
p− 1 splitters globally such that the strings on each PE can be assigned to p buckets Bi for 1 ≤ i ≤ p.
These buckets have the property that each string in bucket Bi is smaller than or equal to each string
in bucket Bj for 1 ≤ i < j ≤ p. In Figure 2.2 the assignment of a string to a bucket is depicted
by the colours in which the local string array is coloured after the distributed partitioning step.
Note that up to this step the buckets are distributed over the PEs. In the next step PE i packs all
strings assigned to bucket j into a message mij . Hence, there are p messages on each PE. These are
exchanged by an (irregular) alltoall operation. After this step all strings assigned to bucket i are
located on PE i, i.e. each PE has p sorted sequences of strings and the strings are already globally
sorted. Therefore, it is sufficient to apply a multiway-merge algorithm to sort the strings also locally.

For the local sorting of the input string arrays any sequential string sorter can be used. In the
distributed partitioning algorithm each PE samples p− 1 strings equidistantly from its local input
array. Then an allgather operation is executed on the local sample sets so that all PEs possess all
p local sample sets. Subsequently, each PE sorts the sample sets using a sequential string sorting
algorithm and chooses p− 1 final splitters equidistantly from the sorted array. Based on these final
splitters the p buckets are determined. For the merging step Fischer and Kurpicz use a losertree

6

2.4. Related Work

(as described in Section 3.5). Note that apart from the sequential string sorter in the first step the
algorithm does not apply any techniques exploiting the special properties of strings sets to accelerate
the sorting process.

7

3. Techniques and Subroutines

In this section algorithmic building blocks that are used in both algorithms – dMSS and dPDSS –
will be presented. We will cover sequential string sorting, parallel (string) sorting for small local sets,
distributed partitioning (for redistribution), LCP compression, and efficient multiway-merging of
sorted string sequences. In Section 3.2 and 3.3 we will introduce distributed algorithms with string
arrays as input to each PE. For these inputs we state the following conventions:

Input

1. PE i obtains a string array Si as input. By S we denote the union of all local input arrays,
i.e. S =

⋃
1≤i≤p

Si. Although the term “union” is used, we allow duplicates in S.

2. For the number of strings and the number of characters in the local input array

|Si| ≤ δ
|S|
p

and ‖Si‖ ≤ ∆‖S‖
p

holds with δ,∆ ≥ 1. The factors δ and ∆ describe the imbalance of the input. Note that
for δ = ∆ = 1 the input data is perfectly balanced over all PEs.

3.1 Sequential String Sorting
Sorting the input sets of the PEs locally is the first step in both of our main algorithms (see Section
4 and Section 5). In [5] an extensive evaluation of sequential string sorting algorithms is given in
which a variant of MSD String Radix Sort has been found to be among the fastest algorithms on
many data sets. Therefore, we decided to use this sorting algorithm for the local sorting step in
our two algorithms. In the following we briefly describe MSD string radix sort and its base sorters
multikey quicksort and LCP-insertion sort with a string array S as input.

3.1.1 Multikey Quicksort

Multikey Quicksort by Bentley and Sedgewick [4] is an adaption of the common quicksort algorithm
to strings (which are called multikeys in the original publication). Assume that all strings in S
have a common prefix of length l, i.e. the first l characters of all strings are identical. Note that
the algorithm is started with l = 0. As in the traditional quicksort algorithm, a pivot sp is chosen
to partition the input into the three sets S<,S= and S>. The difference is that only the (l + 1)th
character of the strings is compared to cp := sp[l] (recall that strings are zero-based arrays) to

9

3. Techniques and Subroutines

determine the partitions instead of the whole strings. The algorithm is applied recursively on the
three partitions, unless cp = 0. In this case the strings in S= are all identical and, thus, sorted.
Hence, the algorithm only continues on the partitions S< and S>. For constant size sets insertion
sort is used as base sorter.

The key insight is that the strings in S= have a common prefix of length l+ 1. Therefore, characters
found equal to cp will never take part in any character comparison again. This leads to an expected
running time in O (|S| log |S|+D(S)).

3.1.2 (LCP-) Insertion Sort

Bingmann et al. [6] propose LCP-Insertion Sort as the string variant of the common insertion sort
algorithm. The algorithm is similar to insertion sort, however the associated LCP-array of the string
array to be sorted is kept up-to-date to reduce the number of necessary character comparisons. This
yields a running time in O

(
D(S) + |S|2

)
.

3.1.3 Most-Significant-Digit String Radix Sort

(MSD) string radix sort [14, 18] adapts the common radix sort algorithm to string sorting by
inspecting strings characterwise. In the common variant of radix sort integers are inspected digit per
digit. Since strings over an alphabet Σ can be seen as σ-ary integers, this approach is quite intuitive.

Suppose the string array S has a common prefix of length l. Then the algorithm looks at the (l+ 1)th
character of each string to sort them into σ+ 1 buckets. Recall that the end-of-string character is not
part of the alphabet. The algorithm is applied recursively to each bucket but the bucket dedicated
to the end-of-string character. It can be seen as a generalization of multikey quicksort that uses the
maximum amount of information of a single character. If the size of the input string arrays is in o(σ),
the algorithm is no longer efficient as there are more buckets than strings in this case. Hence, we
need another algorithm for the base case. Using multikey quicksort for buckets smaller than σ yields
an expected running time for the base case in O (|S| log(σ) +D(S)). The repetitive assignment to
buckets is in O (D(S)). Hence, the total expected time complexity is in O (|S| log(σ) +D(S)).

3.2 Distributed Sorting of Small Sets

Both of our main algorithms contain a sub-step which needs to sort a relatively small array of strings
globally. In the following we present two algorithms solving this task.

3.2.1 Centralized Sequential Sorting

The first method is very simple and rather sequential than parallel. We first gather all local inputs
on one PE. This PE sorts the data sequentially using MSD string radix sort as described in Section
3.1. The concrete redistribution of the sorted data depends on the context in which the algorithm
is used. The time complexity of the gather operation is in O (α log(p) + β∆c‖S‖) as the longest
message contains at most ∆‖S‖/p characters. The sorting can be done in O (|S| log(σ) +D(S))
time. Since D(S) ≤ ‖S‖, we have a total time complexity in

O (α log(p) + (βc+ 1)∆‖S‖+ |S| log(σ)) .

This running time might be prohibitive for large inputs, but it can be dominated by other steps
of the overall algorithm in which this subroutine is used. In those cases this simple procedure is a
reasonable alternative to more complicated distributed sorting algorithms (see [16]).

10

3.3. Distributed Ordered Partitioning

3.2.2 Hypercube Quicksort

During our experimental evaluation it turned out that the above-mentioned approach to sort small
sets does not scale in our setting. Therefore, we decided to parallelize the sorting of the smaller sets
with the hypercube quicksort algorithm presented by Axtmann and Sanders [1]. The algorithm is
designed for fixed-length data. We adapted its implementation to be able to handle elements of
variable length. From a conceptual point of view, however, the algorithm remains the same.

The algorithm can be split into an initialization phase followed by log(p) recursion levels. As with
all other string sorting algorithms, each PE obtains a string array Si as input.

Initialization

Let h = blog(p)c.

1. Reduction to hypercube: In the case that p is not a power of two, i.e. 2h < p, all PE
with an index i ≥ 2h send their elements to the PE with index i − 2h and return. They do
not further participate in the algorithm. All other PEs build an (implicit) hypercube Hinit of
dimension h.

2. Random Redistribution: All remaining 2h PEs randomly exchange their data using a
hypercube communication pattern (see [1] for details).

3. Local Sorting: The data on each PE is sorted locally.

Then we start the recursion step i = 0 with Hinit as input.

Recursion

In recursion step i a hypercube H of dimension h− i is taken as input, i.e. a hypercube with 2h−i
PEs. The precondition is that the data on each PE is already locally sorted, which holds for i = 0
because of the initialization phase. If h = i, i.e. the hypercube only contains one PE, the algorithm
returns immediately. Otherwise, the following steps are executed:

1. Pivot Selection: A pivot element is selected by all PEs using a binary-tree-reduction (again,
see [1] for more details).

2. Exchange: On each PE the local elements are partitioned into two sets S≤ containing all
elements smaller than or equal to the pivot and S> containing all elements greater than the
pivot. Then, each PE determines whether it is part of the 0-subcube H0 of H or part of the
1-subcube H1 by evaluating the ith bit of its PE index. If a PE is part of H0, it sends the set
S> to its corresponding PE in the 1-subcube H1 of H. If a PE is in H1, it keeps the set S>
and sends S≤ to its corresponding partner in H0. The corresponding PE in the other subcube
of a PE with index j is the one with index 2i ⊕ j, with ⊕ being the bitwise XOR-operator.

3. Merging: On each PE, the received elements and the elements that were not sent in the
exchange step are merged.

Thus, after exchanging and merging, all elements in H equal to or smaller than the pivot are on PEs
in H0, and elements greater than the pivot are in H1. Furthermore, the elements on all PEs are
locally sorted. We then recurse on the hypercubes H0 and H1.

3.3 Distributed Ordered Partitioning
In this section we develop the algorithm partition which computes a partition of the global string
array S into p buckets such that all strings assigned to a bucket Bi are smaller than any of the
strings in bucket Bj for i < j, i.e. the buckets of the partition are ordered. In both of our main
algorithms – dMSS and dPDSS – each of these buckets will be assigned to one PE. Therefore, the

11

3. Techniques and Subroutines

main goal is to build buckets such that the workload associated with them in the subsequent steps
of the algorithms is evenly distributed. When sorting atomic keys (i.e. integers or other fixed-length
data) the workload usually correlates very well with the number of elements. Thus, one tries to
choose such buckets that about the same number of elements are distributed to each PE. Sorting
strings differs in this respect. Especially the time complexity of the distribution of the buckets in our
distributed environment does not only depend on the number of elements but on the total number
of characters in each bucket. This difference motivates the analysis of methods trying to achieve
nearly equal amounts of characters in each bucket. The algorithm described in this section computes
the buckets but does not yet distribute them to the PEs, i.e. after the execution of this partitioning
algorithm the PEs only know which of their local strings are assigned to which bucket.

3.3.1 General Approach

As with the other distributed algorithms considered so far, PE i obtains a string array Si as input.
Furthermore, an integer s is part of the input. This integer is identical for all PEs. In addition to
the conventions specified above, assume that the string array is already locally sorted. Furthermore,
let each element in S (the union of the local input string arrays) be unique. This can be easily
achieved by adding a unique identifier to each string. Although this might be prohibitive when
handling atomic keys, regarding string sorting the additional identifier is neglectable as the elements
themselves are assumed to be “long”. As a last assumption, let δ = ∆ = 1. In Section 3.3.5 we will
discuss how different amounts of strings or characters per PE can be handled by the algorithm. The
computation of the buckets is done in four main steps:

1. Local Sampling

PE i chooses s elements from Si forming the local sample Ssamplei .

2. Sorting

Let Ssample be the union of all local samples Ssamplei (with |Ssample| = ps). In the next step the final
splitters fi are chosen as the elements of Ssample with rank is− 1 for 1 ≤ i ≤ p− 1. Note that we
define the smallest element of a set to have rank 0. Therefore, we need Ssample to be sorted. This
can be achieved by using one of the distributed sorting algorithms introduced in Section 3.2.

3. Extraction and Distribution of Splitters

The p − 1 final splitters must be determined and communicated to all PEs. If the centralized
sequential sorting algorithm described in Section 3.2.1 is used, the PE at which all data is sorted
simply determines the final splitters and broadcasts them to all other PEs. If the hypercube quicksort
algorithm (or any other sorting algorithm with a distributed output) is applied, we first compute a
prefix sum over the number of elements in the output set Oi of the distributed sorting algorithm.
By that, PE i knows the global rank of each element in Oi. All elements with global rank sj − 1
for 1 ≤ j ≤ p− 1 are inserted into Fi. Then an allgather operation is performed on the local final
splitter arrays Fi so that each PE possesses the complete set F of final splitters with |F| = p− 1.

4. Determination of Buckets

The p − 1 final splitters are used to determine p buckets Bj into which the elements of Si are
partitioned. The buckets are defined as

Bj =

{s ∈ S | s ≤ f1} for j = 1,
{s ∈ S | fj−1 < s ≤ fj} for 2 ≤ j ≤ p− 1,
{s ∈ S | fp−1 < s} for j = p.

12

3.3. Distributed Ordered Partitioning

PE 1 PE 2 PE 3 PE 4

Distributed String Sorting

local samples local samples local samples local samples

Communicate indices of final splitters

Allgather final splitters

partition with splitters partition with splitters partition with splitters partition with splitters

Figure 3.1: Illustration of the distributed partitioning algorithm.

The determination of the buckets can be done using p− 1 binary searches on each PE. Figure 3.1
illustrates the execution of the partition algorithm.

There are different techniques to select the local samples in step 1. Two commonly used approaches
are random and regular sampling. In the former s elements are picked from Si at random. If s is
chosen big enough, random sampling yields good guarantees for the maximum size of the buckets
with a high probability (see [8] for further details).

However, there are no worst-case guarantees since the elements in the sample sets are picked at
random. This can be overcome by using regular sampling. Here, we need the arrays Si to be sorted.
The sortedness is exploited by choosing the local samples evenly spaced. Doing so, each interval into
which Si is divided by the elements of Ssamplei is of equal size. This can be used to give worst-case
bounds. The concept of regular sampling for sorting was first introduced by Shi and Schaeffer [25]
and their follow-up paper [16]. We give a slightly different algorithm and a different analysis for the
upper bounds since we have to be able to adapt the procedure also to character-based sampling in
3.3.4, too. The analysis presented in the paper is not applicable to this case.

3.3.2 Regular Sampling

In this approach PE i determines a set Ssamplei of s evenly spaced elements. Therefore, we assume
that |Si| is divisible by s+ 1. In this setting, we choose s elements with a distance of ω = |Si|/(s+ 1)

13

3. Techniques and Subroutines

S1 | | | | |

S2 | | | | |

S3 | | | | |

S4 | | | | |

f1 f2

f1 f2

f1

f2

Figure 3.2: Illustration of the proof of Theorem 3.2.

from the set Si. More precisely, we select the elements sji = Si[ωj − 1] for 1 ≤ j ≤ s as local sample
set Ssamplei .

Si : s0, s1, . . . , sω−2, s
1
ω−1︸ ︷︷ ︸

ω

, sω, . . . , s2ω−2, s
2
2ω−1︸ ︷︷ ︸

ω

, . . . s(s−1)ω, . . . , ssω−2, s
s
sω−1︸ ︷︷ ︸

ω

, ssω, . . . , s(s+1)ω−1︸ ︷︷ ︸
ω

The s elements from Ssamplei partition Si into s+ 1 sets each of ω elements as depicted above.
Theorem 3.2 gives an upper bound on the number of strings per bucket computed by partition
using regular sampling. To prove this theorem, we need the following Lemma 3.1 giving an upper
bound on the number of elements in a contiguous subarray of Si if this subarray contains k elements
of the local sample set.

Lemma 3.1 (Number of Sample Elements). For 1 ≤ i ≤ p let S ′ = {s ∈ Si | a ≤ s ≤ b} be a
contiguous subarray of Si. If |S ′ ∩ Ssamplei | = k, then |S ′| ≤ (k + 1)ω.

Proof. We distinguish three cases:

1. k = 0 : There are three possibilities:

a) All elements of S ′ are smaller than s1
i . Then |S ′| < ω since s1

i is the ωth element of Si.

b) All elements of S ′ are contained completely between two consecutive elements of Ssamplei .
As above, we have |S ′| < ω since the number of elements of Si between two consecutive
elements of Ssamplei is ω.

c) All elements of S ′ are greater than ssi . As there are ω elements greater than ssi in Si, this
is an upper bound for |S ′|.

2. k = 1 : Let sji be the element of the local sample set contained in S ′. We split S ′ into
S< = {s ∈ S ′ | s < sji} and S> = {s ∈ S ′ | s > sji}. We then have S ′ = S< ∪ {sji} ∪ S>. For
S< the cases 1a or 1b can be applied. For S> 1b or 1c is applicable. This yields the upper
bound |S ′| ≤ (ω − 1) + 1 + ω ≤ 2ω.

3. k > 1 : Again, we split S ′. This time not only into 2 subsets as above but into (k + 1). We
find |S ′| ≤ k ((ω − 1) + 1) + ω ≤ (k + 1)ω.

With Lemma 3.1 we can prove the following Theorem 3.2.

Theorem 3.2 (Bucket Sizes for Regular Sampling). If regular sampling is used in partition with
s as the number of locally sampled elements, then all buckets Bj contain less than |Si|/s + |Si|/p
elements.

14

3.3. Distributed Ordered Partitioning

Figure 3.2 illustrates the idea of the proof. To give an upper bound for any bucket, say bucket B2,
one can sum the number of elements of each set Si that will be assigned to this bucket. Since B2

contains the elements between f1 and f2, we just have to give bounds for the number of elements
between these two splitters in every array Si. In Figure 3.2 the thin black ticks represent the elements
of Ssamplei ; the intervals between f1 and f2 are coloured in red.

Proof. We define the sets

Bji :=

{s ∈ Si | s ≤ fj}
{s ∈ Si | fj−1 < s ≤ fj}
{s ∈ Si | fp−1 < s}

and Cji :=

{s ∈ Ssamplei | s ≤ fj} for j = 1,
{s ∈ Ssamplei | fj−1 < s ≤ fj} for 2 ≤ j ≤ p− 1
{s ∈ Ssamplei | fp−1 < s} for j = p

for 1 ≤ i ≤ p. Let cji :=
∣∣∣Cji ∣∣∣ for 1 ≤ i ≤ p and 1 ≤ j ≤ p− 1. The set Bji contains all elements that

are in Si and bucket j. The variable cji counts the number of elements in the sample set that are in
Bji . To give an upper bound on the number of elements in Bj , we state upper bounds on |Bji | and
sum over all PEs.

1. j = 1: We have f1 = Ssample[s− 1]. Therefore, there are s− 1 elements of the local sample
sets smaller than f1 plus the element itself, which leaves s elements of the local sample sets
that are smaller than or equal to f1. Hence,

∑p
i=1 c

1
i = s.

2. 2 ≤ j ≤ p − 1: We have fj−1 = Ssample[(j − 1)s − 1] and fj = Ssample[js − 1]. Hence, there
are s elements of the local sample sets greater than fj−1 and smaller than or equal to fj . We
obtain

∑p
i=1 c

j
i = s.

3. j = p. Since fp−1 = Ssample[(p − 1)s − 1] there are s elements in Ssample greater than fp−1.
Therefore,

∑p
i=1 c

p
i = s.

In each set Bji there are cji elements in Ssamplei by definition. Hence, Lemma 3.1 yields the upper
bound of (cji + 1)ω elements for |Bji |. Summing over all PEs yields

|Bj | =
p∑
i=1
|Bji | ≤

p∑
i=1

(cji + 1)ω = ω(p+ s) = |S|
p(s+ 1)(p+ s) < |S|

ps
(p+ s) = |S|

s
+ |S|

p
.

for 1 ≤ j ≤ p.

3.3.3 String-Based Sampling

String-based sampling aims at choosing final splitters such that the number of strings in the
constructed buckets Bj is equal. We can directly apply regular sampling as described in 3.3.2. In
the following the algorithm partition with string-based regular sampling as sampling method will
be denoted by partitionSB.

3.3.4 Character-Based Sampling

Character-based sampling as opposed to string-based sampling asks for buckets that contain about
the same number of characters. Our character sampling approach is also based on regular sampling
exploiting the sortedness of the input. Instead of sampling the string array, we switch to a view on
the character-level and sample the according character array C(Si). Whereas a string array contains
pointer to strings, the corresponding character array C(Si) contains directly the characters of the
strings of Si as a sequence. Therefore, we find |C(Si)| = ‖Si‖. Figure 3.3 shows an example of a
character array.

For the sake of simplicity we assume – as above – that C(Si) is divisible by s+ 1 and contains at least
s elements. In string-based sampling we have simply chosen the elements sji at rank jω − 1 from the

15

3. Techniques and Subroutines

S

C(S)

s0

s1

s2

s t r i n g 0

a l g o 0

c h a r a c t e r 0

s t r i n g 0 a l g o 0 c h a r a c t e r 0

Figure 3.3: String array S with corresponding character array C(S).

Ci : || | | | | | | | | | |
q1
i q2

i q3
i

∣∣P1
i

∣∣ = ω1
∣∣P2

i

∣∣ = ω2
∣∣P3

i

∣∣ = ω3
∣∣P4

i

∣∣ = ω4

Ci :
q̂1
i q̂2

i q̂3
i

| | | | | | | | | | | |

∥∥P̂1
i

∥∥ = ω̂1
∥∥P̂2

i

∥∥ = ω̂2
∥∥P̂3

i

∥∥ = ω̂3
∥∥P̂4

i

∥∥ = ω̂4

Figure 3.4: Character-based sampling: Shift of the number controlled by the sample set elements
when respecting string boundaries.

local input array as the elements of the local sample set Ssamplei . For character-based sampling this
procedure is changed. We define qji := j|C(Si)|/(s+ 1)− 1 for 1 ≤ j ≤ s and 1 ≤ i ≤ p, i.e. qji is an
index in Ci. Using these indices we partition the character array C(Si) into the following s+ 1 sets:

Pji :=

C(Si)[0, q1

i] for j = 1,
C(Si)(qj−1

i , qji] for 2 ≤ j ≤ s,
C(Si)(qsi , |C(Si)| − 1] for j = s+ 1.

Note that Pji does not necessarily contain whole strings only. The first and last string in these sets
might be broken since the indices qji do not respect string boundaries. This can be overcome by
defining q̂ji for each qji as the index of the last character in C(Si) of the string to which the character
C(Si)[qji] belongs. Since q̂

j
i indexes the last character of a string, we can take these strings as the

elements of the sample set Ssamplei . Figure 3.4 shows an example. The thin black ticks represent
the string boundaries of C(Si). The larger red ticks q1

i , q
2
i and q3

i mark the splitting indices used
to partition C(Si) without taking string boundaries into consideration. The sets Pji into which the
characters of C(Si) would be divided by q1

i , q
2
i and q3

i are of the same size, i.e. they all consist of
exactly ω characters. When we shift the splitters such that string boundaries are respected (now
the shifted splitters q̂1

i , q̂
2
i and q̂3

i are at the end of real strings); the partition obtained is P̂1
i , . . . , P̂4

i

with varying number of characters ω̂1, . . . , ω̂4. Note the difference between Pji and P̂ji . The former
is a character array, the latter can be interpreted as a string array. This example illustrates that the
number of characters of each set of the partition depends heavily on the string length when applying
(regular) sampling on a character-level. Note that the sets P̂ji contain the same strings as Sji defined
by

16

3.3. Distributed Ordered Partitioning

Sji :=

{s ∈ Si | s ≤ s1

i } for j = 1,
{s ∈ Si | sj−1

i < s ≤ sji} for 2 ≤ j ≤ s,
{s ∈ Si | ssi < s} for j = s+ 1

,

with sji being the jth element of the Ssamplei for 1 ≤ i ≤ p. Algorithm 3.1 describes the sampling
process in pseudo-code. It is clear that the maximum string length directly interferes with the
number of characters per bucket Bj . To get an upper bound on this number, we need to bound the
length of the longest string in Si.

Lemma 3.3 (Maximum Partition Size). Let lmax be the length of the longest string in Si and let
‖Si‖ be divisible by s+ 1. If lmax ≤ ‖Si‖/(s+ 1), the sample set obtained by Algorithm 3.1 with the
parameters (Si, s) partitions Si into s+ 1 (non-empty) buckets. The maximum number of characters
in each partition Sji is less than or equal to ‖Si‖/(s+ 1) + lmax.

Proof. Let lmax ≤ ‖Si‖/(s+ 1) := ω. The initially chosen indices qji have a distance of ω. Therefore,
there are no two characters C(Si)[qji], C(Si)[q

j+1
i] belonging to the same string. It follows that q̂ji 6= q̂ki

for 1 ≤ j, k ≤ s and k 6= j. This implies that the loop in lines 7 – 9 of the algorithm is executed for
one iteration at a time only. Furthermore, we have qji ≤ q̂

j
i ≤ q

j
i + lmax as we shift the initial indices

to the end of the string. With this, it holds that

• q̂1
i ≤ ω + lmax.

• q̂ji − q̂
j−1
i ≤ qji + lmax − qj−1

i = ω + lmax, for 2 ≤ j ≤ s.

• ‖Si‖ − q̂si ≤ (s+ 1)ω − sω = ω.

Hence,
∥∥∥P̂ji ∥∥∥ ≤ ω + lmax as we assume that each string has at least length 1 (its end-of-string

character) for all 1 ≤ j ≤ s + 1. It follows that
∥∥∥Sji ∥∥∥ ≤ ω + lmax, i.e. all sets into which Ssamplei

divides Si contain less than or equal to ω + lmax characters, if lmax ≤ ω. Furthermore, they also
contain at least one string as all strings in the sample set are distinct.

Now we can state Lemma 3.4 – a character-based version of Lemma 3.1.

Lemma 3.4 (Character-Based Number of Sample Elements). We define ω := ‖Si‖/(s + 1). Let
lmax ≤ ω be the length of the longest string in Si. Let S ′ = {s ∈ Si | a ≤ s ≤ b} be a contiguous
subarray of Si. If

∣∣∣S ′ ∩ Ssamplei

∣∣∣ = k, then ‖S ′‖ ≤ (k + 1)(ω + lmax).

Proof. First, we define ωmax := ω + lmax.

1. k = 0 : If k = 0, then all elements of S ′ are completely contained within one of the sets Sji for
1 ≤ j ≤ s+ 1. Hence, ‖S ′‖ ≤ ωmax by Lemma 3.3.

2. k = 1 : Let sji be the element of the local sample set contained in S ′. We split S ′ into the sets
S ′≤ containing all strings less than sji and s

j
i and the set S ′> containing the string greater than

sji . By Lemma 3.3, S ′≤ can contain at most ωmax characters. The same holds for S ′> as the
first case is applicable. Hence, S ′ contains at most 2ωmax characters.

3. k ≥ 1 : Let sj+1
i , . . . , sj+ki be the local sample set elements contained in S ′. We define the

following sets:

S ′t =

{s ∈ S ′ | s ≤ sj+1

i } for t = 1
{s ∈ S ′ | sj+t−1

i < s ≤ sj+ti } for 1 < t ≤ k
{s ∈ S ′ | sti < s} for t = k + 1.

With these we can split S ′ in k + 1 sets, i.e. S ′ = S ′j ∪ · · · ∪ S ′k ∪ S ′j+k+1. For all the sets S ′t
with 1 ≤ t ≤ k+ 1 Lemma 3.3 can be applied as they are all subsets of one of the partition-sets
Sji . Thus, we have ‖S ′‖ =

∑j+k+1
i=j+1 ‖S ′i‖ ≤ (k + 1)(ωmax).

17

3. Techniques and Subroutines

Algorithm 3.1: Character Sampling
Input: On each PE: a sorted string array Si and the number s of elements to be drawn

from Si .
1 j ← 0, c← 0
2 ω ← ‖Si‖

s+1 // splitter distance
3 for k ← 0 to s− 1 do
4 while c < (k + 1)ω do
5 c← c+ |Si[j]|
6 j ← j + 1
7 while (k + 1)ω ≤ c ∧ k < s do // if lmax ≤ ω only one iteration within loop
8 Ssamplei [k]← Si[j − 1]
9 k ← k + 1

Output: A sample set Ssamplei of size s.

With Lemma 3.4 the following Theorem 3.5 can be proven similarly to Theorem 3.2.

Theorem 3.5. Let s be the number of elements in Ssamplei . If we have the same number of characters
on all PEs, i.e. ‖Si‖ = ‖S‖/p and lmax ≤ ‖Si‖/(s+ 1), then the maximum number of characters in
a bucket Bj is less than ‖S‖/p+ ‖S‖/s+ (p+ s)lmax.

Proof. Let with ω := ||S||/(p(s+ 1)). Using Lemma 3.4 within the same argument as in Theorem
3.2 yields

||Bj || =
p∑
i=1
||Bji || ≤

p∑
i=1

(cji + 1)(ω + lmax) = (ω + lmax)(p+ s) < ||S||
s

+ ||S||
p

+ (p+ s)lmax.

In Theorem 3.5 we demand lmax ≤ ω. If we define γ = lmax/ω, we can rewrite the upper bound of
this theorem as

||Bj || < (1 + γ)
(||S||

p
+ ||S||

s

)
.

In the following we will refer to partition using character-based regular sampling in the sampling
step as partitionCB.

3.3.5 Local Input Arrays of Different Size

Thus far, we have assumed that the number of strings/the number of characters is the same on
all local input arrays Si. We will now discuss how the algorithm must be adapted to handle local
input arrays of varying size while preserving the above-stated guarantees for the bucket size/the
number of characters per bucket. We describe the adaption of the algorithm for partitionSB only.
Character-based sampling can be adapted analogously. For the sake of simplicity assume that the
number of strings on each PE is a multiple of ω := |S|/(p(s+ 1)). As before the number of elements
in Ssample remains the same. The key difference is that the PEs no longer choose s strings for their
local sample set but |Si|/ω elements. This way, every element in Ssample “controls” ω strings as
before and we obtain the same guarantees on the number of strings per bucket. To compute the
value of ω, an allreduce is executed in which the number of strings of each PE’s input string array is
summed up. Let S be this sum. Then we have ω = S/p(s+ 1). Therefore, the root PE divides this
S by p(s+ 1) and broadcasts the result back to the other PEs.

18

3.4. LCP Compression

3.3.6 Running Time

We have not discussed the running time of the algorithm partition as described in Section 3.3.1
yet. In order to get an upper bound on the running time of a distributed algorithm, we have to
analyse its critical path (also called depth), i.e. the longest sequence of operations on any PE that
needs to be executed sequentially (see [7] for details). The length of the longest string in S is lmax.
Although we use hypercube quicksort as distributed string sorting algorithm within partition in
our implementation, we will not use it for this analysis. The reason is that Axtmann and Sanders
[1] do not prove any bounds on the running time of the algorithm on average or in the worst case.
Therefore, we assume a black box distributed sorter with a running time of Tsort(n, l) if each PE has
an input string array consisting of at most n strings with a maximum length of l characters.

1. Local Sampling: The sampling of the input to obtain the local sample set can be done in
O (δs) for string-based sampling as at most δs strings are drawn from the input and as the
construction of the string array representing the sample set is in O (1) per inserted string as
only pointers need to be copied. For character-based sampling we must know the length of the
strings. Therefore, this step is in O (∆‖S‖/p) for character-based sampling. However, if the
string length of all strings is already determined, sampling can be executed in O (δS/p) as a
scan over the local string array is sufficient (see Algorithm 3.1).

2. Sorting Ssample: In this step all elements of the local samples must be augmented with their
respective ranks in Ssample such that the final splitters can be extracted in the next step. Using
a black box distributed sorter yields a running time of Tsort(δs, l) for string-based sampling
and a running time of Tsort(∆s, l) for character-based sampling as δs (and ∆s respectively)
are the maximum number of strings belonging to a local sample set.

3. Extraction and Distribution of Splitters: The sorted set Ssample is distributed over the
PEs. As describe above, a prefix sum over the number of elements in the output of the
previous sorting step is sufficient to calculate the positions of the final splitters. This is in
O (α log(p) + βw). We assume the black box sorter to deliver a balanced output, i.e. each PE
contains only a constant number of the p− 1 final splitters. The allgather operation to make
all final splitters available to all PEs is therefore in O (α log(p) + βcplmax)

4. Determination of Buckets: On PE i we use p− 1 binary searches to determine the intervals
into which the final splitters fj divide the string array Si. Since the comparison of two strings s1
and s2 is in O (min(|s1|, |s2|)), the time complexity of this step is in O ((p− 1) log(δ|S|/p)lmax).

3.4 LCP Compression
In our model of distributed computing every sent data unit of size m incurs costs of at least βm. To
reduce the amount of communication, compression techniques can be used. However, there is always
a trade-off between the (local) time complexity of a compression/decompression algorithm and the
time that is saved by the reduced communication volume. In the following we describe a simple
technique which compresses the common prefixes of a sorted string array S using the associated
LCP array H(S).

The idea is to send each common prefix of S only once. Let si = S[i] and hi = H(S)[i] for 1 ≤ i < |S|.
Then hi denotes the length of the longest common prefix of si and its predecessor in S. Hence, s[hi]
is the first character in which si and is predecessor differ. Algorithm 3.2 uses this idea and computes
the compressed string array

S ′ = [s0, s1[h1,], s2[h2,] . . . , s|S|−1[h|S|−1,]].

By construction, we have ‖S ′‖ = ‖S‖−L(S). The first string is always uncompressed as we interpret
the undefined first entry of H(S) as 0.

19

3. Techniques and Subroutines

Algorithm 3.2: LCP Compression
Input: A string array S and the corresponding LCP array H(S) with H(S)[0] = 0 instead

of ⊥.
1 if |S| > 0 then
2 S ′[0]← S[0];
3 for i← 1 to |S| − 1 do
4 (s, h)← (S[i],H(S)[i]);
5 s′ ← s[h,] ; // copy string without common prefix to previous string
6 S ′[i]← s′;
Output: Compressed string array S ′ with ‖S ′‖ = ‖S‖ − L(S)

Algorithm 3.3: LCP Decompression
Input: An LCP-compressed string array S ′ and the LCP array H(S) of the corresponding,

uncompressed string array S of S ′.
1 if |S ′| > 0 then
2 Sout[0]← S ′[0] ; // first string is always uncompressed

3 for i← 1 to |S ′| − 1 do
4 precondition: Sout[i− 1] = S[i− 1];
5 h← H(S)[i];
6 (a, b)← (Sout[i− 1],S ′[i]);
7 s← a[0, h) + b[0,];
8 Sout[i]← s;
Output: String array Sout with Sout = S.

The original string array S can be reconstructed with S ′ and the original LCP array H(S) as inputs
to Algorithm 3.3. This algorithm iterates over all strings in S ′ beginning with the second string in the
compressed string array. Say s′i := S ′[i] with 1 ≤ i ≤ |S| − 1 is the next string to be unpacked. We
assume the precondition of the loop in lines 3 – 8 to be true. Then we find S[i] := Sout[0, hi) +S ′[0,]
with hi = H(S)[i] as S[i − 1][0, hi) is the longest common prefix of S[i] and S[i − 1]. The string
S ′ [i− 1] is already restored as the precondition is true for i. Hence, we can restore string S[i]. After
that the precondition holds for i+ 1, too. Since the first string of S ′ is always uncompressed, the
precondition is also true for i = 1. By the principle of induction, this proves that Algorithm 3.3
reconstructs S correctly.

Since both, compression and decompression, do just one iteration over the data and copy each
character at most once, the running time is in O (‖S‖).

3.5 Multiway-(LCP)-Merging

In both of our main algorithms each PE will receive a bucket consisting of up to p sorted string
arrays that need to be merged (see Section 4 and Section 5). This problem is known as multiway
merging and can be solved by a losertree [15]. In our setting we additionally know the associated
LCP array to each of the received sorted sequences. In the following section we describe the LCP
losertree introduced by Bingmann et al. [6] and its essential subroutine LCPCompare proposed by
Ng and Kakehi [19]. This adaption of the commonly used losertree exploits the information from the
LCP arrays to save character comparisons in the merging process.

20

3.5. Multiway-(LCP)-Merging

Algorithm 3.4: LCP Compare
Input: Two strings s0 and s1 and additional LCP values h0 = lcp(s, s0) and

h1 = lcp(s, s1) with s ≤ s0, s1.
1 if h0 < h1 then
2 return (1, h0)
3 else if h1 < h0 then
4 return (0, h1)
5 h← h1;
6 while s0[h] = s1[h] ∧ s0[h] 6= 0 do
7 h← h+ 1;
8 if s0[h] ≤ s1[h] then
9 return (0, h)

10 else
11 return (1, h)

Output: (x, h) with x ∈ {0, 1} and sx ≤ s1−x and h = lcp(sx, s1−x)

3.5.1 LCP Compare

One of the key difference between atomic key sorting and string sorting is the time needed for one
element comparison. With atomic keys this is clearly in O(1) but comparing two strings s0 and s1
can take up to min(|s0|, |s1|) character comparisons. However, these comparisons can be considerably
accelerated if there is more information about the strings. Assume we know lcp(s0, s) and lcp(s1, s)
where s is a string with s ≤ s0 and s ≤ s1. There are three cases:

1. lcp(s, s0) = lcp(s, s1): Let h := lcp(s, s0). It holds that s0[0, h) = s1[0, h) as both strings
share the prefix s[0, h). Therefore, we can start comparing both strings at the (h + 1)th
character saving h character comparisons.

2. lcp(s, s0) < lcp(s, s1): Let h := lcp(s, s0). Since s ≤ s0, we know that |s0| > h. As we
have s ≤ s0, it holds that s[h] < s0[h]. Otherwise lcp(s, s0) ≥ h + 1 would hold. Since
lcp(s, s1) > h, we have s[h] = s1[h] and therefore s1[h] < s0[h]. With s0[0, h) = s1[0, h) (see
case 1) and s1[h] < s0[h], it follows that s1 < s0.

3. lcp(s, s1) < lcp(s, s0): The same argument as above can be applied vice versa. Thus, we find
s0 < s1.

The LCPCompare subroutine exploits this observation. See Algorithm 3.4 for a detailed description.

Using this tool we can augment the losertree data structure with LCP values.

3.5.2 Losertree

A loser- or tournament tree is a data structure allowing the efficient merging of up to K sorted
sequences of elements. If K is not a power of two, additional empty sequences are added until the
number of sequences is a power of two. The last element of each sequence is a sentinel element
greater than all other elements. Our setting is comparable to a tournament with K players, in
which we want to determine the best player (i.e. the smallest element). This can be done using a
complete binary tree with the players being the leaves of this tree. Figure 3.5 shows such a tree with
8 players s1 to s8 (the various variables denoted by characters h or H become important only in
the LCP-extension of the losertree described in the next paragraph). Each inner vertex of the tree
represents a match of two players (vertices v8 to v2). The winner of a match is promoted to the next
level and the loser yi stays in the vertex vi in which it has lost the match. After playing the match
of the root vertex v2, we know the best of all K players, i.e. in our case the smallest element.

21

3. Techniques and Subroutines

v1 : (w, h)

v2 : (y2, h2)

v3 : (y3, h3) v4 : (y4, h4)

v5 : (y5, h5) v6 : (y6, h6) v7 : (y7, h7) v8 : (y8, h8)

(s1, h′
1) (s2, h′

2) (s3, h′
3) (s4, h′

4) (s5, h′
5) (s6, h′

6) (s7, h′
7) (s8, h′

8)

(S1, H1) (S2, H2) (S3, H3) (S4, H4) (S5, H5) (S6, H6) (S7, H7) (S8, H8)

winner

matches with
loser yi and hi = lcp(syi , sw)

current players

input sequences

Figure 3.5: LCP Losertree with eight input sequences.

Unlike in a normal tournament, the procedure described thus far is just the initialization phase of
our merging algorithm. Instead of K players, we have K sequences (S1 to S8) of players ordered
increasingly.

After the initialization phase, we have determined the overall smallest element of all sequences. Say
this element is from sequence i. It can be removed from its sequence, be written to the output, and
the next element from sequence i takes part in the tournament. Furthermore, we know that the
loser element in each vertex is the smallest element of the subtree of the losertree from which it
was promoted to its current position. Therefore, this time, only the log(K) games corresponding
to vertices in the path of the former winner from its leaf to the root must be replayed to find the
second smallest element. As before, the loser of each match stays on the vertex and the winner
is promoted to the next level. To make things more clear, we take the losertree from Figure 3.5
as example. Say the winner w of the last round is from sequence 3. Then only the matches along
w’s path from sequence 3 up to the root vertex v2 depicted in red must be replayed. The vertices
v8 to v2 plus the leaf s3 currently hold the K remaining smallest elements of all sequences (recall
that the sequences are sorted). Furthermore, for each inner vertex the loser element represents the
smallest element currently in the subtree from which it has been promoted to its current position.
For example the element y2 has been promoted from v4 to its current position. Additionally, the
subtree of vertices not on path p does not change with the removal of w and the insertion of element
in leaf s3. Therefore, the only necessary new comparisons are on this path. By replaying this path
bottom up we assure the element winning this tournament is the second smallest overall element. The
algorithm continues until all sequences are empty. Thus, to merge all elements K − 1 (initialization
phase) plus (n − 1) · log(K) (remaining elements) string comparisons are needed to merge the K
sorted sequences.

3.5.3 LCP Losertree

Now, we want to integrate the idea of the LCPCompare algorithm into the plain losertree. The
changes required in the plain losertree to enable the LCPCompare subroutine are rather simple. As
input we do not only need the sorted sequences of strings but also the corresponding LCP array Hi of
each sequence. Additionally, we do not only store the loser of a comparison between the strings x, yi
in a vertex vi of the tree but also the information h = lcp(x, yi), i.e. each vertex contains a tuple
(min(x, yi), h). Consider the winner string w of a round and its path p from the leaf associated with
its sequence to the root. In the next round of the losertree only vertices of this path p are replayed.
Let vi be the next vertex being played on p, yi the loser string stored on vi and hi = lcp(yi, w) the

22

3.5. Multiway-(LCP)-Merging

corresponding LCP value. By c we denote the contender arriving at vi. The contender is either the
next string from the origin sequence of w or a loser string, i.e. a string against w has won while
traversing path p. In both cases we already know the LCP value h′ = lcp(c, w):

1. c is the next element from the origin sequence of w: the LCP value lcp(c, w) is the corresponding
entry in Hi by definition.

2. c is a loser string from a vertex vj on p: the LCP value stored in vj is h = lcp(c, w). Therefore,
h cannot be an other LCP value since the last match played on vertex vj has been w against c
as it is on p.

Hence, in all necessary matches we know the values of lcp(c, w) and lcp(yi, w) and w ≤ c, yi.
Therefore, we can apply the LCPCompare subroutine on the pairs (c, lcp(c, w)) and (yi, lcp(yi, w))
to save character comparisons. The question remains, how the procedure must be changed during
initialization as there is no former winner which can be used as a reference. But we have lcp(ε, s) = 0
for all strings s. Therefore, considering the empty string ε as the overall smallest elements enables
us to use the same comparison function even during the initialization phase. Theorem 3.6 states the
maximum number of character comparisons executed while merging K sequences of sorted string
with a LCP losertree.

Theorem 3.6 (Complexity of LCP-K-way-merging [6]). A LCP losertree needs at most ∆L +
|S0| log(K) +K character comparisons where S0 is the merged output sequence and ∆L = L(S0)−∑K
k=1 L(Sk) is the sum of increments to LCP array entries.

Using the LCP losertree algorithm instead of a plain losertree not only saves characterwise com-
parisons, it can also be used without unpacking LCP compressed sequences as described in Section
3.4.

23

4. Distributed Merge String Sort

Before describing our distributed Merge String Sort algorithm (dMSS), we state some conventions
about the input and output of the algorithm:

Input

1. PE i obtains a string array Si as input. By S, we denote the union of all local input arrays,
i.e. S =

⋃
1≤i≤p

Si. Although the term “union” is used, duplicates are allowed in S.

2. The number of strings and characters can be different in the local string arrays. We assume
that

|Si| ≤ δ
|S|
p

and ‖Si‖ ≤ ∆‖S‖
p

holds for δ,∆ ≥ 1, i.e. δ and ∆ characterize the maximum imbalance of the input.

3. By lmax, we denote the length of the longest string in S.

Output

PE i outputs a string array Oi, which has the following two properties:

1. Let 0 ≤ j < j′ < |Oi|. Then Oi[j] < Oi[j′] holds, i.e. the output string array is locally
sorted.

2. Let j be the index of another PEs with i < j, then for all strings si ∈ Oi and all strings
sj ∈ Oj we find si ≤ sj , i.e. the output sets are also globally sorted.

The number of strings and characters in the output arrays depends on the sampling method used
in the distributed ordered partitioning sub-step of dMSS. However, the union of all output arrays
contains exactly the same strings as S.

4.1 Description of the Algorithm
The four main steps of the algorithm are identical to the distributed string sorting algorithm by
Fischer and Kurpicz [11] (see Figure 2.2 for an illustration of the algorithm). However, we will apply
multiple string-related optimizations to the original algorithm.

25

4. Distributed Merge String Sort

1. Local Sorting: Each PE sorts its input string array locally. Additionally, the LCP array of
the local string array is computed as a by-product of the sorting process. These LCP values will
be used later to omit repeated costly character comparisons and to reduce the communication
volume.

2. Distributed Ordered Partitioning: Afterwards, all strings are assigned to one of p buckets
Bj with 1 ≤ j ≤ p. All strings in bucket Bj′ are smaller than or equal to any string in bucket
Bj for j′ < j. Either the algorithm partitionSB or the algorithm partitionCB can be used
for this task.

3. String Exchange
Then the PEs perform an alltoall exchange of the strings. On PE i all strings and the associated
LCP values that are assigned to Bj are packed in a message and are sent to PE j. Hence, after
the alltoall exchange all strings assigned to bucket Bi in the previous step are located on PE i.
These strings build the output array Oi of PE i. The strings are already globally sorted by
construction of the buckets, however, they are not locally sorted yet, as each bucket consists of
up to p sorted sequences of strings (and the associated LCP values).

4. Merging: Since the buckets contain up to p sorted sequences of strings and the associated
LCP values, we can apply a LCP-multiway-merge algorithm to sort the string array Oi also
locally.

In the following we describe the four steps of the dMSS in more detail. Additionally we state the
time complexity for each of the sub-steps. Since there is communication and, thus, synchronization
across PEs in or after each sub-step we will state the maximum time complexity over all PEs for
each of the sub-steps.

4.1.1 Local Sorting

We use MSD string radix sort as described in Section 3.1 to sort the local string array. After this
step the local arrays Si are sorted and we know H(Si). The expected time complexity on any PE is
in

O
(
δ
|S|
p

log(σ) + pmax
i=1
D(Si)

)
.

4.1.2 Distributed Ordered Partitioning

In the original algorithm by Fischer and Kurpicz each PE samples its input set by drawing p− 1
evenly spaced strings and then applies centralized sequential sorting to them as described in Section
3.2.1 with the only difference that they use an allgather instead of a gather operation. Afterwards,
the final splitters are selected and used to determine the partition buckets. With partitionSB and
s = p− 1 we have an conceptually equivalent algorithm; however, we use a distributed sorter instead
of centralized sequential sorting to sort the local sample sets. This becomes especially important
if p is large as the global sample set consists of ps = p(p− 1) elements. Note that for |S| = o(p3)
centralized sorting requires more time than the local sorting of the input performed in the first step
of the algorithm (assuming that strings and distinguishing prefixes are evenly distributed over all
PEs). In our evaluation it will become clear that the original algorithm does not scale on various
data sets because of the centralized sequential sorting approach within its partitioning algorithm.

The algorithm partitionSB computes a partition of S such that all sets (also called buckets) of the
partition contain about the same number of strings. More precisely, we find

∣∣Bj∣∣ ≤ |S|/p+ |S|/s for
bucket Bj and 1 ≤ j ≤ p where s is the second parameter of partitionSB.

However, our goal is to compute buckets such that the workload per PE is nearly equal in the
subsequent steps – string exchange and merging – of the algorithm. The time complexity of these
steps does not depend on the number of strings alone. Especially the time required for string
exchange largely depends on the number of characters each PE receives.

26

4.1. Description of the Algorithm

Therefore, we designed partitionCB – a variant of partition that uses character-based sampling.
With this sampling method the number of characters per bucket can be bounded. We obtain∥∥Bj∥∥ ≤ (‖S‖/p + ‖S‖/s) · (1 + γ) if the longest string in S has a length smaller than or equal to
γ‖S‖/(p(s+ 1)) for 1 ≤ j ≤ p.

Recall that the number of strings (with partitionSB) and the number of characters (for partitionCB)
per bucket is independent of the imbalance factors δ and ∆ of the input.

As already pointed out in the introduction, a major problem of distributed string sorting is posed
by very long strings, especially, if their distinguishing prefix is short. For distributed ordered
partitioning it would be sufficient to communicate the distinguishing prefixes of the sample sets
only as they contain all the information required for the computation of the buckets. However,
we do not know these prefixes. What we do know is the value of D(Si). As an approximation of
the actual distinguishing prefix length we compute d̃ =

∑
1≤i≤pD(Si) and only communicate the

prefix of length ψd̃/|S| of the locally sampled strings, where ψ is a tuning parameter instead of the
whole string. However, this can deteriorate the bounds on the number of strings and characters per
bucket arbitrarily if the value of our approximation is too small for many elements of the sample sets.
Therefore, this heuristic should only be applied if D(Si) ≈ D(S)/p for all 1 ≤ i ≤ p. The running
time of this step is as stated in Section 3.3.6.

4.1.3 String Exchange

After the determination of the buckets they must be sent to their destination. This is achieved
by one (irregular) alltoall exchange. There are two variants of this exchange. The first simply
exchanges the strings as they are. In the second variant we exploit our knowledge of the LCP values
of the input string array after the sorting step. With that information we can compress strings with
common prefixes such that the amount of communication can be reduced. The actual amount of
communication that can be saved by this step depends on the characteristics of the input. Alongside
the strings we also communicate the associated LCP values. The algorithm by Fischer and Kurpicz
simply exchanges the strings without LCP values or compression.

Alltoall without compression:

The amount of bits sent by a PE is bounded by

C := ∆‖S‖
p
c+ δ

|S|
p
w,

where w is the number of bits required to encode one LCP value and c is the number of bits necessary
to encode a character.

The number of bits received by a PE i depends on the number of characters in bucket Bi. Using
string-based sampling, we can only give upper bounds for the number of strings in such a bucket.
The maximum number of strings in a bucket is expressed as |S|/p · (1 + ε), i.e. as the relative
deviation from the optimal value. For regular sampling with a sampling rate of s ≥ p we have ε ≤ 1
by Theorem 3.2. Therefore, each PE receives at most |S|/p · (1 + ε) (clmax + w) bits. This upper
bound is tight if all strings are of the same length lmax.

For character-based sampling we can give better upper bounds even if there is a high variance in
string length. The number of characters is at most ‖S‖/p · (1 + ε). For regular sampling with s ≥ p
and lmax ≤ ‖S‖/(p(s+ 1)) we find ε ≤ 2 by Theorem 3.5. Thus, the maximum number of received
bits is bounded by

||S||
p

(1 + ε)c+ max
1≤i≤p

(|Bi|)w ≤ ||S||
p

(1 + ε)(c+ w).

27

4. Distributed Merge String Sort

This holds as each string has length at least 1 (end-of-string character). Using the 2-phase algorithm
for irregular alltoall communication we obtain a communication time in

O
(
αp+ β

(
max

(|S|
p

(1 + ε)(clmax + w), C
)))

for buckets computed with string-based sampling and

O
(
αp+ β

(
max

(‖S‖
p

(1 + ε)(c+ w), C
)))

for buckets computed using character-based sampling.

Alltoall with LCP compression:

During the local sorting step H(Si) is computed by PE i. These LCP values can be used to compress
common prefixes with Algorithm 3.2. The amount of characters that must be sent by PE i is then
bounded by

‖Si‖ −max(L(Si)− (p− 1)hmax, 0)

where hmax is the maximum value of H(Si). Using Algorithm 3.2 on the whole string array would
result in a reduction of the number of sent characters by L(Si). However, we do not compress one
string array but p string arrays as we send p messages. The term (p − 1)hmax accounts for the
maximum number of characters we cannot compress since the first string of each message has to
remain uncompressed. However, we see that for data with a high L(Si)/‖Si‖-ratio LCP compression
is quite effective in reducing the number of bits to send.

To analyse the number of received characters that can be saved with LCP compression, we must
investigate the effect of LCP compression on the number of characters in a bucket Bi. Unfortunately,
even for input sets in which L(Si)/‖Si‖ ≈ 1 for all 1 ≤ i ≤ p there can be buckets determined through
string-based or character-based sampling for which the effect of LCP compression is vanishingly
small. Let Lrecvi be the number of characters that can be saved by applying LCP compression on
the sorted sequences in Bi.

Lemma 4.1. Let Σ′ be an alphabet of size σ > 1 and let n be divisible by p. For all l > logσ−1(n/p)
there is is a distributed input consisting of p string arrays Si (with |Si| = n/p and ‖Si‖ = ‖S‖/p)
such that the following properties are fulfilled if we apply partitionSB with a local sample size of
s = p− 1 to this input:

1. L(Si) ≥ l · (n/p− n/p2)

2. Lrecv1 ≤ n/p · logσ′(n/p),

Proof. Let Σ be an alphabet of size at least three and let c be the greatest character in Σ. By
Σ′, we denote Σ\{c}. Let n > p and let n be divisible by p2. Furthermore, let l > logσ′(n/p)
and let ω := n/p2. We construct a set S ′ containing n/p strings of length l + 1 over the alphabet
Σ′ with the property L(S ′) < (n/p) · logσ′(n/p). This can be achieved using DNGenerator (see
Algorithm 7.1). We then construct another string s> = [c, c, . . . , c, 0] consisting of l repetitions of
the character c. Note that s> is greater than every string in S ′. Now, we construct the string arrays
Si. Each such array contains ω strings of S ′; the remaining n/p− ω strings are copies of s. With
this construction we have |Si| = n/p and ‖Si‖ = ‖S‖/p. Furthermore, when applying (string-based)
regular sampling with p− 1 local samples to the (locally sorted) string arrays, bucket B1 contains
only strings of S ′. This holds since the first element of each local sample set is the greatest element
of the local share of S ′; the first final splitter is the (p − 1)th element of Ssample, i.e. one of the
aforementioned local samples, and all other elements are greater than the elements of S ′. Therefore,
we have Lrecv1 < (n/p) logσ′(n/p) and L(Si) ≥ (n/p− n/p2)l.

28

4.2. Total Running Time

For the example in the proof of Lemma 4.1 we have
L(Si)
‖Si‖

≥ (n/p− n/p2) · l
n/p · (l + 1) =

(
1− 1

p

)
l

l + 1
whereas

Lrecv1
‖B1‖

≤ logσ′(n/p)
l

holds. With fixed values for n and p and an increasing length l the first expression tends to 1− 1/p
whereas the latter ratio tends to 0. This shows that even for input sets with a high L(Si)/‖Si‖-ratio
the effect of LCP compression can be neglectable for buckets created with string-based sampling.
Since all strings in the proof of Lemma 4.1 are of equal length, the same applies to character-based
sampling.
Since for effective communication both the number of sent bits and the number of received bits must
be small, the above example shows that there is no guarantee that LCP compression can achieve this
for buckets computed with string- or character-based sampling. For these two sampling methods
LCP compression remains merely heuristic. There are no reasonable guarantees for the reduction
of communication volume. Nevertheless, in conjunction with partitionCB and partitionSB LCP
compression shows good performance on many data sets (see Section 7).
However, this problem can be solved by considering LCP compression during the sampling process.
Let S ′i be the LCP compressed array of Si using Algorithm 3.2. Applying character-based regular
sampling to the compressed string arrays S ′i yields buckets with at most (N ′/p)(1 + ε) characters
where N ′ :=

∑
1≤i≤p ‖S ′i‖. We find ε ≤ 2 provided that the size of the local sample sets is ≥ p and

the longest compressed string is sufficiently small (see Lemma 3.4). Due to time limitations the
evaluation of this approach remains future work.

4.1.4 Merging
In this step PE i must merge the sorted sequences of which bucket Bi is composed. Bucket Bi
contains up to p sorted sequences, i.e. we have Bi =

⋃
1≤j≤p

Sij where Sij contains the strings of

Sj that have been sorted into the ith bucket. Alongside each sorted sequence we also receive the
associated LCP array H(Sij). Therefore, the LCP losertree described in section 3.5 can be applied.
This algorithm requires

M(Bi) = L(Bi)−
∑

1≤j≤p
L(Sij)︸ ︷︷ ︸

Lmerge
i

+
∣∣∣Bj∣∣∣dlog(p)e+ 2dlog(p)e

character comparisons. Hence, its time complexity is in O
(
M(Bi)

)
. If LCP compression has been

applied before the alltoall exchange, we do not need to unpack the LCP-compressed arrays for the
merging step as the compressed prefixes are skipped by the algorithm. We have

∣∣Bi∣∣ bound by
|S|/p(1 + ε) or ‖S‖/p(1 + ε), depending on the used sampling method in the previous step of the
algorithm. For Lmergei the only upper bound we can give is

∥∥Bi∥∥ as this aspect is not considered
in the sampling method. For this reason LCP-enhanced merging remains a heuristic which never
shows worse performance than merging without considering LCP values, but for which we cannot
give reasonable guarantees on the reduction of character-comparisons either.

4.2 Total Running Time
In the following we give an upper bound on the expected length of the critical path of dMSS. The
upper bound is on the expected length only as the stated time complexity of MSD string radix sort
used in the first step only holds in the expected case. For convenience we define the following

Lmerges := min(L(S), |S|
p

(1 + ε)lmax) and Lmergec := min(L(S), ‖S‖
p

(1 + ε)).

29

4. Distributed Merge String Sort

Table 4.1: Upper bound on the expected length of the critical path of dMSS.
step string-based sampling character-based sampling

1 O
(
δ |S|
p log(σ) + pmax

i=1
(D(Si))

)
2.1 O (δs) O

(
∆ ‖S‖

p

)
2.2 Tsort(δs, lmax) Tsort(∆s, lmax)

2.3 O (α log(p) + βcplmax)

2.4 O
(

(p− 1) log
(
δ|S|
p

)
lmax

)
3 O

(
αp+ βmax

(
|S|
p (1 + ε)(clmax + w), C

))
O
(
αp+ βmax

(
‖S‖
p (1 + ε)(c+ w), C

))
4 O

(
Lmerges + |S|

p (1 + ε) · dlog(p)e+ 2dlog(p)e
)
O
(
Lmergec + ‖S‖

p (1 + ε) · dlog(p)e+ 2dlog(p)e
)

Table 4.1 shows an upper bound on the length of the critical path of the algorithm. Step one denotes
the local sorting. The second step summarize the length of the critical path for the distributed order
partitioning algorithm. Here, 2.1 accounts for sampling the local input array, 2.2 is the running time
required to sort the sample sets. Sub-step 2.3 is the maximum time for the exchange of the final
splitters and step 2.4 is an upper bound on the time complexity for the computation of the partition
of the input array induced by the final splitters. Step three represents the string exchange. Step four
accounts for the final merging.

Table 4.1 is rather complicated and the stated bound on the running time might not be tight at
all. We feel this is a general problem of string sorting and due to the multidimensionality of string
arrays. The time required to sort a string array does not only depend on the number of strings
and characters in the input but also on the sum of the lengths of the distinguishing prefixes. In a
distributed string sorting algorithm the situation is even more complicated as the data is partitioned
over p PEs and is redistributed in the course of the algorithm. We have not been able to define
concise characteristics for distributed string arrays that tightly bound the time complexity required
to sort them. This is an open problem for future work.

30

5. Distributed Prefix-Doubling String Sort

What makes string sorting particularly “expensive” in a distributed environment is that strings may
be very long and, thus, incur a high communication volume. This might be bearable if all characters
of the strings are needed for sorting the input but this is often not the case. As already mentioned
in Section 3.1 for sorting a string array S it is sufficient to look at its distinguishing prefixes. These
distinguishing prefixes might – depending on the string array – be just a fraction of the total amount
of characters.

s0

s1

s2

A n t i d i s e s t a b l i s h m e n t a r i a n i s m 0

F l o c c i n a u c i n i h i l i p i l i f i c a t i o n 0

H o n o r i f i c a b i l i t u d i n i t a t i b u s 0

Figure 5.1: String array S consisting of 3 words existing in the English language. The distinguishing
prefixes are coloured in red. We have D(S) = 3 and ‖S‖ = 87.

Figure 5.1 illustrates the potential gap between the length of the distinguishing prefixes and the
total number of characters in a string array. In the following we will introduce the distributed
Prefix-Doubling String Sort algorithm (dPDSS) that tries to communicate the distinguishing prefixes
of a string array only instead of the whole strings. In the context of Figure 5.1 this means that the
algorithm attempts to exchange three characters (+ three end-of-string characters) instead of 87.

Before describing the algorithm we state Definition 5.1

Definition 5.1 (Distributed Distinguishing Prefixes). Let Si be a string array for 1 ≤ i ≤ p and let
S be the union of these string arrays. We define

D̂(Si) =
∑
s∈Si

|dpS(s)|.

Note the difference between dpSi(s) and dpS(s) for a string s ∈ Si. We will refer to dpSi(s) as
the local distinguishing prefix of s and to dpS(s) as the global distinguishing prefix of s. Since
|dpSi(s)| ≤ |dpS(s)|, we have D(Si) ≤ D̂(Si).

As in Section 4 we first specify the input of the algorithm.

31

5. Distributed Prefix-Doubling String Sort

Input

1. PE i obtains a string array Si as input. By S, we denote the union of all local input sets,
i.e. S =

⋃
1≤i≤p

Si. As in dMSS, we allow duplicates.

2. The single string arrays can differ in number of strings and characters. We only assume
that

|Si| ≤ δ
|S|
p

and ‖Si‖ ≤ ∆‖S‖
p

holds for δ,∆ ≥ 1, i.e. these two factors control the imbalance of the input.

3. Similarly, the sum of the length of the global distinguishing prefixes can differ among the
PEs but is bounded by ∆′ ≥ 1, i.e.

D̂(Si) ≤ ∆′D(S)
p

holds for all 1 ≤ i ≤ p.

4. By lmax we denote the length of the longest string in S, dmax is the length of the longest
global distinguishing prefix.

As the algorithm attempts to reduce the communication volume by only sending the distinguishing
prefixes of the strings, the distributed output arrays cannot contain the sorted strings as a whole.
Instead, we only output the permutation which defines the sorted order of the input strings:

Output

PE i outputs an array Oi containing tuples (i, j). A tuple (i, j) identifies the ith string on the
jth PE. We have the following properties:

1. Array Oi is locally sorted: Let t = Oi[j] and t′ = Oi[j′] with 0 ≤ j < j′ < |Oi|. Then the
string represented by t is smaller than or equal to the string represented by t′.

2. The arrays are globally sorted: Let j be the index of another PE with i < j, let t ∈ Oi
and let t′ ∈ Oj . Then the string represented by t is smaller than or equal to the string
represented by t′.

The dPDSS algorithm has the same principal structure as dMSS described in Section 4. The main
difference is the (approximate) computation of the global distinguishing prefixes.
We now enumerate the five main sub-steps of dPDSS:

1. Local Sorting: Each PE sorts its input string array locally. We also determine the LCP
values of the local string array as a by-product.

2. Distinguishing Prefix Computation: In this step a distributed Bloom filter is used to
determine the (approximate) global distinguishing prefix of each string. From now on the
algorithm is conceptually equivalent to dMSS with the strings being replaced by its approximate
distinguishing prefixes.

3. Distributed Ordered Partitioning: The algorithms partitionSB or partitionCB are
used to compute an ordered partition of the input. In partitionCB we do not sample the
strings but the corresponding character array where the strings are replaced by its approximate
distinguishing prefixes.

4. String Exchange: The PEs perform an alltoall exchange of the approximate distinguishing
prefixes of the strings. On PE i the approximate global distinguishing prefixes of the strings
assigned to bucket j are put in a message and sent to PE j.

32

5.1. Description of the Algorithm

5. Merging: Finally, the sequences of locally sorted distinguished prefixes are merged.

5.1 Description of the Algorithm
In the following section we describe the single sub-steps in more detail and also state their time
complexity. As we want to give an upper bound on the expected time complexity of the whole
algorithm in Section 5.1.2 and as there is synchronization by communication after each step, we
state the maximum expected time over all PEs for each step.

5.1.1 Local Sorting

The local sorting step is exactly the same as in dMSS. Hence, we obtain the same expected running
time in

O
(
δ
|S|
p

log(σ) + ∆′D(S)
p

)
on any PE.

5.1.2 Distinguishing Prefix Computation

In the following Section 5.1.2.1 we will describe the distributed duplicate detection algorithm
distDuplicateDetection capable of detecting global duplicates in the local input sets. This
algorithm will then be used to (approximately) compute the distinguishing prefixes.

5.1.2.1 Distributed Duplicate Detection

The distDuplicateDetection algorithm is based on a distributed Single Shot Bloom Filter (dSBF)
introduced by Sanders et al. [24]. A Bloom filter [9] is a probabilistic data structure answering set
membership queries.

Definition 5.2 (Set Membership Query). Let U be a universe (i.e. a set) and let S be a subset of
U . A membership query (e,S) for an element e ∈ U is the question whether e ∈ S holds.

An empty Bloom filter is conceptually a bit array B in which all bits are set to zero. The Bloom
filter has k hash functions hi : U → [0, |B| − 1] for 1 ≤ i ≤ k. To answer member ship queries for the
set S, all elements of this set must be added to the Bloom filter. For e ∈ S this is done by setting
the bits in B at the positions hi(e) for 1 ≤ i ≤ k to 1. To answer the membership query (e′,S), the
Bloom filter looks at the positions hi(e′) in B for all k hash functions. If all those bits are set, the
Bloom filter returns true, otherwise false. If the answer is false, we can be sure that the element
e′ is not part of S. However, if the answer is positive, it is not clear whether the element is part of S
or not as the investigated positions of B could be set to 1 due to hash collisions. The false positive
rate f+, i.e. the probability that the answer of a query (e′,S) is true although e′ /∈ S, depends on
the size of B, S and the number of used hash functions (see [26] for details).

A single shot Bloom filter (introduced in [20]) is a specialization of a Bloom filter with k = 1. To
achieve a false positive rate of f+ the size of the bit array B must be |S|/f+. In other words, for a
false positive rate of f+ = 1

c the corresponding bit array must be of size |S|c.

In a distributed single shot Bloom filter the plain bit array B is distributed over all PEs, i.e. PE
i handles the sub-array [(i − 1) |B|p , i

|B|
p) for 1 ≤ i ≤ p. Each PE i holds a subset Si of the set S

that shall be inserted into the Bloom filter. The insertion is done in batch mode, i.e. each PE
computes the hash values of its local elements and partitions the hash values according to the
boundaries of the subarrays of the filter’s distributed bit array B. Then the hash values are sent
to the according PE and the specified indices are set to 1. The upper part of Figure 5.2 shows
a distributed single shot Bloom filter with m = 30. The elements of the distributed sets S1,S2
and S3 are inserted using a hash function h. If h is a random function, the false positive rate is

33

5. Distributed Prefix-Doubling String Sort

elements:

duplicates:

PE 1 PE 2 PE 3
S1 = [x1

1, x1
2, x1

3] S2 = [x2
1, x2

2, x2
3] S3 = [x3

1, x3
2, x3

3]

{x1
2, x1

3} {x2
2} {x3

3}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

h
(x

1 2
) h(x 1

1)
h(x1

3)h(x
2
2
) h(x 21)

h(x 2
3)h(x

3
3)

h
(x

32)
h(x 3

3)

Figure 5.2: Distributed single shot Bloom filter: the bit array with 30 entries is distributed over the
3 PEs such that each PE is responsible for 10 indices. Each PE has 3 elements that
are inserted into the Bloom filter via the hash function h at positions marked with
(unique hash value) or (at least two hash values). The duplicate hash values are
communicated back to their origin PEs.

(|S1|+ |S2|+ |S3|)/|B| = (3 + 3 + 3)/30 = 3/10. The coloured cells of the bit array indicate an entry
specified by a received hash value, i.e. an entry that is set to 1. Conceptually, the algorithm we use
for distDuplicateDetection is just a batch insertion of the distributed sets in which we want to
identify duplicates into a distributed single shot Bloom filter. The only additional step is that we
keep track of the origin PE of each hash value. If a PE receives the same hash value h′ multiple
times, this is communicated back to the PEs from which the hash value h′ has been received. In
Figure 5.2 a cell for which multiple times the same hash value has been received is coloured red. The
corresponding hash values are communicated back to their sending PEs as they signal duplicates
(or hash collisions of the hash function h). In contrast to the simplified illustration of Figure 5.2
the Bloom filter is not materialized in the algorithm as there is no need to post further queries to
the filter. Instead, the received hash values are merged and a scan over them is performed to find
duplicate values. These are communicated back. Additionally, the hash values are not sent as plain
integers, but sent using an information-theoretical optimal encoding to reduce the communication
volume. After sketching the idea of the algorithm, we describe it in more detail (and already adapted
to strings) and discuss its running time and communication volume. The following description is
based on [24]; the analysis is directly taken from the same paper.

The algorithm consists of four main steps:

1. Local Preprocessing
Let m be the size of the Bloom filter, i.e. m := |B|. PE i obtains a candidate array Ci consisting
of tuples (j, s) where the first entry j is an index and the second entry s is a string prefix. All
string prefixes are hashed using h and stored in an array Hi, i.e. Hi = [(j, h(s)) | (j, s) ∈ Si].
Afterwards, the array Hi is sorted with respect to the second entry of the tuples. Since the
hash values are integers of maximum value m− 1, this can be achieved in expected linear time.
Then tuples with duplicate hash values are removed such that all hash values in Hi are unique.
Since the array is sorted with respect to the hash values, this can be done in a single scan over

34

5.1. Description of the Algorithm

the array. The first entry of the removed tuples is stored in Li. In a next step the hash values
in Hi are partitioned into p messagesMk with

Mk = {h | (j, h) ∈ Hi ∧ (k − 1)(m/p) ≤ h < k(m/p)}

for 1 ≤ k ≤ p. Since h is a random function, the hash values can be seen as drawn at random
from [0,m), i.e. they are uniformly distributed over this interval. Hence, the difference between
two consecutive hash values are geometrically distributed. This allows to use Golomb encoding
for an optimal encoding of the messagesMk (see [17, pg. 32]).

2. Exchange
The messages are distributed in an alltoall exchange, i.e. messageMi is sent to PE i.

3. Duplicate Detection
Each PE receives p messages. These are decoded and each hash value is tagged with the index
of the PE from which it has been sent. Then the p sequences of hash values are again sorted
(in expected linear time). This allows to identify duplicate hash values by scanning over the
merged array. Next we specify how the duplicates are sent back. Assume that the jth received
messages contained n′ hash values. Then a bit array of size n′ is sent back to PE j with the
indices corresponding to duplicates set to 1.

4. Local Postprocessing
PE i receives p bit arrays. By scanning over the messages sent in the exchange step, the
duplicate hash values corresponding to the entries set to 1 in the received bit arrays can be
obtained and then be stored in an array Hdupi . These are sorted as the hash values were sorted
before sending. Therefore, a parallel scan over Hdupi and Hi suffices to compute the indices
of the prefixes whose hash values are not globally unique. These indices are appended to the
indices of the strings Li, whose prefixes have not even been locally unique . Hence, this array
contains the indices of all strings whose prefixes are not unique. It is returned as result of the
algorithm.

We now give an upper bound on the expected running time of the algorithm. Assume that the
maximum size of the candidates array is at most nmax for all PEs and let l be the length of the prefixes.
Furthermore, let n be the sum over the number of candidates on all PEs. Assuming that hashing a
string s of length l is in O (l), we obtain an expected time complexity for the local preprocessing in
O (nmaxl + nmax). Sanders et al. [24] prove that the expected communication volume of the exchange
step is nmax(log(mp/n) +O (1)) = nmax(log

(
p/f+)+O (1)) bits if n = ω(p2 log(m)). Hence, this

step can be executed in O
(
αp+ β(log

(
p/f+)+ 1)

)
. The local work of the duplicate detection can

be done in expected O (nmax) time. The back communication of the found duplicates is dominated
by the time complexity of the first exchange step. The local postprocessing is in O (nmax) as we
only need to scan over the indices and hash values a constant number of times. Summing all steps
yields an expected total time complexity in

O
(
nmaxl + αp+ nmaxβ

(
log
(
p/f+

)
+ 1

))
.

For simplicity we will in the following assume that distDuplicateDetection receives already hashed
prefixes in the candidate array and does not hash the prefixes itself. This yields an expected running
time of distDuplicateDetection in

O
(
αp+ nmaxβ

(
log
(
p/f+

)
+ 1

))
.

5.1.2.2 Prefix-Doubling Algorithm for Computing Distinguishing Prefixes

As already pointed out only the distinguishing prefixes of strings are required to sort them. We use
a prefix-doubling approach based on the duplicate detection algorithm distDuplicateDetection

35

5. Distributed Prefix-Doubling String Sort

described above to (approximately) determine these. Algorithm 5.1 describes our approach to
compute the distinguishing prefixes. During the algorithm we maintain a candidates set Ci which
contains the indices of all strings in Si whose (approximate) distinguishing prefix length has not
been determined yet. The algorithm works in rounds (i.e. the iterations of the while-loop in
lines 4 – 15). In each round distDuplicateDetection returns the indices of the strings s whose
prefix s[0, l) is not unique in S. Only these duplicate strings participate in the next round. Since
distDuplicateDetetction is based on a distributed Bloom filter, there can be false positives, i.e.
strings whose prefix s[0, l) is actually unique but that are returned anyway. The false positive rate
f+ is a tuning parameter.

Algorithm 5.1: Distinguishing Prefix Computation
Input: On PE i: string array Si.

1 Ci ← [0, . . . , |Si| − 1]; // indices of candidates
2 Pi ← [0 | j ∈ Ci]; // length of dist. prefix, initially set to 0
3 l← 2; // currently tested prefix length
4 while Ci 6= ∅ do
5 j′ ← 0;
6 for j ← 0 to |Ci| − 1 do
7 s← Si[Ci[j]];
8 if |s| ≤ l then
9 Pi[Ci[j]]← |s|; // candidate length is at most tested prefix length

10 else
11 Pi[Ci[j]]← l;
12 C′i[j′]← (Ci[j],hash(s[0, l)) ;
13 j′ ← j′ + 1;

14 Ci ←distDuplicateDetection(C′i) ; // returns only indices of duplicates
15 l← 2l;

Output: Pi contains at least the length of the distinguishing prefix of each string in Si.

The maximum number of rounds is bounded by dlog(lmax)e (see line 8). Since distDuplicate-
Detection may return false positives but never indicates erroneously that a non-unique prefix is
unique, the approximate length of the distinguishing prefix of a string s computed by the algorithm
is at least the length of its (global) distinguishing prefix.

To further quantify the quality and running time of Algorithm 5.1 we need the following Definition
5.3.

Definition 5.3 (Approximate Sum of Distinguishing Prefixes). We define

D̃(Si) :=
|Si|−1∑
j=0
Pi[j]

with Pi being the result of Algorithm 5.1 with local input Si for 1 ≤ i ≤ p. For subsets S ′i ⊂ Si we
define

D̃(S ′i) :=
∑
j∈I′

Pi[j]

where I ′ are the indices of the strings of S ′i in Si.

In other words, D̃(Si) is the approximate value of D̂(Si) computed by Algorithm 5.1. Lemma 5.4
bounds its expected value.

36

5.1. Description of the Algorithm

Lemma 5.4. The expected value of D̃(Si) for a false positive rate of f+ ∈ (0, 1
2) is smaller than(

1 + 1
1− 2f+

)
D̂(Si).

Proof. Let Si|j be the strings of Si whose global distinguishing prefix length is in the interval (2j−1, 2j]
for j ≥ 2 and in [2j−1, 2j] for j = 1, respectively. Let m be the greatest number for which

∣∣∣Si|m∣∣∣ > 0,
i.e. 2m−1 < dmax ≤ 2m. Since the sets Si|j partition Si,

D̃(Si) =
m∑
j=1
D̃(Si|j)

holds. In the case that there are no false positive detections, i.e. f+ = 0, the approximate
distinguishing prefix length of a string in Si|j is at most 2j as the prefix lengths 2, 4, 8 . . . are tested
in the algorithm. Hence, we obtain

D̃(Si) ≤ 2
∣∣∣Si|1∣∣∣+ 4

∣∣∣Si|2∣∣∣+ · · ·+ 2m
∣∣∣Si|m∣∣∣ ≤ 2D̂(Si).

In this case the algorithm is deterministic and D̃(Si) is not a random variable. The situation is
different for f+ > 0. We then have false positives and the algorithm itself is no longer deterministic.
Let s be a string with a global distinguishing prefix in (2j−1, 2j]. The probability that it is erroneously
detected as a duplicate in round j is f+, the probability that the corresponding entry in Pi is set to
2j , i.e. s′s approximate distinguishing prefix length is set to 2j , is (1− f+). The probability that
string s remains further j′ rounds in the process is f+j′

(provided that the string is long enough,
otherwise this value is not exact but an upper bound). Hence, the probability that the corresponding
entry in Pi is set to 2j+j′ is f+j′

(1− f+). Therefore, we obtain

E(D̃(Si|j)) <
∣∣∣Si|j∣∣∣ (2j(1− f+) + f+2j+1(1− f+) + (f+)22j+2(1− f+) + . . .

)
=
∣∣∣Si|j∣∣∣(1− f+)2j(1 + 2f+ + (2f+)2 + . . .)

=
∣∣∣Si|j∣∣∣(1− f+)2j

(∞∑
k=0

(2f+)k
)

=
∣∣∣Si|j∣∣∣(1− f+)2j 1

1− 2f+

for 1 ≤ j ≤ m.

By the linearity of expected values this yields

E(D̃(Si)) =
m∑
j=1

E(D̃(Si|j)) <
1− f+

1− 2f+

m∑
j=1

2j
∣∣∣Si|j∣∣∣ ≤ 1− f+

1− 2f+ 2D̂(Si) =
(

1 + 1
1− 2f+

)
D̂(Si).

The proof of Lemma 5.4 also shows that the expected value of the approximate distinguishing
prefix length of any string s ∈ S is smaller than (1 + 1/(1 − 2f+))dpS(s). Furthermore, Lemma
5.4 implies that the expected amount of characters sent in the subsequent string exchange step is
also in O

(
D̂(Si)

)
and not ‖Si‖ as in dMSS. However, the approximate computation of D̂(Si) incurs

additional costs in running time. These are addressed in Lemma 5.5.

Lemma 5.5. The expected time complexity of Algorithm 5.1 is in

O
(
dlog(lmax)e

((
1 + 1

1− 2f+

)
∆′ D̂(S)

p
+ δ
|S|
p
β

(
log
(
p

f+

)
+ 1

)
+ αp

))
.

for f+ < 1/2 and assuming |S| = ω(p2 log
(
|S|/f+)).

37

5. Distributed Prefix-Doubling String Sort

Proof. Let njmax be the maximum number of strings participating in iteration j of the algorithm, i.e.
njmax = pmax

i=1
(|Ci|). Furthermore, we define D̃max := pmax

i=1
(D̃(Si)). Note that in iteration j (starting

with iteration j = 1) it holds that njmax ≤ D̃max/2j−1 as the approximate distinguishing prefix length
of a string participating in iteration j of the algorithm is at least 2j−1 and D̃max is the maximum of
the sums of all these approximate distinguishing prefix lengths.

The time complexity of lines 4 – 13 is dominated by hashing the prefix s[0, 2j) in line 12. Therefore,
we obtain O

(
2jD̃max/2j−1

)
as upper bound over all PEs on the running time of these lines in

iteration j.

What remains to be considered is the time complexity of distDuplicateDetection within iteration
j. However, the bound on the expected time complexity of distDuplicateDetection stated in the
previous section only holds if the sum over the number of participating strings over all PEs n is in
ω(p2 log

(
n/f+). Unfortunately, we cannot guarantee this to be true for all iterations a priori as the

number of participating strings decreases with growing number of iterations. Let T (nmax, n,m) be
the expected time complexity of distDuplicateDetection for a maximum of nmax strings on any
PE, n strings in total over all PEs and a Bloom filter size of m. In the following we will outline why
it is valid to assume that T (n′max, n′,m) ≤ T (nmax, n,m) holds for n′max ≤ nmax and n′ ≤ n. Since a
random hash function is used to compute the hash values of the input strings, the expected number of
hash values sent to one PE decreases with an decreasing input size. It follows that the expected time
complexity of all work done locally on the PEs equally decreases. The only problem that remains
to be considered is that the message lengths does not depend on the number of hash values per
message alone but also on the used encoding scheme. Let bits(i,m) be the number of bits required
to encode i distinct random hash values within the range [0,m− 1]. Our distDuplicateDetection
relies on bits(i,m) := i(log(m/i) +O (1)) [24]. Let c be the hidden constant in the above function.
The derivative of bits(i,m) with respect to i is

∂

∂i
bits(i,m) = c ln(2) + ln(m/i)− 1

c ln(2) .

The zero of the derivative is i = m2c/e. Since the derivative is positive for i = 1 (provided that
m ≥ 3), this implies that bits(·,m) is (strictly) monotone increasing in the interval [1, 2cm/e].

Assuming c = 1.5 (which is the case for Golomb encoding [24]) and m > 2n (since we want f+ < 1/2),
we obtain bits(n′max,m) ≤ bits(nmax,m) for n′max ≤ nmax ≤ n. This implies that in our case the
Golomb encoding of i′ hash values needs at most the same number of bits as the encoding of i hash
values with i′ ≤ i. Therefore, we can conclude T (n′max, n′,m) ≤ T (nmax, n,m). Hence, the expected
time complexity of distDuplicateDetection in each iteration is bounded by the expected time
required for distDuplicateDetection with a maximum number of locally participating strings
equal to δ |S|p , which is

O
(
αp+ δ

|S|
p
β
(
log
(
p/f+

)
+ 1

))
as stated in Section 5.1.2.1.

Therefore, the expected running time of iteration j is in

O
(
αp+ δ

|S|
p
β
(
log
(
p/f+

)
+ 1

)
+ 2jE(D̃max)

2j−1

)
.

Since E(D̃(Si)) ≤
(
1 + 1

1−2f+

)
D̂(Si) ≤

(
1 + 1

1−2f+

)
∆′ D(S)

p and since there are at most dlog(lmaxe)
iterations within the algorithm the claimed bound on the expected time complexity holds.

The analysis of Algorithm 5.1 shows that the computation of the (approximate) distinguishing prefix
lengths is not for free. But this computation can be still worthwhile, especially, if ‖S‖ � D̂(S). In
this case a significant amount of communication in the alltoall string exchange can be saved.

38

5.1. Description of the Algorithm

Algorithm 5.2: Reduction to Distinguishing Prefixes
Input: An array of strings S and an array P containing positive integers of the same size.

1 for i← 0 to |S| − 1 do
2 s← (S[i], l← min(P[i], |s| − 1));
3 s′ ← s[0, l) + [0];
4 S ′[i]← s′;
Output: String array S ′ containing the prefixes of S specified by P.

5.1.3 Distributed Ordered Partitioning

For the computation of the buckets the same methods as for dMSS (see Section 4.1.2) can be applied.
The only difference is that we now know the (approximate) values of the strings’ global prefix
lengths. Applying partitionSB does not change the upper bound on the number of strings per
bucket. However, the maximum number of characters per bucket can now be bounded using d̃max –
the maximum approximate distinguishing prefix length – computed in the previous step instead of
lmax as in dMSS. Hence, we obtain the following upper bounds

∣∣∣Bi∣∣∣ ≤ δ |S|
p

(1 + ε) and
∥∥∥Bi∥∥∥ ≤ δ |S|

p
(1 + ε)d̃max.

for 1 ≤ i ≤ p. The expected value of d̃max is in O (dmax) for f+ < 1/2. The value of ε depends
on the number of locally sampled elements in partitionSB and is smaller than one if p or more
elements are chosen locally.

Also, character-based sampling can be used in this algorithm. The only change to be made is that we
do not sample Si directly but a string array S ′i that is computed by Algorithm 5.2 with Si and the
approximate distinguishing prefix lengths as input. Applying partitionCB to S ′i results in buckets
with ∣∣∣Bi∣∣∣ ≤ ∥∥∥Bi∥∥∥ ≤ (1 + 1

1− 2f+

) D(S)
p

(1 + ε)

for 1 ≤ j ≤ p in the expected case, provided that the longest string in S ′ is sufficiently short as
required in Theorem 3.5. The value of ε is smaller than two if the size of the local sample sets is at
least p.

Additionally, LCP compression (Algorithm 3.2) could be used on the distinguishing prefixes in
S ′i resulting in an array of LCP compressed strings S ′′i on PE i on which partitionCB could be
applied. We did not further investigate this variant and only want to mention it here for the sake of
completeness.

In Section 3.3 we only stated the worst-case running time of the two variants of partition. However,
in dPDSS the input to partition is a random variable since the computation of the distinguishing
prefixes is not deterministic. We want to briefly discuss how this influences the expected running
time of the partitioning algorithm. The sampling step for string-based sampling is in

O
(
δs

(
1 + 1

1− 2f+

)
dmax

)
for all PE as at most δs times the maximal approximate distinguishing prefix must be copied. Note
that we cannot simply copy the string-pointer as in dMSS to construct the string array Ssamplei on
PE i since we only want to use the distinguishing prefix not the strings as a whole.

Let us now consider character-based sampling. As Algorithm 5.1 outputs the approximate distin-
guishing prefix lengths, we do not construct the array S ′i explicitly to execute partitionCB. It is

39

5. Distributed Prefix-Doubling String Sort

sufficient to scan over the output array Pi containing the approximate distinguishing prefix lengths
to obtain the desired sample set. Therefore, the expected time complexity is in

O
(
δ
|S|
p

+ ∆′s
(

1 + 1
1− 2f+

)
dmax

)
.

To give a bound on the sorting of the sample sets, we cannot refer to hypercube quicksort as we
do not know any bounds on its expected running time. Instead we account the expected time
complexity to a black box distributed sorter with an expected running time Tsort(n, l) where n is
the maximum number of strings in any of the p input sets and l is the expected value of the length
of the longest string in the input. Furthermore, we assume the black box sorter to balance its
output such that the number of strings in each output set is in O (n). For string-based sampling we
obtain Tsort(δs,

(
1 + 1

1−2f+

)
dmax) and Tsort(∆′s,

(
1 + 1

1−2f+

)
dmax) for character-based sampling.

The redistribution of the final splitters can be done in expected O
(
α log(p) + βcp

(
1 + 1

1−2f+

)
dmax

)
time since the number of final splitters per PE is constant. The expected time required to determine
the intervals of the partition of the input string arrays is in O

(
(p− 1) log

(
δ |S|p

) (
1 + 1

1−2f+

)
dmax

)
as at most the distinguishing prefix must be compared during the p− 1 binary searches which are
executed to determine the intervals of the partition induced by the final splitters.

5.1.4 String Exchange

This time, the (expected) amount of bits sent by any PE is bounded by

C := δ
|S|
p
w + ∆′

(
1 + 1

1− 2f+

) D(S)
p

c

for all 1 ≤ i ≤ p as we only send the approximate distinguishing prefixes (and the corresponding LCP
arrays). In contrast to dMSS the term ‖S‖ can be omitted completely. For string-based sampling
and the 2-phase alltoall algorithm, we obtain an expected communication time in

O
(
αp+ βmax

(|S|
p

(1 + ε)
(
c

(
1 + 1

1− 2f+

)
dmax + w

)
, C

))
.

For character-based sampling the expected communication time is in

O
(
αp+ βmax

((
1 + 1

1− 2f+

) D(S)
p

(1 + ε)(c+ w), C
))

.

Additional LCP compression is always beneficial in terms of communication time/volume reduction,
but we are not able to state better upper bounds.

5.1.5 Merging

As in dMSS the sorted sequences of which bucket Bi is composed must be merged. Bucket Bi
contains up to p sorted sequences, i.e. we have Bi =

⋃
1≤j≤p

Sij , where Sij contains the strings of Sj

that were sorted into the ith bucket. Alongside each sorted sequence we also receive the associated
LCP array H(Sij). Therefore, the LCP losertree algorithm can be applied and requires

M(Bi) = L(Bi)−
∑

1≤j≤p
L(Sij)︸ ︷︷ ︸

Lmerge
i

+
∣∣∣Bj∣∣∣ · dlog(p)e+ 2dlog(p)e

40

5.2. Total Running Time

character comparisons. Hence, its time complexity is in O
(
M(Bi)

)
. The only upper bound we

can give for Lmergei is
∥∥Bi∥∥ as this aspect is not considered during the computation of the ordered

partition. Therefore, we obtain

O
(|S|
p

(1 + ε)
((

1 + 1
1− 2f+

)
dmax + log(p)e

)
+ 2dlog(p)e

)
as upper bound on the expected running time for string-based sampling. Character-based sampling
yields an upper bound of

O
((

1 + 1
1− 2f+

) D(S)
p

(1 + ε)(1 + log(p)e) + 2dlog(p)e
)

on the expected running time of this step. During the merging process, we need to keep track of
the index k of a string s within the message Sij in which it was sent. Additionally, the offset of
the position at which Sij begins within Sj on PE j needs to be known. This can be achieved by a
regular alltoall-exchange of these offsets. The time complexity of this exchange is dominated by
the complexity of the previous string exchange as we also send LCP values in this step. With this
information the required permutation defining the sorted order of the input can be computed.

5.2 Total Running Time
Table 5.1 summarizes the upper bounds on the expected running time of the single sub-steps. By
the linearity of expected values the sum of all these bounds is an upper bound on the length
of the critical path of the whole dPDSS algorithm. To make this table more concise we define
b :=

(
1 + 1

1−2f+

)
dmax and B :=

(
1 + 1

1−2f+

)
D(S)
p .

Table 5.1: Upper bound on the expected length of the critical path of dPDSS.
step string-based sampling character-based sampling

1 O
(
δ |S|
p log(σ) + ∆′ D(S)

p

)
2 O

(
dlog(lmax)e

(
∆′B + δ |S|

p β
(

log
(
p
f+

)
+ 1
)

+ αp
))

3.1 O (δsb) O
(
δD(S)

p + ∆′sb
)

3.2 Tsort(δs, b) Tsort(∆s, b)

3.3 O (α log(p) + βcpb)

3.4 O
(

(p− 1) log
(
δ |S|
p

)
b
)

4 O
(
αp+ βmax

(
|S|
p (1 + ε)(cb+ w), C

))
O (αp+ βmax (B(1 + ε)(c+ w), C))

5 O
(

|S|
p (1 + ε)(b+ log(p)e) + 2dlog(p)e

)
O
(
B(1 + ε)(1 + log(p)e) + 2dlog(p)e)

Step one denotes the local sorting. The second step accounts for the time complexity of the
computation of the approximate length of the distinguishing prefixes. Step three summarizes the
computation of the buckets. Here, 3.1 accounts for sampling the local input array, 3.2 is an upper
bound on the time required for the determination of the final splitter in the case that a black box
sorter with the above-specified properties is used and 3.3 is the maximum time needed to compute
the intervals assigned to the buckets in the local string arrays. Step four represents the string
exchange and step five the final merging.

41

6. Implementation Details

To be capable of evaluating our algorithms on real machines we have implemented them in C++ with
MPI as communication standard. In the following we specify some parts of the implementation that
might not have become clear in the high-level algorithmic descriptions so far. Before going into the
details we want to point out that all of our parallelization is done via MPI, i.e. no shared-memory
parallelism has been applied. If not stated otherwise we use the MPI built-in implementations of
collective operations like MPI_Alltoall, MPI_Alltoallv or MPI_Allgather.

6.1 Memory Layout of Strings
In atomic key sorting the memory layout of the elements to sort is rather straight forward. The
elements are stored in a contiguous array. This approach is prohibitive for string sorting. In most
sorting algorithms elements must be swapped/moved after each element comparison. This is a
constant time operation in atomic key sorting since the element are of fixed length and commonly
“small”. In string sorting this is not the case. Therefore, we use a pointer-based approach in our
implementation. A string array S is represented by two arrays:

• A raw-string array of size ‖S‖ that contains the strings as contiguous sequences of characters.

• A pointer array of size |S| in which each entry is a pointer to the first character of the
corresponding string in the raw-strings array.

With this memory layout strings can be swapped by swapping the corresponding pointer. This can
be achieved in constant time like in the atomic key case. Figure 6.1 shows an example of the memory
layout of a string array consisting of 4 strings and 25 characters.

6.2 Sequential String Sorting
We use the optimized inplace variant CI3 of MSD string radix sort (see [5]) as sequential string sorter
within all of our algorithms. The implementation has been taken from the tlx-library1 written by
Bingmann. The original implementation did not support the computation of the LCP array during
the sorting process. The LCP array can be computed by comparing all pairs of strings (si−1, si) for
0 < i < |S| of the sorted string array S again. However, this approach is not efficient especially
if the string array has a high (D/N)-ratio. Bingmann et al. [6] therefore propose to perform this
computation during the sorting process itself. In our implementation we followed their approach,
which will be outlined in the following. Meanwhile, the LCP-extended sorters are also part of the
tlx-library.

1https://github.com/bingmann/tlx

43

https://github.com/bingmann/tlx

6. Implementation Details

s0 s1 s2 s3

a l g o 0 c h a r 0 s t r i n g 0 s o r t i n g 0

Figure 6.1: Memory layout of a string array consisting of 4 strings.

MSD String Radix Sort

Let S be the string array that is given to MSD string radix sort as input in the first iteration.
The input to MSD string radix sort in the lth iteration (first iteration is l = 0) are the |Σ| buckets
computed in the previous iteration (the bucket corresponding to the end-of-string character does
not further participate in the process). This implies that the input has a common prefix of length l.
Furthermore, we assume that the offset o at which the smallest string of the currently investigated
input will be located in the sorted string array S is known. This can easily be achieved by computing
the prefix sum of the sizes of the buckets of the previous iteration l− 1 and the offset of the previous
iteration. The offset in the first iteration is 0. In iteration l the input is partitioned into |Σ| + 1
buckets based on the (l + 1)th character of each string. Let i > 0 be the position within the sorted
array S at which the smallest element of a non-empty bucket computed in iteration l will be located
after the execution of the whole algorithm. Then we know that the string that will be (finally)
located at position i and the string that will be finally located at position i − 1 have the longest
common prefix length l. Otherwise the partitioning into buckets based on the (l + 1)th character
would have put them into the same bucket. Therefore, we can already set the LCP array at position
i to l even without knowledge about the strings that will finally be sorted at the positions i− 1 and
i. Hence, it will be sufficient to execute Algorithm 6.1 after the partitioning in each iteration of
MSD string radix sort to compute the correct LCP array entries.

Algorithm 6.1: LCP Computation within MSD String Radix Sort
Input: Offset of input o, size of buckets b, depth of currently investigated character l, LCP

array H(S).
1 B ← 0
2 for i← 0 to |b| − 1 do
3 B ← B + b[i]
4 for i← 1 to b[0]− 1 do // strings within end-of-string bucket have LCP l
5 H(S)[o+ i]← l

6 i← 0, j ← 0
7 while i < |b| do
8 while i < |b| ∧ b[i] = 0 do // skip empty buckets
9 i← i+ 1

10 if i = |b| ∨ j + b[i] = B then
11 break
12 j ← j + b[i]
13 H(S)[o+ j]← l

44

6.3. Sending Strings/LCP Values with MPI

Multikey Quicksort

Since multikey quicksort is the base sorter of string radix sort, we also have to describe how the
LCP array can be obtained within this algorithm. The approach is very similar to the one used for
string radix sort. The only difference is that we do not partition into |Σ|+ 1 but only into 3 buckets.
Refer to Algorithm 6.2 for the details.

Algorithm 6.2: LCP Computation within Multikey Quicksort
Input: Offset of input o, sizes of the three buckets b1, b2 and b3, pivot string p, depth of

currently investigated character l, LCP array H(S).
1 if p[l − 1] = 0 then // pivot character is end-of-string character.
2 for i← 1 to b1 − 1 do
3 H(S)[o+ i]← l

4 if b1 > 0 then // first bucket not empty
5 H(S)[o+ b1]← l

6 if b3 > 0 then // third bucket not empty, note b1 + b2 > 0 does always hold
7 H(S)[o+ b1 + b2]← l

LCP-Insertion Sort

LCP-Insertion sort is the base sorter of multikey quicksort. However, this algorithm is already
designed to compute the LCP array while sorting the input. We therefore simply refer to the
pseudo-code of the algorithm in [6], which we followed in our implementation.

6.3 Sending Strings/LCP Values with MPI
There are three main aspects that need to be considered for exchanging strings together with LCP
values via MPI.

Encoding of Strings:

The MPI standard defines data types for integers and characters (MPI_Int, MPI_Char, . . .) but
does not offer a data type for strings [12]. Therefore, we exchange arrays of strings as raw-string
arrays, i.e. as arrays of characters using the MPI_Byte data type. On the receiving PE the hybrid
structure of raw-string/pointer array is reconstructed by iterating over the received raw-string array
and setting the pointers to characters following an end-of-string character.

Maximal Message Length:

The type of the message count in the C-binding of MPI is int - a signed type for which it is likely to
be represented by 4 bytes. Hence, the maximum number of elements that can be sent in a message
is limited to 231 − 1 on such systems. Since we encode strings as raw-character arrays this implies
that the maximum amount of string data that can be sent in one message is restricted to about
2GB. For larger messages we use MPI’s custom types. MPI gives the possibility of constructing own
data types based on the built-in data types like MPI_Byte. With MPI_Type_contiguous(int count,
MPI_Datatype old, MPI_Datatype new) a data type new which represents count continuous copies
of the original data type old can be created. Since this method can be also applied on own data
types, we can create big types representing more than 231 − 1 contiguous bytes. One drawback of
this solution is that each message bigger than 231 now has its own type. Hence, the MPI collective
communication operations like MPI_Alltoallv can no longer be used. We adopted the approach

45

6. Implementation Details

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 40 80 16
0

32
0

64
0

12
80 20 40 80 16

0

32
0

64
0

12
80 20 40 80 16

0

32
0

64
0

12
80

0

2000

4000

6000

8000

PEs

tim
e

pe
r

st
rin

g
[n

an
o

se
c]

● 2Calls Interleaved NoLcps Sequential

Figure 6.2: Comparison of different variants how strings and LCP values can be sent together. Plots
shows (from left to right) the running times for 100000, 500000 and 1000000 strings per
PE.

used by Fischer and Kurpicz [11] in the implementation2 of their distributed string sorting algorithm:
The alltoall exchange is executed by sending the messages directly to the other PEs using MPI’s
asynchronous communication methods MPI_Isend and MPI_Irecv.

Sending Strings together with LCP Values:

In the string exchange step we do not only send strings but also the LCP array. The easiest way
to achieve this are two subsequent calls to MPI_Alltoallv – sending the raw-string array first and
then the LCP values. We denote this approach 2calls. However, this induces a factor two of
additional start-up latency, since twice as many messages must be sent. Therefore, we also tried
out two other patterns. In sequential only one byte array is sent. The first part of the array
contains the strings as character sequences followed by the LCP array entries cast to bytes. In
interleaved also only one byte array is sent. However, every string is directly followed by its LCP
array entry. Figure 6.2 shows the performance of the different approaches in a weak-scaling setting
with data generated by DNGenerator (see Section 7.1.1). Additionally, we also show the performance
of noLcps in which we do not send the LCP array. We generated three data sets DN (s, 500, 0) with
s ∈ {105, 5 · 105, 106}, i.e. each PE obtained 105, 5 · 105, and 106 strings each of length 500 characters
and a minimal (D/N)-ratio. The plot shows the running time of the string exchange including the
operations required to copy the strings/LCP entry in the send buffer and to establish the string/LCP
array from the receive buffer. The running time is divided by the number of strings of the input
to each PE. The plots show the average over 16 iterations of which the first is discarded due to
MPI-warm-up effects. The experiment has been performed on the cluster computer ForHLR I (see
Section 7.2.2). We can observe that on each of the three data sets the variants using only one call
to MPI_Alltoallv perform worse than the 2call-approach. This seems to imply that the start-up
latency of an additional alltoall exchange is neglectable compared to the local work overhead induced
by reestablishing the string/LCP array from one receive buffer. Apart from this, the plot on the left
shows a surprising decrease of the communication time for p = 640. We believe this to be due to a
change in the algorithm MPI uses in MPI_Alltoallv.

2https://github.com/kurpicz/dsss

46

https://github.com/kurpicz/dsss

6.4. LCP Losertree

PE internally we use the uint64_t type to store the entries of the LCP array allowing to store
integers of a value up to 264−1. However, the values of the lengths of the longest common prefixes are
usually much smaller incurring a large relative communication overhead when sending these values to
other PEs. Hence, we decided to apply 7-bit compression to the LCP values. Algorithm 6.3 describes
the compression technique for integers smaller than 216, i.e. integers that can be represented by
two bytes. The compression for four- or eight-byte integers works analogously. By applying 7-bit
compression to a uint64_t-integer v we can save 7 byte if v < 127, 6 bytes for 127 ≤ v < 16384,
etc. Only for integers v ≥ 256 7-bit compression yields a representation that requires more than 8
bytes. Since the LCP values in our application are usually quite small in practice, we can save a
considerable amount of memory using 7-bit compression.

Algorithm 6.3: 7-Bit Compression
Input: Integer v < 216.

1 if v < 27 then
2 b[0]← v;
3 else if v < 214 then
4 b[0]← (((v � 7) & 0x7F) | 0x80), b[1]← ((v � 0) & 0x7F);
5 else
6 b[0]← (((v � 0) & 0x7F) | 0x80), b[1]← (((v � 7) & 0x7F) | 0x80);
7 b[2]← ((v � 14) & 0x7F);
Output: Byte array b containing the 7-bit encoding of v.

6.4 LCP Losertree
We use the implementation by the authors of [6].

6.5 Distinguishing Prefix Computation
6.5.1 Hashing

The hashing of the string prefixes is done using the fast xxHash3 algorithm. An optimization that
we did not apply (and thus could not evaluate) due to time limitations is the following: Let s be
a string that remains in the candidate set of Algorithm 5.1 for j rounds. Then for this string the
prefixes p1 := s[0, 2), p2 := s[0, 4), . . . , pj := s[0, 2j) must be hashed. By storing the hash value hi of
prefix pi in iteration i, this value can be used to accelerate the computation of the hash value hi+1
of prefix pi+1 := s[0, 2i+1] with the following formula:

hi+1 = hi ⊕ xxHash(s[2i, 2i+1))

where ⊕ is the bitwise XOR operator.

6.5.2 Local Duplicate Detection

In order to reduce the communication volume, strings located on the same PE whose currently investi-
gated prefixes of length l are identical participate only once in the global distDuplicateDetection.
In the description of the distinguishing prefix computation (Section 5.1.2) it is stated that these
local duplicates are detected by scanning over the sorted hash values. This approach implies that
the prefixes of length l of all candidate strings must be first hashed and then the created hash values
must be sorted. However, local strings s with an equal prefix s[0, l) can also be identified by their
LCP array entries using Algorithm 6.4.

3https://github.com/Cyan4973/xxHash

47

https://github.com/Cyan4973/xxHash

6. Implementation Details

Algorithm 6.4: Local Duplicate Detection
Input: Sorted string array S, associated LCP array H(S) and the currently investigated

prefix length l.
1 if |S| > 0 then
2 s← S[0];
3 h[0]←xxHash(s[0, l));
4 for i← 1 to |S| − 1 do
5 if H(S)[i] < l then
6 s← S[i];
7 h[i]←xxHash(s[0, l));

Output: Array h containing only one hash value per unique prefix s[0, l).

Doing so, there is no need to create the hash values for local duplicates at all. Although xxHash is
claimed to be as fast as memcpy, this is nonetheless an operation linear in the currently investigated
prefix length. Comparing two LCP values, however, can be done in one machine instruction. The
second advantage is that detecting local duplicates before hashing implies that the number of hash
values that need to be sorted is reduced.

6.5.3 Sorting/Merging of Hash Values

Due to time limitations we did not develop a special integer sorting algorithm as proposed in [24].
Instead we use the authors’ implementation of the fast comparison-based ips4o 4 algorithm by
Axtmann et al. [3]. For merging a losertree implementation of the tlx-library is used.

6.6 Hypercube Quicksort
In order to adapt hypercube quicksort to strings, i.e. elements of variable length, we have changed
the following aspects of its implementation:

• Local Sorter: The local sorter is replaced by the MSD string radix sort variant CI3 without
LCP extension.

• Point-to-Point-Communication/Broadcasts: Instead of exchanging n elements of fixed
length, we apply the same procedure as described in Section 6.3. However, we do not send
LCP values as none are computed.

4https://github.com/SaschaWitt/ips4o

48

https://github.com/SaschaWitt/ips4o

7. Experimental Evaluation

7.1 Data
Given an (unsorted) string array S it is not possible to predict the time complexity of sorting this
array based on the number of strings and the number of characters only. Also, aspects like the sum of
the lengths of the distinguishing prefixes and the variance of the string lengths itself can be significant.
Therefore, it is not easy to choose data sets for the evaluation of string sorting algorithms. We
decided to evaluate the algorithms’ performance with particular focus on the (D/N)-ratio, i.e. the
ratio between the sum of the lengths of the distinguishing prefixes and the total number of characters.
This is an interesting property of a string data set since it has two opposing effects on the running
time of our distributed string sorting algorithms. On the one hand, a large value of the (D/N)-ratio
makes string comparisons more expensive as more characters of the strings must be inspected. On
the other hand, LCP compression is more effective for large values of the (D/N)-ratio than for small
values. This can reduce the time needed for communication. To give a systematic evaluation, we
designed the so called DNGenerator - a string generator capable of generating string data sets with
the number, length and the (D/N)-ratio of the strings as parameters. Additionally, we conducted
experiments on real-world string data sets that were chosen according to their (D/N)-ratio.

7.1.1 DNGenerator

The DNGenerator is a string generator which creates n strings of length l over an alphabet Σ with
a desired (D/N)-ratio of r ∈ (0, 1). The general idea of this generator is to use the n integers
0, . . . , n− 1 in an |Σ|-ary representation as the strings with a (possibly) additional padding at the
start and the end of each string in order to reach the requested length. Therefore, the generated
strings are pairwise distinct. A detailed description is given in algorithm 7.1. If the tuple of
parameters (n, l,Σ, r) fulfills the following conditions

1. |Σ| > 1

2. l > brlc ≥ dlog|Σ|(n− 1)e

3. n is divisible by |Σ|,

then the sum of the distinguishing prefixes of the generated string set is D = nbrlc.

Proof. Let S be the set of strings generated by Algorithm 7.1 using parameters (n, l,Σ, r) that fulfill
the above-mentioned conditions. We define σ := |Σ|. All strings in S are of length l (see lines 2 and
4). Let k := blrc. To represent an integer i in the σ-ary system, exactly ki := dlogσ(i)e digits are

49

7. Experimental Evaluation

required. Since l > blrc ≥ dlogσ(n− 1)e holds (condition 2), the generated strings are long enough
to contain these representations for all integers in {0, . . . , n− 1}.

In lines 5 – 9 the σ-ary representation of integer i is computed and written to si[k − ki, k). The
remaining characters of si are not modified. Therefore, they still contain the character c – the
smallest character of Σ. The last character of si is the end-of-string character. Hence, si contains the
σ-ary representation of i with (possibly) an additional padding at the start and the end. Therefore,
the strings generated by Algorithm 7.1 are already sorted.

We now want to determine the sum of the distinguishing prefix lengths of the generated string array.
For si with 0 ≤ i < n we define

j :=
{
i+ 1 if i = 0 (mod σ),
i− 1 otherwise

.

Note that 0 ≤ j ≤ n− 1 as n is divisible by σ.

Then si[0, k − 1) = sj [0, k − 1) as bi/σc = bj/σc and si[k − 1] 6= sj [k − 1] as |i− j| = 1 and σ > 1
(condition 1). This implies that at least k characters have to be inspected to differentiate si from sj .
Therefore, the distinguishing prefix of si is at least k. Since the generated string array is sorted, the
distinguishing prefix of a string si cannot be longer than the maximum of the length of the longest
common prefix of si and its neighbour(s) in S plus one character. However, for 0 ≤ i < n we find
si[k − 1] 6= si+1[k − 1] as already pointed out above. Therefore, the length of the distinguishing
prefix of each string in S is exactly k. Thus, we have D = nk = nbrlc.

As the total number of characters in the generated set equals N = nl, we obtain a D/N -ratio of
D/N = nbrlc/(nl) = brlc/l ≈ r.

Algorithm 7.1: DNGenerator
Input: number of strings n, length of string l, D/N -ratio r, alphabet Σ

1 k ← bl · rc, c← Σ[0]
2 s← [cl−1] + [0] // string s consists of l − 1 repetitions of the smallest

// character in Σ.
3 for i← 0 to n− 1 by 1 do
4 si ← s // current string
5 m← i
6 for j ← k − 1 to 0 by 1 do // compute the |Σ|-ary representation of m.
7 c′ ← Σ[m % |Σ|]
8 m← b m|Σ|c
9 si[j]← c′

10 S[i]← si

Output: A set S of n strings each of length l with a D/N -ratio of r.

As already pointed out above, the generated string array is already sorted due to its construction
process. Therefore, we randomly permute the strings in the array before it is distributed over the
PEs as input to the string sorting algorithms. In the following we will use the notation DN (n, l, r)
to specify a string array generated by Algorithm 7.1 and the parameters n, l and r. Note that we
cannot reach a D/N -ratio of 0 or 1 with the DNGenerator. In our evaluation a (D/N)-ratio of 0 or
1 simply represents the minimum of maximum (D/N)-ratio that can be generated with Algorithm
7.1 and the given parameters n and l.

Figure 7.1 shows an example of a generated string array using DNGenerator with n = 9 and a
(D/N)-ratio of 0.4 on the left and 0.7 on the right.

50

7.1. Data

s0

s1

s2

s3

s4

s5

s6

s7

s8

a a a a a a a a a 0

a a b a a a a a a 0

a a c a a a a a a 0

a b a a a a a a a 0

a b b a a a a a a 0

a b c a a a a a a 0

a c a a a a a a a 0

a c b a a a a a a 0

a c c a a a a a a 0

s0

s1

s2

s3

s4

s5

s6

s7

s8

a a a a a a a a a 0

a a a a a a b a a 0

a a a a a a c a a 0

a a a a a b a a a 0

a a a a a b b a a 0

a a a a a b c a a 0

a a a a a c a a a 0

a a a a a c b a a 0

a a a a a c c a a 0

DN (9, 10, 0.3) DN (9, 10, 0.7)

Figure 7.1: Two string arrays generated with DNGenerator. The distinguishing prefix is coloured
red.

7.1.2 Skewed DNGenerator
One drawback of DNGenerator is its uniformity. Since all strings are of equal length, string-
and character-based sampling yield the same results. We therefore constructed an extension of
DNGenerator called SkewedDNGenerator. The smallest p percent of the generated strings are padded
with additional characters such that they have e times the length of the other strings. Hence, the
SkewedDNGenerator does not change the distinguishing prefix length of any string. However, the
(D/N)-ratio of the generated string array is reduced as the value of N increases. In the following
we will denote string arrays generated by SkewedDNGenerator with parameters (n, l, r, p, e) by
SDN (n, l, r, p, e). Figure 7.2 shows a string array generated by SkewedDNGenerator consisting of 9
strings with an original (D/N)-ratio of 0.3.

s0

s1

s2

s3

s4

s5

s6

s7

s8

a a a a a a a a a a a a a a a a a a a 0

a a b a a a a a a a a a a a a a a a a 0

a a c a a a a a a a a a a a a a a a a 0

a b a a a a a a a 0

a b b a a a a a a 0

a b c a a a a a a 0

a c a a a a a a a 0

a c b a a a a a a 0

a c c a a a a a a 0

SDN (9, 10, 3
10 ,

1
3 , 2)

Figure 7.2: String array generated by SkewedDNGenerator. The distinguishing prefixes are coloured
red.

51

7. Experimental Evaluation

7.1.3 Other Data Sets

Apart from string sets generated by DNGenerator and SkewedDNGenerator we have tested our
algorithms on three further data set

• CommonCrawl: The data set CommonCrawl consists of the first 200 database files from
CommonCrawl (2016-40) 1 and contains text dumps of websites. Each line is interpreted as a
string. This data set contains 82 GB of characters in total. Furthermore, we created the set
CommonCrawlR based on the original data set. In this data set all strings containing less
than 10 characters were deleted.

• Wiki: This data set is a dump of all articles of the English Wikipedia in XML-format from
01/03/19 2. Its contains 71 GB of characters. Again, each line is interpreted as a string.
Additionally, we created WikiReducedbased on the original data set.

As above,WikiReduced does not contain any strings of length less than 10.

• Suffixes: The data set Suffixes contains all suffixes of the first 3000 lines of Wiki interpreted
as a single string. The suffixes contain about 104 GB characters.

Table 7.1 shows detailed information on all of the above-mentioned data sets.

Table 7.1: Internals of the data sets CommonCrawl,Wiki, Suffixes and the data sets derived
from them.

n N (D/N) l Q0.25 Q0.5 Q0.75 Q1.0

CommonCrawl 2.0G 82G 0.68 39.54 7 14 26 2,340,013
CommonCrawlR 1.7G 81.1G 0.67 45.27 10 16 31 2,340,013
Wiki 1.1G 71.3G 0.43 65.25 14 25 49 1,521,854
WikiReduced 0.9G 70.4G 0.42 80.46 20 33 54 1,521,854
Suffixes 0.46M 104.5G 0.00 228,566 114,282 228,565 342,847 457,130

The first two columns show the number of strings and number of characters of the data sets
respectively. Column l contains the average string length. The last columns Qi shows the string
length l such that a fraction i of all strings of the data set contains l or less characters. Hence, Q1.0
is the maximum string length of the data set.

7.2 Evaluation Setup
All experiments were performed on the distributed-memory cluster ForHLR I. This cluster consists
of 512 20-way Intel Xeon compute nodes. Each of these nodes contains two Deca-core Intel Xeon
processors E5-2670 v2 (Sandy Bridge) with a clock speed of 2.5 GHz and have 10x256 KB of level
2 cache and 25 MB level 3 cache. Each node possesses 64 GB of main memory and an adapter to
connect to the InfiniBand 4X FDR interconnect.3 Intel MPI Library 2018 was used as implementation
of the MPI standard. All programs were compiled with GCC 8.2.0 and optimization flags -O3 and
-march=native.

7.2.1 Distribution of the Data

In Section 7.1 the data sets used for the experiments are described but we have not yet specified how
the data is distributed over the PEs. The input data distribution differs between data sets generated

1https://commoncrawl.s3.amazonaws.com/crawl-data/CC-MAIN-2016-40/wet.paths.gz
2https://dumps.wikimedia.org/enwiki/20190301/
3https://wiki.scc.kit.edu/hpc/index.php/ForHLR_-_Hardware_and_Architecture

52

https://commoncrawl.s3.amazonaws.com/crawl-data/CC-MAIN-2016-40/wet.paths.gz
https://dumps.wikimedia.org/enwiki/20190301/
https://wiki.scc.kit.edu/hpc/index.php/ForHLR_-_Hardware_and_Architecture

7.2. Evaluation Setup

by DNGenerator, by SkewedDNGenerator, and the other data sets. The former two data sets are
uniformly distributed over all PEs using a random generator, i.e. the probability of a string s to be
assigned to PE i is 1

p for all strings s ∈ S. The other data sets (CommonCrawl, Wiki, Suffixes
and the sets derived from those) are divided into p parts (respecting string boundaries) such that the
amount of characters is nearly the same in each part. These parts are then distributed to the PEs.

7.2.2 Algorithms

We have compared four algorithms against each other on the above-mentioned data sets. The first
algorithm is dMSS introduced in Section 4. In this algorithm there are two main strategies to choose.
The first one is the sampling strategy to be used in the partition algorithm (step 2 of dMSS). The
second one is the question whether LCP compression is applied in the string exchange (step 3). We
tested all four combinations of these parameters:

• msLCPS: This variant uses LCP compression and string-based sampling.

• msNoLCPS: Here LCP compression is not exploited, the string-based sampling approach is used
as above.

• msLCPC: This variant LCP compresses its strings and uses character-based sampling.

• msNoLCPC: In this variant there is no LCP compression and character-based sampling is used.

The oversampling factor in partition in all variants and experiments is 2, i.e. each PE chooses
s = 2(p− 1) elements for the local sample sets in the second step of the algorithm. Furthermore,
we used 100(l̃ + 5) where l̃ :=

∑
1≤i≤p L(Si) as maximal string length that is communicated in

partition. Chosen strings longer than this value were cut off.

The next algorithm is dPDSS (Section 5). In principle, there are three main strategies that can
be chosen in this algorithm. The first choice is the question whether Golomb encoding is used
in the computation of the distinguishing prefixes. The second and third choices are the sampling
method and whether LCP compression is used in the string exchange as above. Since the goal of this
algorithm is minimizing the communication volume, we have decided to only test the variant with
LCP compression enabled. Another justification for this choice is that no (potentially) expensive
decompression is needed as we only compute the sorting permutation and are not interested in the
whole strings in this algorithm. Therefore, we have four evaluated dPDSS-variants:

• pdNoGolombS: In this variant we apply string-based sampling within partition. The com-
putation of the (approximate) distinguishing prefix lengths (step 2 of the algorithm) is done
without using Golomb encoding by sending the hash values as uncompressed integers.

• pdGolombS: Here we use Golomb encoding and string-based sampling.

• pdNoGolombC: This variant applies character-based sampling but no Golomb encoding.

• pdGolombC: The last variant uses Golomb encoding and character-based sampling.

Again, an oversampling factor of 2 was used in all experiments within the partition algorithm.
The size of the distributed Bloom filter used to be 264 − 1 in all experiments.

So far, we have only introduced the evaluated variants of our own algorithms dMSS and dPDSS.
To thoroughly evaluate new algorithms, it is necessary to compare them against the fastest known
algorithms for the considered problem. Although there are many distributed sorting algorithms for
atomic keys, we are only aware of one other distributed string sorting algorithm, the algorithm by
Fischer and Kurpicz [11]. The algorithm’s principal structure is similar to dMSS but no LCP-related
optimization is applied and during the computation of the ordered partition (step 2) the local sample
sets are not sorted in parallel, but allgathered on the PEs and are then sorted sequentially. In the
evaluation we used the authors’ original source code.4 In the following the algorithm will be denoted

4https://github.com/kurpicz/dsss

53

https://github.com/kurpicz/dsss

7. Experimental Evaluation

fkss. To be able to differentiate between the influence of the sequential sorting of the sample sets
and the effect of the LCP-related optimizations in dMSS compared to fkss, we implemented a base
variant of dMSS with the following properties:

• Local Sorting: For the local sorting of the input arrays the base MSD radix sort string sorter
is used. There is no computation of the LCP array.

• Distributed Order Partitioning: The computation of the ordered partition is the same
as in the other variants of dMSS; in particular hypercube quicksort is used to sort the local
sample sets in parallel.

• String Exchange: Since we do not know the LCP values, we only communicate the strings.

• Merging: We use a normal tournament tree as we do not know LCP values and therefore
cannot apply LCP-augmented merging.

This variant is denoted msSimpleS.

The other algorithm against which we compared our two string sorting algorithms is our adaption
of the hypercube quicksort by Axtmann and Sanders [1] to string sorting (see Section 3.2). We
adapted its original implementation5 by replacing point-to-point communication of fixed length with
point-to-point communication of variable length. In the following the algorithm will be denoted
hQuick.

7.3 Evaluation
In the following we present multiple experiments to evaluate the performance of the aforementioned
algorithms. We will especially analyse the effect of LCP-related optimization for compression and
merging and the influence of string- and character-based sampling. For dPDSS the effect of Golomb
encoding on running time and communication volume will be of interest. The reported values for
running times and communication volume in the experiments are averages over 15 successive runs
of the algorithms. In total we executed 16 runs. However, the first iteration always used to be
discarded due to MPI warm-up effects. Since our algorithms are likely to be a subroutine of another
algorithm with previous communication, we feel that this decision is valid.

7.3.1 DN-Data Weak Scaling

In this experiment we ran the algorithms in a weak-scaling setup on data generated by DNGenerator
and SkewedDNGenerator.

Regular Data

For a number of p PEs the algorithms have been evaluated on the data set DN (5p · 105, 500, r) with
r ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. In other words we created 5 data sets each consisting of 500.000 strings
of length 500 per PE with (D/N)-ratios from 0.0 to 1.0 with a stepping of 0.25. The upper part
of Figure 7.3 shows the running time of the algorithms. In the lower part of the figure the total
number of bytes sent divided by the number of strings is shown. To obtain this number, we summed
up all bytes sent by any PE during the execution of an algorithm. In point-to-point communication
and in the alltoall operations, we simply added the length of the messages. In the allgather and
broadcast operations, we multiplied the length of the sent messages with the number of PEs. The
plot in between these two shows the running time of the evaluated variants of dMSS and dPDSS in
more detail. Table A.1 contains the exact numbers. Table B.6 shows the speed-up of the algorithms
against the fastest of our competitors for each data set/number of PEs. Since all strings in the data
set are of equal length, there is no difference between string- and character-based sampling (see Table
A.1). Hence, we do not show either msLCPC/msNoLCPC or pdGolombC/pdNoGolombC in the plots.

5https://github.com/MichaelAxtmann/KaDiS

54

https://github.com/MichaelAxtmann/KaDiS

7.3. Evaluation

●
● ●

● ●
● ●

● ●
● ●

● ●

●

●
● ●

● ●
● ●

● ●
●

●

●
●

●

●
● ●

● ●
● ●

● ●

●
●

●

●

●

●●
●●

●
● ●

● ●

●
●

●

●

●

●●
●●

●
● ●

● ●

●
●

●

●

●

r: 0 r: 0.25 r: 0.5 r: 0.75 r: 1

20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80

0

10

20

PEs

tim
e

[s
ec

]

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

r: 0 r: 0.25 r: 0.5 r: 0.75 r: 1

20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80

0.0

2.5

5.0

7.5

PEs

tim
e

[s
ec

]

● ● ● ● ● ●
●

● ● ● ● ● ●
●

● ● ● ● ● ●
●

● ● ● ● ● ●
●

● ● ● ● ● ●
●

r: 0 r: 0.25 r: 0.5 r: 0.75 r: 1

20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80

0

100

200

300

400

500

PEs

by
te

s
se

nt
 p

er
 s

tr
in

g

● ●fkss

hQuick

msLCPS

msNoLCPS

msSimpleS

pdGolombS

pdNoGolombS

Figure 7.3: Running times and number of bytes sent per string in the DToN weak-scaling experiment.

The figure reveals that all of our dMSS- and dPDSS-variants clearly outperform their competitors
hQuick and fkss. The algorithm hQuick shows the worst performance of all algorithms. This comes
at no surprise as it has not been designed for string sorting and its (theoretical) communication
volume is Θ(log(p)) times greater than the communication volume of dMSS even without LCP
compression enabled. Furthermore, hQuick effectively uses only 2blog(p)c PEs. Since p is not a power
of two in our experiments, this is another reason for its poor performance. The running time of fkss
surprises as it does not scale at all for an increasing number of PEs. This becomes even worse with

55

7. Experimental Evaluation

an increasing (D/N)-ratio r. The base variant msSimpleS of dMSS does not show this behaviour.
Since the only algorithmic difference to fkss is its handling of the sorting of the local sets within
partition, we believe the sequential sorting approach of fkss for this sub-step to be the reason for
its low performance.

The comparison of the running time of msSimpleS, msNoLCPS and msLCPS reveals some interesting
insights into the effect of LCP-based optimizations. For r = 0 msNoLCPS and msSimpleS, which
nearly show the same performance, are on average faster than msLCPS by a factor of 1.2 over all PEs.
This is reasonable since LCP compression incurs additional costs for compressing and decompressing
the strings and since the reduction of communication volume is neglectable for this data set. For the
other data sets (r ≥ 0.25) we observe two effects. The first one being that LCP-augmented merging
pays off as msNoLCPS is faster than msSimpleS. For r = 1 the variant with LCP-merging is on
average faster than msSimpleS by a factor of 1.3 over all PEs. The other effect is even stronger: LCP
compression improves the running time for an increasing (D/N)-ratio considerably. For r = 1 msLCPS
(LCP values used for compression and merging) shows on average an speed-up of 1.9 compared
to msSimpleS . Another effect of LCP compression is the following: All algorithms but msLCPS
become slower for increasing r. This is as expected since the length of the distinguishing prefixes
increases and more characters must be inspected during string comparisons. However, an increase in
(D/N)-ratio also implies greater LCP values for the data set. Hence, LCP compression becomes more
effective. This compensates the greater amount of time for local string comparisons and explains why
the total running time of msLCPS increases more slowly than that of msNoLCPS and even decreases
(!) for p = 1280 with increasing r.

Our prefix-doubling-based algorithm dPDSS has the best running time on all data sets and numbers
of PEs. For r = 0 it is faster than the best variant of dMSS by a factor of 3.6 on this data set.
With increasing r the advantage of dPDSS over the best variant of dMSS, which is msLCPS for
r ≥ 0.25, becomes smaller as the distinguishing prefixes increases, but the total length of the strings
remains the same. This has two effects: First, dPDSS must execute more rounds in the approximate
computation of the distinguishing prefix lengths (second step of the algortihm and described in
Section 5.1.2). Second, the number of characters saved by communicating the distinguishing prefixes
only becomes smaller. This explains that for r = 0.75 and r = 1 there is almost no difference between
either dPDSS-variant and msLCPS. Another observation is that there is almost no difference between
the two dPDSS-variants in terms of running time. Considering the total number of sent bytes, we
observe a very slight advantage of pdGolombS over pdNoGolombS. Hence, Golomb encoding does
reduce the communication volume, but this effect is not significant enough to also reduce the overall
running time.

The lower part of Figure 7.3 shows the number of bytes communicated per string during a run of the
dMSS and dPDSS algorithms. All strings are of length 500 and one character can be sent in one byte
for the used alphabet. The number of sent bytes grows with increasing p. This is as expected as the
total number of elements chosen for the global sample set in partition is in Θ(p2). This increase is
rather small in the data sets with r = 0 and r = 0.25 for dPDSS as the computation of the buckets
only considers the distinguishing prefixes, which are rather short. For r = 0.75 the plot shows that
about 135 bytes are communicated per string. This corresponds to the number of characters that
can be saved by LCP compression (plus some additional bytes sent in steps 2 and 3). Here we do
not gain any advantage by the computation of the distinguishing prefixes. This can be explained
as we only test whether the prefixes of lengths 2, 4, 8, 16, . . . are unique. Since the (D/N)-ratio is
0.75 and the string length is 500 characters, the distinguishing prefix length is 375 and we have
28 < dmax = 375 < lmax = 500 < 29. Hence, our algorithm cannot detect the actual distinguishing
prefix length of 375 and sets the distinguishing prefix length to 500 – the complete string length.
The same happens for r = 1. Thus, only LCP compression is applied which yields nearly the same
communication volume per string for pdNoGolombS, pdGolombS and msLCPS on these two data sets.

56

7.3. Evaluation

Skewed Data

On data generated by DNGenerator the differences between string- and character-based sampling
cannot be evaluated as both deliver the same results. Therefore, we executed the same experiments
as above on data sets generated by SkewedDNGenerator. Figure 7.4 shows the performance of
the algorithms on the data sets SDN (5p · 105, 500, r, 0.2, 4) for r ∈ {0, 0.25, 0.5, 0.75, 1.0}, i.e. we
generated the same set as above but the smallest 20 percent of the generated strings were padded
such that they were four times as long as the other strings. Recall that the distinguishing prefix
length of the strings is not influenced by this padding. The effect is that – if string-based sampling
is used – PEs with a small index obtain up to four times as much data as the other PEs. For
character-based sampling the increase in characters per PE should be well balanced. Table A.2
contains the exact running times and numbers of bytes sent per string. Table B.6 shows the speed-up
against the fastest of our two competitors.

As above fkss performs worse than our algorithms on all data sets. Only msLCPS is slower than
fkss for r = 0 and p ≤ 320. For these runs the overhead of LCP compression seems to be too high.
The hypercube algorithm hQuick could only be executed on p ≤ 80. On more PEs it crashes due to
memory limitations. This can be explained by its hypercube design as some compute nodes obtain
initially twice as much data as in the other algorithms (recall that hQuick only uses 2blog(p)c PEs).

The positive effect of LCP-merging on the running time of the string-based sampling variants is
still existent. The variant msNoLCPS is with r = 1 about a factor of 1.2 faster on average than
msSimpleS. However, LCP compression does no longer seem to pay off. The variant msLCPS is slower
than msNoLCPS on all data sets except for r = 1. Even here the LCP compression variant has only a
speed-up of 1.05 compared to msNoLCPS. This can be explained by the skewness of the data. Since
we measure the length of the critical path, i.e. the “slowest” PE, one slow processor alone can
deteriorate the overall performance. As PEs with a small index obtain 4 times as much data as the
other PEs and at least 75% of this data cannot be LCP-compressed (depending on r), the poor
performance of msLCPS seems reasonable.

Let us now consider the character-based sampling methods. The plot reveals that these perform much
better than their string-based sampling counterparts. For r = 0 msNoLCPC is faster than msSimpleS
by a factor of 1.3 – the fastest string-based sampling variant on this data set. For r = 1 we observe
the performance of msLCPC to be better than that of msLCPS, which is the fastest string-based variant
on this set, by a factor of 1.4 on average over all PEs. This shows that character-based sampling is a
useful alternative on data sets with skewed data. Additionally, LCP compression also pays off for
r ≥ 0.5 although the gain is only 5% to 10% even for r = 1.

As above, the dPDSS variants perform best on all data sets. This time even for r = 0.75 and
r = 1 dPDSS is clearly the best algorithm. Recall that in the experiment with regular data, the
msLCPS-variant nearly shows the same performance as dPDSS. For r = 0 pdNoGolombS shows on
average a speed-up of 5.3 compared to the quickest dMSS-variant over all PEs. The reason why the
performance of dPDSS is barely influenced by the skewedness of the data lies in its robustness to
varying string lengths as long as the distinguishing prefixes are not affected. This is the case for
data generated with SkewedDNGenerator. Thus, it comes at no surprise that the running times
of the dPDSS variants is nearly the same in this and the last experiment. We did not include the
running time of pdNoGolombC and pdGolombC in this plot since these are nearly identical to their
string-based sampling counterparts (see Table A.2). This is as expected as dPDSS operates on the
distinguishing prefixes only and these are all of equal length.

The number of bytes sent per string (lower part of Figure 7.4) shows the same trends as in the
experiment on regular data with only difference that the values are shifted for the dMSS-variants.
Again, dPDSS is quite robust against the skewness of the data. Since the longer strings are expected
to be cut off at a length of 512 characters, basically the same amount of data is sent as in the
experiment on regular data.

57

7. Experimental Evaluation

●
● ●

●
●
● ●

●
●
●

●

●

●

●

●
● ●

●
●
● ●

● ●

●
●

●

●

●

●
● ●

●
●
● ●

● ●

●
●

●

●

●

●
●

●
●

●
● ●

● ●

●
●

●

●

●

●
●

●
●

●
●

●
● ●

●
●

●

●

●

r: 0 r: 0.25 r: 0.5 r: 0.75 r: 1

20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80

0

10

20

30

PEs

tim
e

[s
ec

]

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

r: 0 r: 0.25 r: 0.5 r: 0.75 r: 1

20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80

0

5

10

15

PEs

tim
e

[s
ec

]

● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ●

r: 0 r: 0.25 r: 0.5 r: 0.75 r: 1

20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80 20 40 80 16
0

32
0

64
0

12
80

0

200

400

600

800

PEs

by
te

s
se

nt
 p

er
 s

tr
in

g

● ●fkss

hQuick

msLCPC

msLCPS

msNoLCPC

msNoLCPS

msSimpleS

pdGolombS

pdNoGolombS

Figure 7.4: Running times and number of bytes sent per string in the skewed DToN weak-scaling
experiment.

58

7.3. Evaluation

7.3.2 DN-Data Strong Scaling

We also performed strong scaling experiments on data generated by DNGenerator and SkewedDNGener-
ator.

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

r: 0 r: 0.25 r: 0.5 r: 0.75 r: 1

16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80

0

10

20

30

40

50

PEs

tim
e

[s
ec

]

●

●

●
●

● ●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

r: 0 r: 0.25 r: 0.5 r: 0.75 r: 1

16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80

0

5

10

15

PEs

tim
e

[s
ec

]

● ● ● ●
●

●

● ● ● ●
●

●

● ● ● ●
●

●

● ● ● ●
●

●

● ● ● ●
●

●

r: 0 r: 0.25 r: 0.5 r: 0.75 r: 1

16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80

0

200

400

PEs

by
te

s
se

nt
 p

er
 s

tr
in

g

● ●fkss

hQuick

msLCPS

msNoLCPS

msSimpleS

pdGolombS

pdNoGolombS

Figure 7.5: Running times and number of bytes sent per string in the strong-scaling experiment on
DToN data.

For the former we created five data sets DN (2 · 108, 500, r) with r ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. The
five data sets created with SkewedDNGenerator have the parameters SDN (2 · 108, 500, r, 0.2, 4) and

59

7. Experimental Evaluation

r ∈ {0.0, 0.25, 0.5, 0.75, 1.0}, i.e. the smallest twenty percent of the strings are padded such that they
have four times the length of the other strings.

Regular Data

Figure 7.5 shows the running time for the data sets generated with DNGenerator. The top row
shows the running times of all algorithms, the middle displays only the dMSS- and dPDSS-variants.
The bottom row in the figure shows the number of bytes sent per string for the variants of our two
algorithms. Detailed numbers can be found in the appendix in Table A.3 and Table B.7. As in the
weak-scaling experiments, all variants of both of our algorithms – dMSS and dPDSS – perform better
than their competitors. Although hQuick scales quite well for increasing p, fkss even gets slower for
p > 640. For p = 1280 (and r ≥ 0.25) it performs even worse than hQuick. The characteristic plot of
hQuick, which resembles a staircase, can be explained by its hypercube design. For sorting hQuick
uses p′ := 2blog(p)c PEs only. PEs with an index greater than p′ send their input to PEs within the
hypercube of dimension log(p′). For p = 320 and p = 480 the value of p′ is identical. The same holds
for p = 640 and p = 960. This explains the similar performances on these pairs of PEs. Apart from
this particularity of hQuick the experiment does not reveal any new insights. The overall effects
of LCP-merging and compression are similar to those in the weak-scaling experiment. We do not
display the results for the character-based sampling variants of our experiments in the plots as all
strings are of equal length and they therefore show the same performance.

Skewed Data

Figure 7.6 shows the running time and communication volume of the algorithms on the data sets
generated by SkewedDNGenerator. Again, exact numbers and the speed-up can be found in the
appendix in the Tables A.4 and B.7.

The algorithm hQuick could only be executed on p ≥ 640. The missing data points are caused by
the memory limitations of the compute nodes since the PEs with small indices obtain the same
number of strings as the other PEs but these strings are significantly longer. But also fkss and the
string-based variants of dMSS demand too much memory for p = 160. The prefix-doubling algorithm
and the character-based sampling variants do not suffer from this problem. The prefix-doubling
algorithm is robust against skewed input because the distinguishing prefix lengths are not influenced
by the additional padding as mentioned above. The character-based sampling variants of dMSS can
handle the skewed input by adjusting the generated buckets in the sampling phase to the varying
string lengths.

All of our algorithms are clearly faster than their competitors; fkss confirms the results of the
weak-scaling experiment that it does not scale, especially not for increasing values for r. The fastest
algorithms on all data sets are the prefix doubling variants. They have a speed-up of about 6.4
compared to the best dMSS-variant for r = 0 and speed-up of 1.8 over the fastest dMSS-variant
(msLCPC) for r = 1. Similar to the weak-scaling experiment on skewed data the plots show the
character-based sampling variants to be on average about a factor of 1.6 (r = 0) and 1.4 (r = 1)
faster than their string-sampling counterparts. For dPDSS there is no difference between string- and
character-based sampling as the distinguishing prefix of the strings is not changed by the additional
padding at the end of the 20 percent smallest strings (see Table A.4). Therefore, they are not shown
in the plot. The effects of LCP-related optimizations are the same as in the weak-scaling experiment.

7.3.3 CommonCrawl

We now give the results of the runs of our algorithms on real world data. The left-hand plot in
Figure 7.7 shows the running time on CommonCrawl; likewise the right-hand plot the running
time on CommonCrawlR. The plots in the second row of the figure show the running time of our
algorithms – dMSS and dPDSS – in more detail. The third row displays the number of bytes sent per

60

7.3. Evaluation

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

r: 0 r: 0.25 r: 0.5 r: 0.75 r: 1

16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80

0

10

20

30

40

PEs

tim
e

[s
ec

]

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

r: 0 r: 0.25 r: 0.5 r: 0.75 r: 1

16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80

0

5

10

15

PEs

tim
e

[s
ec

]

● ● ●
●

●

● ● ●
●

●

● ● ●
●

●

● ● ●
●

●

● ● ●
●

●

r: 0 r: 0.25 r: 0.5 r: 0.75 r: 1

16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80 16
0

32
0

48
0

64
0

96
0

12
80

0

250

500

750

PEs

by
te

s
se

nt
 p

er
 s

tr
in

g

● ●fkss

hQuick

msLCPC

msLCPS

msNoLCPC

msNoLCPS

msSimpleS

pdGolombS

pdNoGolombS

Figure 7.6: Running times and number of bytes sent per string in the strong-scaling experiment on
skewed DToN data.

string on both data sets. The exact values can be found in the appendix in Table A.5. The speed-up
of our algorithms compared to hQuick is given in Table B.8. This experiment is strong-scaling, i.e.
we applied the same data set to the different numbers of PEs.

We cannot provide the running time of fkss as it crashes on this data set. We believe this happens
because of the large number of duplicates in both data sets. The algorithm fkss does not address

61

7. Experimental Evaluation

this problem. Our algorithms can distinguish duplicates within partition by adding a unique
identifier to each string.

Again all of our algorithms perform better than their only remaining competitor hQuick. The
string-based variants of dMSS show an average speed-up of about 4 over hQuick. The dPDSS
algorithm is faster than its competitor by a factor of 5.4 on average. The effect of LCP merging
seems to pay off as msSimpleS performs notably worse than msLCPS and msNoLCPS (by a factor of
2).

The positive effect of LCP compression is still existent but rather small. For p > 160 dPDSS shows
the best performance. This is a bit surprising as the (D/N)-ratio of this data set is relatively
high. The bad performance of the dMSS-variants using character-based sampling is particularly
interesting. Their running time is about a factor of two worse than the one of their string-based
sampling counterparts. A closer look reveals that they spend much more time in the merging step
than the string-based sampling variants. The data set CommonCrawl contains many very short
duplicates. In character-based sampling this implies that the number of strings sent to one PE
whose bucket contains many short strings is considerably higher than the number of strings in a
bucket with longer strings. This seems to negatively affect the running time of the merging step.
To verify our assumption, we created the data set CommonCrawlR by deleting all strings from
CommonCrawl with a length less than 10. On CommonCrawlR msNoLCPC and msLCPC perform
even better than their string-based sampling counterparts. Hence, we conclude that it is not just
very long strings which can deteriorate the performance of character-based sampling (as we can no
longer give guarantees on the number of characters in a bucket) but also very short duplicates.

The performance of the character-based sampling variants of dPDSS is even worse than the one of
the corresponding dMSS-variants on both CommonCrawl and CommonCrawlR. A closer look
on the detailed running times of the single step revealed that this behaviour has two causes. The
first is the same as for dMSS: There are many short duplicates resulting in a few PEs containing
significantly more strings than the other PEs. This slows down the merging step. The computation
of the ordered partitions and especially the sorting sub-step of this method accounts for the second
reason: in character-based sampling longer strings are more likely to be chosen to form the elements
of the local sample set as we sample the character array equidistantly. Therefore, more data needs
to be sent and longer strings need to be inspected in string comparisons to sort the local sample
sets globally. This can be seen in the increase of bytes sent per string in the lower part of Figure
7.7. All this also holds for the character-based sampling variants of dMSS. The difference is that
in dMSS the chosen strings are cut off after d := 100(

∑p
i=1 L(Si) + 5)/|S| characters due to the

heuristic presented in Section 4.1.2. In dPDSS the whole distinguishing prefixes are sent. A closer
look at the input to the partitioning algorithm revealed that the distinguishing prefixes sent in
dPDSS within partitionCB are much longer than the strings cut off after d characters in the same
subroutine for dMSS on this data set. This can be explained as follows: CommonCrawl also
contains very long duplicates. For these there is no difference between distinguishing prefix and the
string itself. Therefore, the strings drawn from the input array during character-based tend to have
long distinguishing prefixes. On the other hand d is computed over the (local) LCP array entries of
all strings and is (although multiplied by a factor of 100) therefore much smaller than the average
distinguishing prefixes length of the longer (potentially duplicate) strings of the local character-based
sample sets for this data set. As this is not affected by deleting small strings, the running times
suffers from the same problem in CommonCrawlR, too.

Let us now consider the plot showing the number of bytes sent per string. As in the other
experiments, there is a slight increase in this number for increasing p for all algorithms but
pdNoGolombC/pdGolombC. The increase for the character-based sampling methods of dMSS is a
bit stronger than for their string-based sampling counterparts since longer strings a more likely to be
chosen for the local sample set in these strategies. This causes more communication in the sorting
of the sample sets. The strong increase for the character-based sampling methods of dPDSS has

62

7.3. Evaluation

●

●

●
●

●
●

0

10

20

30

16
0

32
0

48
0

64
0

96
0

12
80

PEs

tim
e

[s
ec

]

●

●

● ●

● ●

0

10

20

30

16
0

32
0

48
0

64
0

96
0

12
80

PEs

tim
e

[s
ec

]
●

●

●
●

●
●

0

5

10

15

20

16
0

32
0

48
0

64
0

96
0

12
80

PEs

tim
e

[s
ec

]

●

●

●
●

●
●

0

5

10

15

20

16
0

32
0

48
0

64
0

96
0

12
80

PEs

tim
e

[s
ec

]

● ● ● ● ● ●

0

20

40

16
0

32
0

48
0

64
0

96
0

12
80

PEs

by
te

s
se

nt
 p

er
 s

tr
in

g

● ● ● ● ● ●

0

20

40

16
0

32
0

48
0

64
0

96
0

12
80

PEs

by
te

s
se

nt
 p

er
 s

tr
in

g

●

hQuick

msLCPC

msLCPS

msNoLCPC

msNoLCPS

msSimpleS

pdGolombC

pdGolombS

pdNoGolombC

pdNoGolombS

Figure 7.7: Running times and number of bytes sent per string in the strong-scaling experiment on
CommonCrawl (left-hand side) and CommonCrawlR (right-hand side).

63

7. Experimental Evaluation

already been explained above. As before, we can observe that msSimpleS needs one byte less than
msNoLCPS. This is due to the additional communication of the LCP values in the latter variant. Due
to 7-bit compression the LCP values can be sent in one byte on average. Without 7-bit compression
this would cause additional 7 bytes per string. The average string length of CommonCrawl is
39.5 characters, for CommonCrawlR we find the average length to be 45.2 characters. This
corresponds very well to the actual communication per string for the non-compressing variants
msSimpleS, msNoLCPS and msNoLCPC.

Although the (D/N)-ratio of CommonCrawl is 0.68 (0.67 for CommonCrawlR), only about half
the bytes can be saved with LCP compression. This is explained by Lemma 2.1, which states that
the sum of all distinguishing prefix lengths can be more than twice as large as sum of the entries in
the LCP array. The dPDSS-variants communicate only slightly less than the dMSS variants with
LCP compression enabled. Again, this is due to the high (D/N)-ratio; there are simply too few
“unnecessary” characters that could be cut off.

7.3.4 Wikipedia

Figure 7.8 shows the running time on Wiki (upper left-hand plot) and on WikiReduced (upper
right-hand plot). The statistics on the communication volume per string can be found in the two
lower plots of the figure. The two plots in the centre show the running time of our two algorithms in
more detail.

As before, fkss could not be run on this instance. Wiki contains many short duplicate strings,
which we believe to be the reason for the crashing of the algorithm.

All of our algorithms are faster than their competitor hQuick. The step-form of hQuick is due
to its hypercube design. As for CommonCrawl, we observe that the character-based sampling
variants of dMSS are slow and do not scale for p > 480 anymore. This changes for WikiReduced.
Here msNoLCPC and msLCPC outperform their counterparts. The character-based sampling variants
(both show the same performance) are on average a factor of 1.3 faster than the best string-based
sampling variant (msNoLCPS) over all PEs. The comparison of msSimpleS and msNoLCPS shows
that LCP merging is beneficial even for the relatively low (D/N)-ratios of 0.43 for Wiki and 0.42
in WikiReduced. The variant msNoLCPS is about a factor of 1.3 faster than msSimpleS on both
data sets. LCP compression, however, does not further improve the running time. In contrast to
CommonCrawl it even slightly deteriorates the performance. Here the (D/N)-ratio seems to be
too low to compensate for the additional overhead of compression and decompression in this variant.
This time, the character-based sampling variants of dPDSS show the expected behaviour. They are
slower than their string-based counterparts on Wiki due to the high number of short duplicates and
the slow-down of the merging step caused by this. Since the distinguishing prefixes are shorter for
Wiki, the partition algorithm does not seem to cause a problem. This results in a nearly equal
running time of pdNoGolombS/pdGolombS and pdNoGolombC/pdGolombC on WikiReduced.

The plots containing the average number of bytes sent per string show that the communication per
string without compression corresponds very well with the average string length of 65.2 characters
for Wiki and 80.5 characters for WikiReduced. Again, character-based sampling needs more
communication, as longer strings are more likely to be chosen during the computation of the ordered
partition. dPDSS can reduce about half of the communication compared to sole LCP compression.
The (D/N)-ratio is lower than the one in CommonCrawl. Therefore, our algorithm can cut off
more characters that are not required to sort the strings. It can be seen that Golomb encoding can
reduce the number of bytes by 3 compared to pdNoGolombS.

7.3.5 Suffixes

In this experiment we evaluated the algorithms on the data set Suffixes – suffixes created from
text interpreted as a single string. These suffixes have the interesting property that they are quite

64

7.4. Summary

long on average (about 200,000 characters) and that the (D/N)-ratio is very small. The upper part
of Figure 7.9 shows the running time of the algorithms on this data set. The lower part states
the number of bytes sent per string. The row in the middle displays a more detailed view on our
algorithms dMSS and dPDSS.

As with the other real world data sets we could not run fkss. This time the long strings and the
sequential sorting of the sample sets seems to be the problem.

All of our algorithms are clearly faster than hQuick. The most interesting observation in Figure 7.9
is that dPDSS is very fast compared to dMSS. For p = 160 the dPDSS-variants have a speed-up of
29 compared to msLCPC – the fastest variant of dMSS. For p = 1280, pdNoGolombS is still faster than
the best variant of dMSS (msSimpleS) by about a factor of 7 for this number of p. The main reason
for this can be seen in the lower part of Figure 7.9. For p = 160 only 0.0005% of the number of bytes
sent by the dMSS-variants is required. For p = 1280 dPDSS needs 0.007% of the communication
of the dMSS-variants. There is no noticeable difference between the character- and string-based
sampling methods of dPDSS.

However, hQuick and the dMSS-variants scale quite well, whereas dPDSS becomes slightly slower
for p ≥ 960. Nevertheless, this data set shows that in practice the approximate computation of the
distinguishing prefix lengths works quite well in dPDSS.

7.4 Summary
Our experiments show that our two algorithms clearly outperform fkss and hQuick. Furthermore,
LCP-related optimizations improve the performance of distributed string sorting on most data sets.
It is only for small (D/N)-ratio that they do not accelerate the sorting process. Moreover, the
evaluation clearly shows that for merge sort-based algorithms the partitioning algorithm has to be
parallelized as the sequential sorting in this step accounts for most of the deficits of fkss. Our new
character-based approach to computing an ordered partition of the input has been proven to be
beneficial for skewed inputs. However, data sets with small duplicates can be a problem for this
variant. Also, partitionCB itself can be more expensive than partitionSB as the chosen sample
sets usually contain longer strings. Depending on the used heuristic to cut off the strings in the
sample set (or the distinguishing prefixes itself for dPDSS) this effect can become significant. The
algorithm dPDSS also shows very good performance, it is the fastest algorithm on almost all data
sets/number of PEs. Especially on data sets with a small (D/N)-ratio it is considerably faster than
the other algorithms. However, one should keep in mind that this algorithm only computes the
sorted distinguishing prefixes/the permutation defining the sorted order of the input and does not
output the sorted strings themselves.

65

7. Experimental Evaluation

●

●
●

●

● ●

0

10

20

30

40
16

0

32
0

48
0

64
0

96
0

12
80

PEs

tim
e

[s
ec

]

●

●
● ●

● ●

0

10

20

30

40

16
0

32
0

48
0

64
0

96
0

12
80

PEs

tim
e

[s
ec

]

●

●

●

●

●
●

0

5

10

15

20

16
0

32
0

48
0

64
0

96
0

12
80

PEs

tim
e

[s
ec

]

●

●

●
●

●
●

0

5

10

15

20

16
0

32
0

48
0

64
0

96
0

12
80

PEs

tim
e

[s
ec

]

● ● ● ● ● ●

0

25

50

75

100

16
0

32
0

48
0

64
0

96
0

12
80

PEs

by
te

s
se

nt
 p

er
 s

tr
in

g ● ● ● ● ● ●

0

25

50

75

100

16
0

32
0

48
0

64
0

96
0

12
80

PEs

by
te

s
se

nt
 p

er
 s

tr
in

g

●

hQuick

msLCPC

msLCPS

msNoLCPC

msNoLCPS

msSimpleS

pdGolombC

pdGolombS

pdNoGolombC

pdNoGolombS

Figure 7.8: Running times and number of bytes sent per string in the strong-scaling experiment on
Wiki (left-hand side) and WikiReduced (right-hand side).

66

7.4. Summary

●

●
●

● ● ●

0

10

20

30

16
0

32
0

48
0

64
0

96
0

12
80

PEs

tim
e

[s
ec

]

●

●

●

●

●

●

0

2

4

6

16
0

32
0

48
0

64
0

96
0

12
80

PEs

tim
e

[s
ec

]

● ● ● ● ● ●

0

50000

100000

150000

200000

16
0

32
0

48
0

64
0

96
0

12
80

PEs

by
te

s
se

nt
 p

er
 s

tr
in

g

●

hQuick

msLCPC

msLCPS

msNoLCPC

msNoLCPS

msSimpleS

pdGolombC

pdGolombS

pdNoGolombC

pdNoGolombS

Figure 7.9: Running times and number of bytes sent per string in the strong-scaling experiment on
Suffixes.

67

8. Conclusion

In this thesis we have presented two new distributed string sorting algorithms. The first algorithm
(dMSS) is an extension of the – to our knowledge – only distributed string sorting algorithm introduced
by Fischer and Kurpicz [11]. We optimized this algorithm by applying LCP-based techniques to
compress and merge string sequences. To allow the algorithm to scale for large numbers of processors,
we improved the original algorithm’s partitioning step by using a distributed sorting approach.

Additionally, we have presented character-based sampling as another sampling method for the ordered
partitioning algorithm. Using character-based sampling, partitions with provable upper bounds on
the number of characters per set can be achieved. This can help improve the load-balancing of the
entire algorithm for input data with a high variance in string length.

In the second part of this thesis we have investigated another approach to distributed string sorting
resulting in our prefix-doubling algorithm dPDSS. This algorithm computes an approximate value
of each string’s distinguishing prefix length without communicating the entire string. Since the
distinguishing prefixes are sufficient to sort a string set, only these are communicated in the algorithm.

To facilitate evaluation, we developed DNGenerator, a generator which is able to create string arrays
with the (D/N)-ratio – the ratio between the sum of all distinguishing prefix lengths and the total
number of characters – being an input parameter. Using this generator, we evaluated our algorithms
against the algorithm by Fischer and Kurpicz and the hypercube quicksort algorithm proposed by
Axtmann et al. [2], which we adapted to string sorting. Additionally, we evaluated different variants
of our algorithms to be able to trace back performance gains to specific strategies and optimizations
within them. The experiments were carried out on multiple data sets with differing (D/N)-ratios,
including real-world data sets, and on up to 1280 processors.

Our evaluation shows that dMSS and dPDSS outperform their competitors on every data set and all
tested numbers of PEs. The concrete speed-up values differ across the different evaluated data sets.
However, the following general trends could be observed:

1. The dMSS algorithm with all LCP-related optimizations enabled performs best on data sets
with a high (D/N)-ratio. On data sets with a very small (D/N)-ratio, however, the dMSS-
variants without LCP-related optimizations or with LCP-enhanced merging only have proven
to be faster.

2. The strength of dPDSS lies in sorting data sets with a low (D/N)-ratio. On data sets with
a high (D/N)-ratio its performance is comparable to that of dMSS with all LCP-related
optimizations turned on.

69

8. Conclusion

3. On skewed inputs character-based sampling helps improve load-balancing and, thus, the running
time of our algorithms. However, on data with too large a number of very short duplicates it
can slow down the merging step. Additionally, character-based sampling tends to draw longer
strings from the input. Although with most data sets this is not a problem, this property did
deteriorate the running time on one data set which contains very long duplicates.

One can conclude that exploiting the internal structure of string data sets can considerably accelerate
the task of sorting them. However, we could not find the best algorithmic variant to do so. We feel
that this is due to the multidimensionality of string arrays, which is not easy to capture with one
particular strategy alone.

8.1 Future Work
Shared-Memory Parallelization: In our implementation, we solely rely on parallelization via MPI, i.e.
we do not use shared-memory parallelism on the compute nodes. We believe the latter could further
improve the performance of our algorithms. Especially the computation of the ordered partitions
within our algorithms should benefit from this as it would reduce the required size of the local sample
sets by the number of cores per compute node while keeping the same theoretical worst-case bounds
on the number of strings/characters per bucket.

Further Sampling Methods: Our evaluation revealed that computing partitions such that the number
of strings or characters is nearly equal across all partition-buckets is not sufficient on all data sets as
this only balances the string exchange step but does not consider load-balancing for the subsequent
(LCP-)merging step. Further investigation on sampling methods taking into account both aspects
might be beneficial.

Methods Bounding the Splitter Length: In dMSS we presented a rather simple heuristic to bound the
length of strings in the local sample sets so as to reduce the communication volume in the distributed
partitioning algorithm. However, this can deteriorate the bound on the number of strings/characters
per bucket arbitrarily. Applying the distinguishing-prefix-computation subroutine of dPDSS to the
strings in the local sample sets in order to determine their distinguishing prefixes and then only
communicating the latter could be a solution to this problem.

70

Bibliography

[1] Michael Axtmann and Peter Sanders. Robust massively parallel sorting. In 2017 Proceedings of
the Ninteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pages 83–97.
SIAM, 2017.

[2] Michael Axtmann, Timo Bingmann, Peter Sanders, and Christian Schulz. Practical massively
parallel sorting. In Proceedings of the 27th ACM symposium on Parallelism in Algorithms and
Architectures, pages 13–23. ACM, 2015.

[3] Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. In-place parallel super
scalar samplesort (ipsssso). In 25th Annual European Symposium on Algorithms (ESA 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[4] Jon L. Bentley and Robert Sedgewick. Fast algorithms for sorting and searching strings. In
Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms, pages 360–369.
Society for Industrial and Applied Mathematics, 1997.

[5] Timo Bingmann. Scalable string and suffix sorting: Algorithms, techniques, and tools. PhD
thesis, Karlsruhe Institute of Technology, 2018.

[6] Timo Bingmann, Andreas Eberle, and Peter Sanders. Engineering parallel string sorting.
Algorithmica, 77(1):235–286, Jan 2017. ISSN 1432-0541.

[7] Guy E Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3):85–97,
1996.

[8] Guy E Blelloch, Charles E Leiserson, Bruce M Maggs, C Greg Plaxton, Stephen J Smith, and
Marco Zagha. A comparison of sorting algorithms for the connection machine cm-2. Commun.
ACM, 39(12es):273–297, 1996.

[9] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422–426, 1970.

[10] Jehoshua Bruck, Ching-Tien Ho, Shlomo Kipnis, Eli Upfal, and Derrick Weathersby. Effi-
cient algorithms for all-to-all communications in multiport message-passing systems. IEEE
Transactions on parallel and distributed systems, 8(11):1143–1156, 1997.

[11] Johannes Fischer and Florian Kurpicz. Lightweight distributed suffix array construction. In
2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 27–38. SIAM, 2019.

[12] Message Passing Interface Forum. MPI: A Message-passing Interface Standard, Version 3.1 ;
June 4, 2015. High-Performance Computing Center Stuttgart, University of Stuttgart, 2015.

[13] Pierre Fraigniaud and Emmanuel Lazard. Methods and problems of communication in usual
networks. Discrete Applied Mathematics, 53(1-3):79–133, 1994.

71

Bibliography

[14] Juha Kärkkäinen and Tommi Rantala. Engineering radix sort for strings. In International
Symposium on String Processing and Information Retrieval, pages 3–14. Springer, 2008.

[15] Donald Knuth. Sorting and searching. The art of computer programming, 3:513, 1998.

[16] Xiaobo Li, Paul Lu, Jonathan Schaeffer, John Shillington, Pok Sze Wong, and Hanmao Shi. On
the versatility of parallel sorting by regular sampling. Parallel Computing, 19(10):1079–1103,
1993.

[17] Alistair Moffat and Andrew Turpin. Compression and coding algorithms. Springer Science &
Business Media, 2002.

[18] Waihong Ng and Katsuhiko Kakehi. Cache efficient radix sort for string sorting. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 90(2):
457–466, 2007.

[19] Waihong Ng and Katsuhiko Kakehi. Merging string sequences by longest common prefixes.
IPSJ Digital Courier, 4:69–78, 2008.

[20] Felix Putze, Peter Sanders, and Johannes Singler. Cache-, hash-and space-efficient bloom filters.
In International Workshop on Experimental and Efficient Algorithms, pages 108–121. Springer,
2007.

[21] Sanjay Ranka, Ravi V Shankar, and Khaled A Alsabti. Many-to-many personalized communica-
tion with bounded traffic. In Proceedings Frontiers’ 95. The Fifth Symposium on the Frontiers
of Massively Parallel Computation, pages 20–27. IEEE, 1995.

[22] Peter Sanders and Jesper Larsson Träff. The hierarchical factor algorithm for all-to-all communi-
cation. In Burkhard Monien and Rainer Feldmann, editors, Euro-Par 2002 Parallel Processing,
pages 799–803, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-45706-0.

[23] Peter Sanders, Jochen Speck, and Jesper Larsson Träff. Two-tree algorithms for full bandwidth
broadcast, reduction and scan. Parallel Computing, 35(12):581–594, 2009.

[24] Peter Sanders, Sebastian Schlag, and Ingo Müller. Communication efficient algorithms for
fundamental big data problems. In 2013 IEEE International Conference on Big Data, pages
15–23. IEEE, 2013.

[25] Hanmao Shi and Jonathan Schaeffer. Parallel sorting by regular sampling. Journal of parallel
and distributed computing, 14(4):361–372, 1992.

[26] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. Theory and practice of
bloom filters for distributed systems. IEEE Communications Surveys & Tutorials, 14(1):131–155,
2011.

72

Appendix

A Running Times and Communication

B Speed-up

73

8. Appendix

Table A.1: Running time in [sec] (first column) and number of bytes sent per string (second column)
for all p in the DNGenerator-weak-scaling experiment.

PEs 20 40 80 160 320 640 1280
r = 0

fkss 1.68 502 2.29 504 2.67 514 2.91 552 3.27 706 4.25 1321 7.51 3782
hQuick 5.95 1102 7.55 1353 10.4 1603 13.1 1854 15.1 2104 17.2 2355 20.5 2605
msLCPC 1.48 499 2.10 498 2.43 499 2.70 500 2.95 501 3.24 504 4.45 513
msLCPS 1.48 499 2.10 498 2.44 499 2.70 500 2.94 501 3.27 504 4.47 513
msNoLCPC 1.12 502 1.75 502 2.11 503 2.32 503 2.57 505 2.84 509 4.07 517
msNoLCPS 1.12 502 1.74 502 2.08 503 2.33 503 2.58 505 2.86 509 4.07 517
msSimpleS 1.09 501 1.72 501 2.07 502 2.32 502 2.56 504 2.86 508 3.98 516
pdGolombC 0.45 12 0.52 12 0.53 12 0.56 12 0.64 12 0.74 12 0.88 12
pdGolombS 0.46 12 0.52 12 0.56 12 0.58 12 0.67 12 0.75 12 0.90 12
pdNoGolombC 0.43 15 0.50 14 0.51 14 0.54 14 0.62 15 0.70 14 0.86 15
pdNoGolombS 0.44 15 0.50 14 0.54 14 0.58 14 0.62 15 0.73 14 0.88 15

r = 0.25
fkss 2.51 502 3.17 504 3.63 514 3.95 552 4.63 706 6.33 1321 12.0 3782
hQuick 7.24 1102 8.99 1353 12.0 1603 14.8 1854 16.8 2104 19.0 2355 22.3 2605
msLCPC 1.95 379 2.43 379 2.71 380 2.94 381 3.21 383 3.52 387 4.62 395
msLCPS 1.94 379 2.44 379 2.70 380 2.93 381 3.18 383 3.54 387 4.61 395
msNoLCPC 1.81 502 2.42 502 2.77 503 3.01 503 3.26 505 3.69 509 4.82 517
msNoLCPS 1.80 502 2.42 502 2.76 503 3.01 503 3.29 505 3.69 509 4.80 517
msSimpleS 1.97 501 2.65 501 3.05 502 3.36 502 3.73 504 4.18 508 5.32 516
pdGolombC 1.26 20 1.33 21 1.36 21 1.39 22 1.47 22 1.61 24 1.84 27
pdGolombS 1.26 20 1.33 21 1.35 21 1.40 22 1.48 22 1.62 24 1.87 27
pdNoGolombC 1.24 23 1.32 23 1.33 23 1.36 24 1.48 25 1.58 26 1.82 29
pdNoGolombS 1.26 23 1.31 23 1.33 23 1.40 24 1.48 25 1.61 26 1.86 29

r = 0.5
fkss 3.36 502 4.07 504 4.58 514 5.01 552 6.02 706 8.45 1321 16.5 3782
hQuick 8.62 1102 10.6 1353 13.7 1603 16.6 1854 18.7 2104 20.9 2355 24.2 2605
msLCPC 2.43 255 2.76 255 2.98 256 3.13 257 3.38 259 3.70 263 4.31 271
msLCPS 2.43 255 2.77 255 2.98 256 3.14 257 3.41 259 3.61 263 4.34 271
msNoLCPC 2.52 503 3.17 503 3.48 504 3.74 504 4.01 506 4.30 510 5.55 518
msNoLCPS 2.52 503 3.17 503 3.49 504 3.73 504 4.04 506 4.44 510 5.55 518
msSimpleS 2.90 501 3.61 501 4.06 502 4.41 502 4.86 504 5.40 508 6.66 516
pdGolombC 2.06 25 2.09 25 2.12 25 2.18 26 2.28 27 2.43 30 2.73 35
pdGolombS 2.05 25 2.10 25 2.13 25 2.20 26 2.31 27 2.46 30 2.75 35
pdNoGolombC 2.03 27 2.08 27 2.10 27 2.16 28 2.28 29 2.40 32 2.70 37
pdNoGolombS 2.03 27 2.09 27 2.13 27 2.18 28 2.30 29 2.45 32 2.74 37

r = 0.75
fkss 4.22 502 4.97 504 5.54 514 6.04 552 7.27 706 10.5 1321 20.8 3782
hQuick 10.0 1102 12.1 1353 15.4 1603 18.4 1854 20.6 2104 22.9 2355 26.4 2605
msLCPC 2.94 130 3.13 130 3.27 131 3.45 132 3.59 134 3.58 138 4.04 147
msLCPS 2.95 130 3.12 130 3.26 131 3.39 132 3.58 134 3.58 138 4.01 147
msNoLCPC 3.26 503 3.89 503 4.25 504 4.52 504 4.79 506 5.29 510 6.31 518
msNoLCPS 3.24 503 3.89 503 4.23 504 4.53 504 4.78 506 5.12 510 6.32 518
msSimpleS 3.82 501 4.58 501 5.09 502 5.52 502 6.00 504 6.64 508 7.92 516
pdGolombC 2.78 130 2.97 130 3.08 131 3.25 132 3.36 134 3.37 138 3.88 147
pdGolombS 2.79 130 2.97 130 3.10 131 3.30 132 3.43 134 3.41 138 3.91 147
pdNoGolombC 2.76 130 2.96 130 3.10 131 3.26 132 3.40 134 3.36 138 3.85 147
pdNoGolombS 2.78 130 2.97 130 3.10 131 3.28 132 3.43 134 3.42 138 3.89 147

r = 1
fkss 5.09 502 5.88 504 6.50 514 7.14 552 8.56 706 12.6 1321 25.2 3782
hQuick 11.4 1102 13.7 1353 17.0 1603 20.2 1854 22.5 2104 24.8 2355 28.2 2605
msLCPC 3.38 5 3.40 5 3.42 6 3.48 7 3.58 9 3.70 13 3.94 22
msLCPS 3.38 5 3.39 5 3.43 6 3.48 7 3.57 9 3.68 13 3.91 22
msNoLCPC 3.95 503 4.58 503 4.92 504 5.18 504 5.47 506 5.78 510 7.05 518
msNoLCPS 3.95 503 4.59 503 4.93 504 5.18 504 5.45 506 5.91 510 7.03 518
msSimpleS 4.72 501 5.53 501 6.07 502 6.54 502 7.13 504 7.66 508 9.12 516
pdGolombC 3.22 5 3.24 5 3.26 6 3.32 7 3.46 9 3.55 13 3.80 23
pdGolombS 3.22 5 3.22 5 3.27 6 3.33 7 3.43 9 3.59 13 3.84 23
pdNoGolombC 3.21 5 3.23 5 3.26 6 3.34 7 3.45 9 3.55 13 3.83 23
pdNoGolombS 3.22 5 3.24 5 3.29 6 3.32 7 3.46 9 3.60 13 3.83 23

74

B. Speed-up

Table A.2: Running time in [sec] (first column) and number of bytes sent per string (second column)
for all p in the SkewedDNGenerator-weak-scaling experiment.

PEs 20 40 80 160 320 640 1280
r = 0

fkss 3.19 802 4.39 806 6.00 821 7.28 882 7.92 1128 12.8 2111 13.8 6047
hQuick 12.6 1703 18.2 2103 26.1 2503
msLCPC 2.29 799 3.26 798 3.81 799 4.15 801 4.46 805 4.98 813 6.62 831
msLCPS 3.25 799 4.59 798 6.42 799 7.57 800 8.22 803 8.69 808 11.0 820
msNoLCPC 1.70 802 2.67 803 3.22 803 3.58 805 3.84 808 4.33 817 6.00 835
msNoLCPS 2.32 802 3.43 802 5.00 803 6.24 804 6.76 806 7.24 812 9.50 824
msSimpleS 2.29 801 3.42 801 4.98 802 6.20 803 6.72 805 7.13 809 9.33 819
pdGolombC 0.50 12 0.53 12 0.58 12 0.61 12 0.66 12 0.77 12 0.94 12
pdGolombS 0.49 12 0.53 12 0.59 12 0.60 12 0.68 12 0.75 12 0.95 12
pdNoGolombC 0.46 15 0.53 14 0.54 14 0.58 14 0.65 15 0.75 14 0.92 15
pdNoGolombS 0.46 15 0.51 14 0.55 14 0.59 14 0.66 15 0.75 14 0.93 15

r = 0.25
fkss 4.06 802 5.32 806 7.01 821 8.31 882 9.24 1128 14.5 2111 18.3 6047
hQuick 14.1 1703 19.9 2103 27.9 2503
msLCPC 2.79 679 3.69 679 4.17 680 4.51 683 4.89 687 5.32 696 7.00 716
msLCPS 3.76 679 5.00 679 6.71 680 7.91 681 8.46 684 8.96 690 11.2 704
msNoLCPC 2.39 802 3.41 803 3.92 803 4.26 805 4.63 810 5.08 819 6.79 838
msNoLCPS 3.02 802 4.14 802 5.74 803 6.92 804 7.51 807 7.97 813 10.2 825
msSimpleS 3.22 801 4.38 801 6.02 802 7.26 803 7.90 805 8.47 809 10.7 819
pdGolombC 1.32 20 1.38 21 1.39 21 1.45 22 1.55 22 1.64 24 1.92 27
pdGolombS 1.31 20 1.38 21 1.42 21 1.42 22 1.54 22 1.67 24 1.94 27
pdNoGolombC 1.29 23 1.36 23 1.38 23 1.42 24 1.51 25 1.64 26 1.89 29
pdNoGolombS 1.30 23 1.38 23 1.40 23 1.40 24 1.52 25 1.65 26 1.88 29

r = 0.5
fkss 5.02 802 6.27 806 8.03 821 9.40 882 10.6 1128 16.3 2111 22.9 6047
hQuick 15.5 1703 21.5 2103 29.7 2503
msLCPC 3.38 555 4.18 555 4.67 557 4.98 559 5.38 563 5.81 573 7.36 593
msLCPS 4.33 555 5.37 555 7.02 556 8.13 557 8.73 560 9.24 567 11.2 580
msNoLCPC 3.15 803 4.12 804 4.66 804 5.00 806 5.41 811 5.85 820 7.45 839
msNoLCPS 3.77 803 4.87 803 6.43 804 7.68 805 8.23 808 8.71 814 11.0 826
msSimpleS 4.18 801 5.35 801 7.07 802 8.35 803 9.09 805 9.64 809 12.0 819
pdGolombC 2.11 25 2.16 25 2.17 25 2.26 26 2.32 27 2.53 30 2.79 35
pdGolombS 2.11 25 2.17 25 2.19 25 2.22 26 2.37 27 2.48 30 2.83 35
pdNoGolombC 2.08 27 2.15 27 2.16 27 2.23 28 2.32 29 2.45 32 2.77 37
pdNoGolombS 2.09 27 2.15 27 2.17 27 2.21 28 2.37 29 2.51 32 2.81 37

r = 0.75
fkss 5.83 802 7.19 806 9.01 821 10.4 882 11.9 1128 18.4 2111 27.5 6047
hQuick 17.0 1703 23.1 2103 31.6 2503
msLCPC 3.98 430 4.68 430 5.13 432 5.44 434 5.82 438 6.23 448 7.75 468
msLCPS 4.90 430 5.79 430 7.33 431 8.42 432 8.99 435 9.39 442 11.3 455
msNoLCPC 3.90 803 4.87 804 5.43 804 5.78 806 6.15 811 6.61 820 8.27 839
msNoLCPS 4.52 803 5.65 803 7.21 804 8.44 805 9.05 808 9.51 814 11.8 826
msSimpleS 5.16 801 6.37 801 8.11 802 9.50 803 10.2 805 10.9 809 13.3 819
pdGolombC 2.92 135 3.11 135 3.27 136 3.37 137 3.57 139 3.57 144 4.22 153
pdGolombS 2.94 135 3.13 135 3.29 136 3.40 137 3.64 139 3.64 144 4.28 153
pdNoGolombC 2.90 135 3.11 136 3.24 136 3.37 137 3.58 140 3.57 144 4.22 153
pdNoGolombS 2.94 135 3.13 136 3.26 136 3.42 137 3.64 140 3.62 144 4.28 153

r = 1
fkss 6.73 802 8.14 806 10.0 821 11.5 882 13.1 1128 20.5 2111 32.1 6047
hQuick 18.5 1703 24.7 2103 33.2 2503
msLCPC 4.46 305 5.09 305 5.50 307 5.80 309 6.14 313 6.55 323 8.13 343
msLCPS 5.39 305 6.13 305 7.60 306 8.62 307 9.13 311 9.61 317 11.3 331
msNoLCPC 4.63 803 5.59 804 6.15 804 6.48 806 6.84 811 7.34 820 9.02 839
msNoLCPS 5.22 803 6.31 803 7.91 804 9.16 805 9.74 808 10.2 814 12.5 826
msSimpleS 6.03 801 7.33 801 9.17 802 10.6 803 11.3 805 12.1 809 14.6 819
pdGolombC 3.40 10 3.43 10 3.50 11 3.54 12 3.63 14 3.78 19 4.12 28
pdGolombS 3.40 10 3.42 10 3.49 11 3.52 12 3.66 14 3.83 19 4.15 28
pdNoGolombC 3.38 10 3.41 11 3.52 11 3.54 12 3.66 15 3.77 19 4.13 28
pdNoGolombS 3.39 10 3.41 11 3.49 11 3.51 12 3.64 15 3.79 19 4.13 29

75

8. Appendix

Table A.3: Running time in [sec] (first column) and number of bytes sent per string (second column)
for all p in the DNGenerator-strong-scaling experiment.

PEs 160 320 480 640 960 1280
r = 0

fkss 8.47 521 4.00 665 3.24 1054 2.99 1812 4.38 4929 4.04 11000
hQuick 32.9 1854 19.0 2104 17.2 2238 11.0 2355 10.2 2488 6.14 2605
msLCPC 6.46 499 3.61 501 2.73 504 2.22 510 1.76 525 1.73 546
msLCPS 6.47 499 3.60 501 2.72 504 2.23 510 1.77 525 1.76 547
msNoLCPC 5.55 503 3.13 504 2.43 508 1.97 513 1.63 528 1.59 550
msNoLCPS 5.53 503 3.14 504 2.48 508 1.97 513 1.62 528 1.60 550
msSimpleS 5.50 502 3.11 503 2.36 507 1.87 512 1.50 527 1.53 549
pdGolombC 1.47 12 0.81 12 0.55 13 0.43 13 0.38 14 0.38 15
pdGolombS 1.42 12 0.80 12 0.55 13 0.46 13 0.38 14 0.43 15
pdNoGolombC 1.39 14 0.77 15 0.54 15 0.42 15 0.37 16 0.38 17
pdNoGolombS 1.41 14 0.76 15 0.54 15 0.44 15 0.37 16 0.42 17

r = 0.25
fkss 10.5 521 5.57 665 4.70 1054 4.61 1812 6.62 4929 8.38 11000
hQuick 37.1 1854 21.2 2104 18.8 2238 12.1 2355 11.1 2488 6.78 2605
msLCPC 6.96 380 3.89 382 2.93 386 2.31 391 1.91 406 1.45 428
msLCPS 6.96 380 3.87 382 2.98 386 2.30 391 1.94 406 1.48 429
msNoLCPC 7.16 503 4.01 504 3.01 508 2.48 513 1.99 528 1.88 550
msNoLCPS 7.15 503 4.02 504 3.00 508 2.37 513 1.96 528 1.90 550
msSimpleS 7.97 502 4.54 503 3.40 507 2.73 512 2.16 527 2.05 549
pdGolombC 3.39 21 1.83 22 1.31 23 1.06 25 0.86 31 0.79 38
pdGolombS 3.38 21 1.84 22 1.32 23 1.05 25 0.86 31 0.86 39
pdNoGolombC 3.35 23 1.79 24 1.29 26 1.03 27 0.85 33 0.79 40
pdNoGolombS 3.35 23 1.77 24 1.30 26 1.04 27 0.85 33 0.89 40

r = 0.5
fkss 12.9 521 7.13 665 6.16 1054 6.25 1812 8.94 4929 11.6 11000
hQuick 41.4 1854 23.4 2104 20.5 2238 13.3 2355 12.0 2488 7.58 2605
msLCPC 7.45 256 4.21 258 3.06 262 2.24 267 1.93 283 1.54 305
msLCPS 7.44 256 4.13 258 3.10 262 2.27 267 1.92 283 1.55 306
msNoLCPC 8.85 504 4.89 505 3.69 509 2.99 514 2.31 529 2.21 551
msNoLCPS 8.86 504 4.90 505 3.66 509 2.99 514 2.35 529 2.21 551
msSimpleS 10.5 502 5.89 503 4.43 507 3.57 512 2.72 527 2.58 549
pdGolombC 5.40 25 2.84 27 2.00 29 1.65 32 1.29 42 1.15 56
pdGolombS 5.36 25 2.83 27 1.99 29 1.64 32 1.29 42 1.29 56
pdNoGolombC 5.33 28 2.81 29 1.98 31 1.64 35 1.31 44 1.14 57
pdNoGolombS 5.33 28 2.81 29 2.01 31 1.62 35 1.29 44 1.28 58

r = 0.75
fkss 14.6 521 8.73 665 7.63 1054 7.87 1812 11.2 4929 14.9 11000
hQuick 45.8 1854 25.8 2104 22.3 2238 14.6 2355 12.9 2488 8.16 2605
msLCPC 7.96 131 4.39 133 3.03 137 2.36 142 1.84 158 1.58 181
msLCPS 7.93 131 4.38 133 3.02 137 2.35 142 1.84 158 1.59 182
msNoLCPC 10.6 504 5.83 505 4.31 509 3.43 514 2.76 529 2.50 551
msNoLCPS 10.6 504 5.81 505 4.32 509 3.52 514 2.72 529 2.53 551
msSimpleS 13.1 502 7.33 503 5.55 507 4.47 512 3.36 527 3.05 549
pdGolombC 7.60 131 4.16 133 2.82 137 2.22 143 1.80 159 1.58 184
pdGolombS 7.54 131 4.13 133 2.78 137 2.24 143 1.83 160 2.48 184
pdNoGolombC 7.55 131 4.13 133 2.86 137 2.24 143 1.81 159 1.59 184
pdNoGolombS 7.54 131 4.15 133 2.79 137 2.23 143 1.83 160 2.49 184

r = 1
fkss 16.9 521 10.3 665 9.08 1054 9.45 1812 13.5 4929 16.9 11000
hQuick 50.3 1854 28.2 2104 24.1 2238 15.8 2355 13.9 2488 8.88 2605
msLCPC 8.16 6 4.37 8 3.14 12 2.51 18 1.90 34 1.67 57
msLCPS 8.18 6 4.40 8 3.14 12 2.50 18 1.89 34 1.66 58
msNoLCPC 12.2 504 6.67 505 4.92 509 3.92 514 3.09 529 2.79 551
msNoLCPS 12.2 504 6.68 505 4.91 509 3.91 514 3.07 529 2.83 551
msSimpleS 15.5 502 8.62 503 6.43 507 5.20 512 3.90 527 3.50 549
pdGolombC 7.86 6 4.20 8 2.99 12 2.40 18 1.90 35 1.64 60
pdGolombS 7.84 6 4.21 8 3.00 12 2.41 18 1.88 35 1.73 60
pdNoGolombC 7.85 6 4.21 8 2.98 12 2.40 18 1.90 35 1.65 60
pdNoGolombS 7.83 6 4.20 8 3.02 12 2.41 18 1.88 35 1.74 60

76

B. Speed-up

Table A.4: Running time in [sec] (first column) and number of bytes sent per string (second column)
for all p in the SkewedDNGenerator-strong-scaling experiment.

PEs 160 320 480 640 960 1280
r = 0

fkss 9.80 1062 7.34 1684 8.27 2897 6.04 7883 12.5 17604
hQuick 32.8 3705 32.6 3956 22.9 4105
msLCPC 10.0 799 5.52 803 4.17 811 4.25 821 3.17 852 2.68 896
msLCPS 10.1 802 7.30 807 6.14 814 4.86 836 4.39 867
msNoLCPC 8.52 803 4.76 807 3.62 814 3.80 824 2.88 855 2.58 899
msNoLCPS 8.35 805 6.12 810 5.21 817 4.25 839 3.90 870
msSimpleS 8.30 804 6.04 808 5.15 814 4.13 832 3.76 858
pdGolombC 1.55 12 0.83 12 0.60 13 0.47 13 0.40 14 0.39 15
pdGolombS 1.54 12 0.83 12 0.61 13 0.49 13 0.40 14 0.40 15
pdNoGolombC 1.48 14 0.81 15 0.62 15 0.46 15 0.39 16 0.40 17
pdNoGolombS 1.50 14 0.81 15 0.59 15 0.46 15 0.39 16 0.39 17

r = 0.25
fkss 11.4 1062 8.69 1684 9.56 2897 8.28 7883 15.6 17604
hQuick 34.3 3705 33.7 3956 23.7 4105
msLCPC 10.9 681 6.01 685 4.52 694 3.95 706 3.42 743 2.94 795
msLCPS 10.5 683 7.56 689 6.26 697 5.07 721 4.81 756
msNoLCPC 10.2 803 5.63 808 4.27 816 4.24 829 3.35 865 2.81 917
msNoLCPS 9.25 806 6.75 811 5.75 819 4.67 843 4.27 877
msSimpleS 9.79 804 7.11 808 5.94 814 4.73 832 4.27 858
pdGolombC 3.54 21 1.90 22 1.36 23 1.09 25 0.89 30 0.82 37
pdGolombS 3.55 21 1.89 22 1.35 23 1.10 25 0.89 30 0.82 37
pdNoGolombC 3.51 23 1.86 24 1.36 25 1.06 27 0.90 32 0.81 39
pdNoGolombS 3.52 23 1.87 24 1.34 25 1.08 27 0.87 32 0.82 39

r = 0.5
fkss 12.9 1062 10.0 1684 11.0 2897 10.6 7883 19.0 17604
hQuick 35.6 3705 34.8 3956 24.4 4105
msLCPC 11.9 557 6.54 562 4.89 570 4.00 583 3.61 620 3.02 673
msLCPS 10.8 559 7.78 565 6.48 573 5.19 598 5.01 633
msNoLCPC 12.0 804 6.57 809 4.97 817 4.81 830 3.71 866 3.09 918
msNoLCPS 10.2 807 7.40 812 6.25 820 5.06 844 4.57 878
msSimpleS 11.2 804 8.09 808 6.82 814 5.34 832 4.76 858
pdGolombC 5.61 25 2.90 27 2.07 29 1.66 32 1.31 41 1.19 53
pdGolombS 5.59 25 2.89 27 2.09 29 1.66 32 1.35 41 1.19 54
pdNoGolombC 5.56 27 2.88 29 2.05 31 1.65 34 1.30 43 1.17 55
pdNoGolombS 5.54 27 2.86 29 2.07 31 1.65 34 1.32 43 1.18 55

r = 0.75
fkss 14.5 1062 11.4 1684 12.4 2897 13.0 7883 22.4 17604
hQuick 36.9 3705 35.8 3956 25.2 4105
msLCPC 13.0 432 7.11 437 5.33 445 4.29 458 3.74 495 3.28 549
msLCPS 11.1 434 7.91 440 6.52 448 5.29 473 5.22 509
msNoLCPC 13.7 804 7.51 809 5.60 817 5.31 830 4.13 866 3.47 918
msNoLCPS 11.1 807 8.05 812 6.77 820 5.44 844 4.88 878
msSimpleS 12.8 804 9.09 808 7.60 814 5.96 832 5.31 858
pdGolombC 8.12 136 4.43 138 3.06 142 2.39 147 1.94 163 1.70 185
pdGolombS 8.14 136 4.42 138 3.10 142 2.39 147 1.96 163 1.71 186
pdNoGolombC 8.10 136 4.42 139 3.06 142 2.42 148 1.94 163 1.72 185
pdNoGolombS 8.14 136 4.43 139 3.10 142 2.40 148 1.96 163 1.71 186

r = 1
fkss 16.1 1062 13.3 1684 13.7 2897 15.3 7883 25.7 17604
hQuick 38.2 3705 36.8 3956 26.0 4105
msLCPC 13.8 307 7.49 312 5.60 320 4.54 333 3.76 371 3.76 425
msLCPS 11.3 310 8.07 315 6.64 324 5.33 349 5.30 385
msNoLCPC 15.5 804 8.40 809 6.22 817 5.84 830 4.45 866 3.91 918
msNoLCPS 12.0 807 8.70 812 7.26 820 5.81 844 5.17 878
msSimpleS 14.0 804 10.0 808 8.48 814 6.53 832 5.76 858
pdGolombC 8.58 11 4.46 13 3.19 17 2.53 22 2.03 38 1.80 61
pdGolombS 8.61 11 4.46 13 3.21 17 2.54 22 2.03 38 1.80 62
pdNoGolombC 8.61 11 4.47 14 3.18 17 2.57 23 2.02 38 1.77 62
pdNoGolombS 8.57 11 4.45 14 3.20 17 2.55 23 2.02 39 1.81 62

77

8. Appendix

Table A.5: Running time in [sec] (first column) and number of bytes sent per string (second column)
for all p on the real-world instances.

PEs 160 320 480 640 960 1280
CommonCrawl

hQuick 35.7 167 32.9 177 29.8 187 24.8 197 22.7 206
msLCPC 20.7 22 15.5 23 14.8 24 15.1 25 15.2 27 14.9 29
msLCPS 14.4 22 9.14 23 7.39 23 6.40 23 5.42 24 4.96 24
msNoLCPC 18.6 41 14.3 41 13.2 41 14.0 42 12.2 44 11.8 47
msNoLCPS 14.9 41 9.76 41 8.10 41 7.53 41 6.15 41 5.61 41
msSimpleS 20.6 40 17.4 40 15.4 40 16.2 40 14.0 40 14.7 40
pdGolombC 22.7 21 19.8 25 21.2 30 19.5 31 23.4 35 22.7 37
pdGolombS 14.4 20 8.37 21 5.96 21 4.85 22 4.45 22 4.24 23
pdNoGolombC 22.5 24 19.7 28 21.3 33 19.5 34 23.4 38 22.7 40
pdNoGolombS 14.2 23 8.28 24 5.96 24 4.88 25 4.43 25 4.20 26

CommonCrawlReduced
hQuick 37.3 190 32.9 205 28.4 212 26.4 225 23.4 235
msLCPC 11.2 26 7.19 27 5.62 28 6.03 29 4.48 31 5.00 34
msLCPS 12.2 26 7.71 26 6.29 27 5.98 27 4.75 27 5.35 27
msNoLCPC 12.9 46 8.37 47 7.37 47 7.63 48 5.35 51 5.54 54
msNoLCPS 13.4 46 8.56 46 7.57 46 7.23 46 5.70 47 5.38 47
msSimpleS 21.1 45 17.3 45 15.5 45 15.8 45 14.1 46 14.6 46
pdGolombC 14.6 23 10.8 27 12.5 33 9.37 35 13.1 38 11.7 42
pdGolombS 13.2 21 7.71 23 5.49 23 4.46 23 4.09 24 4.34 25
pdNoGolombC 14.5 26 10.8 31 12.5 36 9.35 38 13.1 42 11.6 45
pdNoGolombS 13.1 25 7.58 26 5.35 26 4.42 27 4.12 27 4.23 28

Wikipedia
hQuick 44.6 275 43.9 294 26.7 307 27.4 326 15.9 340
msLCPC 20.6 44 16.8 45 15.2 46 15.6 47 15.1 51 15.5 55
msLCPS 16.7 44 10.7 45 8.69 45 7.13 45 6.53 46 5.73 47
msNoLCPC 17.0 66 13.2 67 11.5 67 12.1 69 11.6 71 11.2 76
msNoLCPS 14.1 66 8.89 66 7.42 66 6.03 67 5.43 67 4.77 68
msSimpleS 16.5 65 11.6 65 10.1 65 8.84 66 6.98 66 6.55 66
pdGolombC 18.5 20 15.8 20 14.5 21 14.9 22 14.9 23 15.8 25
pdGolombS 8.87 20 5.25 20 3.63 21 2.91 21 3.27 22 2.68 24
pdNoGolombC 18.4 22 15.7 23 14.6 24 14.9 24 14.9 26 15.7 27
pdNoGolombS 8.80 22 5.22 23 3.71 24 2.83 24 3.26 25 2.64 26

WikipediaReduced
hQuick 37.3 338 35.5 361 22.9 379 22.5 401 14.8 419
msLCPC 10.8 55 6.16 56 4.66 57 5.85 59 3.00 63 3.94 69
msLCPS 15.3 55 9.70 55 8.27 56 6.52 56 5.07 57 5.40 58
msNoLCPC 10.4 82 5.92 82 4.56 83 5.99 84 2.91 88 4.32 94
msNoLCPS 13.0 81 8.12 82 7.09 82 6.16 82 4.44 83 5.02 83
msSimpleS 15.9 80 10.8 81 9.19 81 8.67 81 6.11 81 6.49 82
pdGolombC 8.46 22 4.88 23 3.39 24 2.67 25 2.53 26 2.52 29
pdGolombS 8.08 22 4.67 23 3.41 24 2.56 24 2.43 26 2.43 27
pdNoGolombC 8.31 25 4.78 26 3.37 27 2.66 28 2.49 30 2.47 32
pdNoGolombS 8.03 25 4.75 26 3.36 27 2.60 28 2.39 29 2.39 31

Suffixes
hQuick 31.3 865694 18.7 983494 17.6 1045929 10.9 1103499 9.87 1165552 6.68 1228273
msLCPC 5.27 234105 2.85 235782 2.15 238034 1.68 238859 1.32 239711 1.17 241929
msLCPS 6.30 234143 3.40 236407 2.56 240481 1.98 241477 1.53 242095 1.19 244415
msNoLCPC 6.17 234101 3.28 235780 2.45 238032 1.90 238858 1.47 239710 1.40 241928
msNoLCPS 5.42 234147 2.95 236410 2.24 240482 1.74 241478 1.38 242095 1.07 244415
msSimpleS 5.39 233856 2.92 235545 2.22 238460 1.74 239169 1.34 240625 1.04 242540
pdGolombC 0.18 130 0.12 262 0.10 414 0.10 575 0.16 1020 0.15 1638
pdGolombS 0.18 100 0.11 238 0.10 458 0.09 620 0.17 1048 0.16 1636
pdNoGolombC 0.18 128 0.11 245 0.10 387 0.09 541 0.15 979 0.14 1595
pdNoGolombS 0.18 97 0.11 221 0.10 430 0.09 586 0.15 1007 0.15 1593

78

B. Speed-up

Table B.6: Speed-up for all p in the DNGenerator/SkewedDNGenerator-weak-scaling experiment.
DToN DToNSkewed

∅ 20 40 80 160 320 640 1280 ∅ 20 40 80 160 320 640 1280
r = 0

fkss 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
hQuick 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.4 0.2 0.3 0.2 0.2
msLCPC 1.2 1.1 1.1 1.1 1.1 1.1 1.3 1.7 1.8 1.4 1.3 1.6 1.8 1.8 2.6 2.1
msLCPS 1.2 1.1 1.1 1.1 1.1 1.1 1.3 1.7 1.1 1.0 1.0 0.9 1.0 1.0 1.5 1.3
msNoLCPC 1.4 1.5 1.3 1.3 1.3 1.3 1.5 1.8 2.1 1.9 1.6 1.9 2.0 2.1 3.0 2.3
msNoLCPS 1.4 1.5 1.3 1.3 1.3 1.3 1.5 1.8 1.3 1.4 1.3 1.2 1.2 1.2 1.8 1.5
msSimpleS 1.4 1.5 1.3 1.3 1.3 1.3 1.5 1.9 1.4 1.4 1.3 1.2 1.2 1.2 1.8 1.5
pdGolombC 5.4 3.7 4.4 5.0 5.2 5.2 5.8 8.5 11.5 6.4 8.3 10.4 12.0 12.0 16.6 14.7
pdGolombS 5.2 3.6 4.4 4.7 5.0 4.9 5.7 8.4 11.5 6.5 8.3 10.2 12.2 11.7 17.0 14.5
pdNoGolombC 5.6 3.9 4.6 5.2 5.4 5.3 6.0 8.7 11.9 6.9 8.3 11.2 12.5 12.2 17.0 15.0
pdNoGolombS 5.4 3.9 4.6 4.9 5.0 5.3 5.8 8.6 11.8 6.9 8.6 10.9 12.3 12.0 17.2 14.9
r = 0.25

fkss 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
hQuick 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.5 0.3 0.3 0.3 0.3
msLCPC 1.6 1.3 1.3 1.3 1.3 1.4 1.8 2.6 2.0 1.5 1.4 1.7 1.8 1.9 2.7 2.6
msLCPS 1.6 1.3 1.3 1.3 1.3 1.5 1.8 2.6 1.2 1.1 1.1 1.0 1.0 1.1 1.6 1.6
msNoLCPC 1.6 1.4 1.3 1.3 1.3 1.4 1.7 2.5 2.1 1.7 1.6 1.8 2.0 2.0 2.9 2.7
msNoLCPS 1.6 1.4 1.3 1.3 1.3 1.4 1.7 2.5 1.4 1.3 1.3 1.2 1.2 1.2 1.8 1.8
msSimpleS 1.4 1.3 1.2 1.2 1.2 1.2 1.5 2.2 1.3 1.3 1.2 1.2 1.1 1.2 1.7 1.7
pdGolombC 3.4 2.0 2.4 2.7 2.8 3.1 3.9 6.5 6.0 3.1 3.9 5.0 5.7 6.0 8.9 9.6
pdGolombS 3.3 2.0 2.4 2.7 2.8 3.1 3.9 6.4 6.0 3.1 3.9 4.9 5.9 6.0 8.7 9.4
pdNoGolombC 3.4 2.0 2.4 2.7 2.9 3.1 4.0 6.6 6.1 3.1 3.9 5.1 5.9 6.1 8.9 9.7
pdNoGolombS 3.4 2.0 2.4 2.7 2.8 3.1 3.9 6.4 6.1 3.1 3.9 5.0 5.9 6.1 8.8 9.7
r = 0.5

fkss 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
hQuick 0.4 0.4 0.4 0.3 0.3 0.3 0.4 0.7 0.3 0.3 0.3 0.3
msLCPC 2.0 1.4 1.5 1.5 1.6 1.8 2.3 3.8 2.1 1.5 1.5 1.7 1.9 2.0 2.8 3.1
msLCPS 2.0 1.4 1.5 1.5 1.6 1.8 2.3 3.8 1.4 1.2 1.2 1.1 1.2 1.2 1.8 2.0
msNoLCPC 1.7 1.3 1.3 1.3 1.3 1.5 2.0 3.0 2.1 1.6 1.5 1.7 1.9 2.0 2.8 3.1
msNoLCPS 1.7 1.3 1.3 1.3 1.3 1.5 1.9 3.0 1.5 1.3 1.3 1.2 1.2 1.3 1.9 2.1
msSimpleS 1.4 1.2 1.1 1.1 1.1 1.2 1.6 2.5 1.3 1.2 1.2 1.1 1.1 1.2 1.7 1.9
pdGolombC 2.9 1.6 1.9 2.2 2.3 2.6 3.5 6.0 4.6 2.4 2.9 3.7 4.2 4.6 6.4 8.2
pdGolombS 2.9 1.6 1.9 2.2 2.3 2.6 3.4 6.0 4.6 2.4 2.9 3.7 4.2 4.5 6.6 8.1
pdNoGolombC 2.9 1.7 2.0 2.2 2.3 2.6 3.5 6.1 4.7 2.4 2.9 3.7 4.2 4.6 6.7 8.3
pdNoGolombS 2.9 1.7 1.9 2.1 2.3 2.6 3.5 6.0 4.6 2.4 2.9 3.7 4.3 4.5 6.5 8.2
r = 0.75

fkss 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
hQuick 0.4 0.4 0.4 0.4 0.3 0.4 0.5 0.8 0.3 0.3 0.3 0.3
msLCPC 2.4 1.4 1.6 1.7 1.8 2.0 2.9 5.2 2.2 1.5 1.5 1.8 1.9 2.0 2.9 3.5
msLCPS 2.4 1.4 1.6 1.7 1.8 2.0 2.9 5.2 1.5 1.2 1.2 1.2 1.2 1.3 2.0 2.4
msNoLCPC 1.7 1.3 1.3 1.3 1.3 1.5 2.0 3.3 2.1 1.5 1.5 1.7 1.8 1.9 2.8 3.3
msNoLCPS 1.7 1.3 1.3 1.3 1.3 1.5 2.1 3.3 1.5 1.3 1.3 1.2 1.2 1.3 1.9 2.3
msSimpleS 1.4 1.1 1.1 1.1 1.1 1.2 1.6 2.6 1.3 1.1 1.1 1.1 1.1 1.2 1.7 2.1
pdGolombC 2.5 1.5 1.7 1.8 1.9 2.2 3.1 5.4 3.6 2.0 2.3 2.8 3.1 3.3 5.1 6.5
pdGolombS 2.5 1.5 1.7 1.8 1.8 2.1 3.1 5.3 3.5 2.0 2.3 2.7 3.1 3.3 5.0 6.4
pdNoGolombC 2.5 1.5 1.7 1.8 1.9 2.1 3.1 5.4 3.6 2.0 2.3 2.8 3.1 3.3 5.1 6.5
pdNoGolombS 2.5 1.5 1.7 1.8 1.8 2.1 3.1 5.4 3.6 2.0 2.3 2.8 3.1 3.3 5.1 6.4
r = 1

fkss 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
hQuick 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.9 0.3 0.4 0.3 0.3
msLCPC 2.8 1.5 1.7 1.9 2.1 2.4 3.4 6.4 2.3 1.5 1.6 1.8 2.0 2.1 3.1 3.9
msLCPS 2.8 1.5 1.7 1.9 2.0 2.4 3.4 6.4 1.7 1.2 1.3 1.3 1.3 1.4 2.1 2.8
msNoLCPC 1.8 1.3 1.3 1.3 1.4 1.6 2.2 3.6 2.1 1.5 1.5 1.6 1.8 1.9 2.8 3.6
msNoLCPS 1.8 1.3 1.3 1.3 1.4 1.6 2.1 3.6 1.6 1.3 1.3 1.3 1.3 1.3 2.0 2.6
msSimpleS 1.4 1.1 1.1 1.1 1.1 1.2 1.6 2.8 1.4 1.1 1.1 1.1 1.1 1.2 1.7 2.2
pdGolombC 2.9 1.6 1.8 2.0 2.2 2.5 3.5 6.6 3.9 2.0 2.4 2.9 3.2 3.6 5.4 7.8
pdGolombS 2.9 1.6 1.8 2.0 2.1 2.5 3.5 6.6 3.9 2.0 2.4 2.9 3.3 3.6 5.3 7.7
pdNoGolombC 2.9 1.6 1.8 2.0 2.1 2.5 3.5 6.6 3.9 2.0 2.4 2.8 3.2 3.6 5.4 7.8
pdNoGolombS 2.9 1.6 1.8 2.0 2.1 2.5 3.5 6.6 3.9 2.0 2.4 2.9 3.3 3.6 5.4 7.8

79

8. Appendix

Table B.7: Speed-up for all p in the DNGenerator/SkewedDNGenerator-strong-scaling experiment.
DToN DToNSkewed

∅ 160 320 480 640 960 1280 ∅ 160 320 480 640 960 1280
r = 0

fkss 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
hQuick 0.3 0.3 0.2 0.2 0.3 0.4 0.7 0.3 0.3 0.2 0.5
msLCPC 1.6 1.3 1.1 1.2 1.3 2.5 2.3 2.4 - 1.8 1.8 1.9 1.9 4.7
msLCPS 1.6 1.3 1.1 1.2 1.3 2.5 2.3 1.5 1.0 1.0 1.3 1.2 2.9
msNoLCPC 1.8 1.5 1.3 1.3 1.5 2.7 2.5 2.6 - 2.1 2.0 2.2 2.1 4.8
msNoLCPS 1.8 1.5 1.3 1.3 1.5 2.7 2.5 1.7 1.2 1.2 1.6 1.4 3.2
msSimpleS 1.9 1.5 1.3 1.4 1.6 2.9 2.6 1.8 1.2 1.2 1.6 1.5 3.3
pdGolombC 7.6 5.8 4.9 5.9 6.9 11.4 10.7 17.4 - 11.8 12.1 17.3 15.0 30.9
pdGolombS 7.4 6.0 5.0 5.9 6.5 11.6 9.5 17.4 - 11.8 12.0 17.0 15.2 31.2
pdNoGolombC 7.8 6.1 5.2 6.1 7.0 11.9 10.7 18.0 - 12.3 12.7 17.2 15.2 32.7
pdNoGolombS 7.6 6.0 5.3 6.0 6.7 11.7 9.7 18.1 - 12.2 12.4 17.9 15.6 32.3
r = 0.25

fkss 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0 1.0 1.0 1.0
hQuick 0.5 0.3 0.3 0.2 0.4 0.6 1.0 0.4 0.3 0.2 0.7
msLCPC 2.4 1.5 1.4 1.6 2.0 3.5 4.7 2.8 - 1.9 1.9 2.4 2.4 5.3
msLCPS 2.4 1.5 1.4 1.6 2.0 3.4 4.6 1.7 1.1 1.1 1.5 1.6 3.2
msNoLCPC 2.2 1.5 1.4 1.6 1.9 3.3 3.6 2.9 - 2.0 2.0 2.3 2.5 5.6
msNoLCPS 2.2 1.5 1.4 1.6 1.9 3.4 3.6 1.9 1.2 1.3 1.7 1.8 3.7
msSimpleS 2.0 1.3 1.2 1.4 1.7 3.1 3.3 1.9 1.2 1.2 1.6 1.7 3.7
pdGolombC 5.1 3.1 3.0 3.6 4.4 7.7 8.5 9.9 - 6.1 6.3 8.9 9.4 19.1
pdGolombS 4.9 3.1 3.0 3.6 4.4 7.7 7.9 9.9 - 6.0 6.4 8.7 9.3 19.1
pdNoGolombC 5.1 3.1 3.1 3.6 4.5 7.8 8.6 10.0 - 6.1 6.5 8.9 9.5 18.9
pdNoGolombS 5.0 3.2 3.2 3.6 4.4 7.8 7.6 10.0 - 6.1 6.5 8.9 9.5 19.0
r = 0.5

fkss 0.9 1.0 1.0 1.0 1.0 1.0 0.7 1.0 1.0 1.0 1.0 1.0 1.0
hQuick 0.5 0.3 0.3 0.3 0.5 0.7 1.0 0.5 0.3 0.3 0.8
msLCPC 3.0 1.7 1.7 2.0 2.8 4.6 4.9 3.2 - 2.0 2.0 2.7 2.9 6.3
msLCPS 3.0 1.7 1.7 2.0 2.8 4.7 4.9 2.0 1.2 1.3 1.7 2.0 3.8
msNoLCPC 2.3 1.5 1.5 1.7 2.1 3.9 3.4 3.1 - 2.0 2.0 2.3 2.9 6.2
msNoLCPS 2.3 1.5 1.5 1.7 2.1 3.8 3.4 2.1 1.3 1.4 1.8 2.1 4.2
msSimpleS 2.0 1.2 1.2 1.4 1.7 3.3 2.9 2.0 1.2 1.2 1.6 2.0 4.0
pdGolombC 4.2 2.4 2.5 3.1 3.8 6.9 6.6 8.0 - 4.5 4.8 6.6 7.9 16.1
pdGolombS 4.1 2.4 2.5 3.1 3.8 6.9 5.9 8.0 - 4.5 4.8 6.6 7.9 16.0
pdNoGolombC 4.2 2.4 2.5 3.1 3.8 6.8 6.7 8.1 - 4.5 4.9 6.7 8.1 16.3
pdNoGolombS 4.1 2.4 2.5 3.1 3.9 7.0 5.9 8.0 - 4.5 4.8 6.6 8.0 16.2
r = 0.75

fkss 0.9 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0
hQuick 0.6 0.3 0.3 0.3 0.5 0.9 1.0 0.5 0.3 0.4 0.9
msLCPC 3.5 1.8 2.0 2.5 3.3 6.1 5.2 3.5 - 2.0 2.1 2.9 3.5 6.8
msLCPS 3.5 1.8 2.0 2.5 3.3 6.1 5.1 2.3 1.3 1.4 1.9 2.4 4.3
msNoLCPC 2.4 1.4 1.5 1.8 2.3 4.1 3.3 3.2 - 1.9 2.0 2.3 3.1 6.5
msNoLCPS 2.4 1.4 1.5 1.8 2.2 4.1 3.2 2.3 1.3 1.4 1.8 2.4 4.6
msSimpleS 1.9 1.1 1.2 1.4 1.8 3.3 2.7 2.1 1.1 1.3 1.6 2.2 4.2
pdGolombC 3.6 1.9 2.1 2.7 3.5 6.2 5.2 6.4 - 3.3 3.8 5.1 6.7 13.2
pdGolombS 3.3 1.9 2.1 2.7 3.5 6.1 3.3 6.4 - 3.3 3.7 5.2 6.6 13.1
pdNoGolombC 3.6 1.9 2.1 2.7 3.5 6.2 5.1 6.4 - 3.3 3.8 5.1 6.7 13.1
pdNoGolombS 3.3 1.9 2.1 2.7 3.5 6.1 3.3 6.4 - 3.3 3.7 5.1 6.6 13.1
r = 1

fkss 0.9 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0
hQuick 0.6 0.3 0.4 0.4 0.6 1.0 1.0 0.6 0.4 0.4 1.0
msLCPC 3.9 2.1 2.3 2.9 3.8 7.1 5.3 3.7 - 2.1 2.4 3.0 4.1 6.8
msLCPS 3.9 2.1 2.3 2.9 3.8 7.2 5.4 2.6 1.4 1.6 2.1 2.9 4.9
msNoLCPC 2.5 1.4 1.5 1.8 2.4 4.4 3.2 3.3 - 1.9 2.1 2.4 3.4 6.6
msNoLCPS 2.5 1.4 1.5 1.8 2.4 4.4 3.1 2.5 1.3 1.5 1.9 2.6 5.0
msSimpleS 1.9 1.1 1.2 1.4 1.8 3.5 2.5 2.2 1.1 1.3 1.6 2.3 4.5
pdGolombC 4.0 2.1 2.4 3.0 3.9 7.1 5.4 7.0 - 3.6 4.2 5.5 7.5 14.3
pdGolombS 4.0 2.2 2.4 3.0 3.9 7.2 5.1 7.0 - 3.6 4.1 5.4 7.5 14.3
pdNoGolombC 4.0 2.2 2.4 3.0 3.9 7.1 5.4 7.1 - 3.6 4.2 5.4 7.6 14.4
pdNoGolombS 4.0 2.2 2.4 3.0 3.9 7.2 5.1 7.0 - 3.6 4.2 5.4 7.6 14.2

80

B. Speed-up

Table B.8: Speed-up for all p in the real-world-strong-scaling experiments.
PEs ∅ 160 320 480 640 960 1280

CommonCrawl
hQuick 1.0 1.0 1.0 1.0 1.0 1.0
msLCPC 1.9 − 2.3 2.2 2.0 1.6 1.5
msLCPS 4.4 − 3.9 4.5 4.7 4.6 4.6
msNoLCPC 2.2 − 2.5 2.5 2.1 2.0 1.9
msNoLCPS 4.0 − 3.7 4.1 4.0 4.0 4.1
msSimpleS 1.9 − 2.1 2.1 1.8 1.8 1.6
pdGolombC 1.4 − 1.8 1.6 1.5 1.1 1.0
pdGolombS 5.4 − 4.3 5.5 6.1 5.6 5.4
pdNoGolombC 1.4 − 1.8 1.5 1.5 1.1 1.0
pdNoGolombS 5.4 − 4.3 5.5 6.1 5.6 5.4

CommonCrawlReduced
hQuick 1.0 1.0 1.0 1.0 1.0 1.0
msLCPC 5.3 − 5.2 5.9 4.7 5.9 4.7
msLCPS 5.0 − 4.8 5.2 4.8 5.6 4.4
msNoLCPC 4.4 − 4.5 4.5 3.7 4.9 4.2
msNoLCPS 4.3 − 4.4 4.3 3.9 4.6 4.4
msSimpleS 1.9 − 2.2 2.1 1.8 1.9 1.6
pdGolombC 2.6 − 3.5 2.6 3.0 2.0 2.0
pdGolombS 5.8 − 4.8 6.0 6.4 6.4 5.4
pdNoGolombC 2.6 − 3.5 2.6 3.0 2.0 2.0
pdNoGolombS 5.9 − 4.9 6.2 6.4 6.4 5.5

Wikipedia
hQuick 1.0 1.0 1.0 1.0 1.0 1.0
msLCPC 2.0 − 2.7 2.9 1.7 1.8 1.0
msLCPS 4.0 − 4.2 5.0 3.7 4.2 2.8
msNoLCPC 2.6 − 3.4 3.8 2.2 2.4 1.4
msNoLCPS 4.7 − 5.0 5.9 4.4 5.0 3.3
msSimpleS 3.5 − 3.8 4.4 3.0 3.9 2.4
pdGolombC 2.1 − 2.8 3.0 1.8 1.8 1.0
pdGolombS 8.8 − 8.5 12.1 9.2 8.4 5.9
pdNoGolombC 2.1 − 2.8 3.0 1.8 1.8 1.0
pdNoGolombS 8.8 − 8.5 11.8 9.4 8.4 6.0

WikipediaReduced
hQuick 1.0 1.0 1.0 1.0 1.0 1.0
msLCPC 5.8 − 6.1 7.6 3.9 7.5 3.8
msLCPS 3.8 − 3.8 4.3 3.5 4.4 2.7
msNoLCPC 5.8 − 6.3 7.8 3.8 7.7 3.4
msNoLCPS 4.3 − 4.6 5.0 3.7 5.1 3.0
msSimpleS 3.2 − 3.5 3.9 2.6 3.7 2.3
pdGolombC 8.3 − 7.7 10.5 8.6 8.9 5.9
pdGolombS 8.5 − 8.0 10.4 8.9 9.3 6.1
pdNoGolombC 8.4 − 7.8 10.5 8.6 9.0 6.0
pdNoGolombS 8.6 − 7.9 10.5 8.8 9.4 6.2

Suffixes
hQuick 1.0 1.0 1.0 1.0 1.0 1.0 1.0
msLCPC 6.7 5.9 6.6 8.2 6.5 7.5 5.7
msLCPS 5.8 5.0 5.5 6.9 5.5 6.4 5.6
msNoLCPC 5.9 5.1 5.7 7.2 5.8 6.7 4.8
msNoLCPS 6.6 5.8 6.4 7.9 6.3 7.1 6.2
msSimpleS 6.7 5.8 6.4 7.9 6.3 7.3 6.4
pdGolombC 122.2 172.8 155.5 183.9 113.5 63.3 44.0
pdGolombS 123.8 172.5 167.9 184.8 116.7 59.5 41.5
pdNoGolombC 126.8 171.9 169.9 183.9 120.8 67.0 47.3
pdNoGolombS 124.0 173.1 166.4 174.6 119.2 66.7 44.1

81

	Contents
	1 Introduction
	1.1 Contribution

	2 Preliminaries and Related Work
	2.1 Definitions
	2.2 Model of Communication
	2.3 Collective Communication Operations
	2.3.1 Broadcast
	2.3.2 (All-)Reduce
	2.3.3 Prefix Sum
	2.3.4 (All-)Gather
	2.3.5 Alltoall

	2.4 Related Work

	3 Techniques and Subroutines
	3.1 Sequential String Sorting
	3.1.1 Multikey Quicksort
	3.1.2 (LCP-) Insertion Sort
	3.1.3 Most-Significant-Digit String Radix Sort

	3.2 Distributed Sorting of Small Sets
	3.2.1 Centralized Sequential Sorting
	3.2.2 Hypercube Quicksort

	3.3 Distributed Ordered Partitioning
	3.3.1 General Approach
	3.3.2 Regular Sampling
	3.3.3 String-Based Sampling
	3.3.4 Character-Based Sampling
	3.3.5 Local Input Arrays of Different Size
	3.3.6 Running Time

	3.4 LCP Compression
	3.5 Multiway-(LCP)-Merging
	3.5.1 LCP Compare
	3.5.2 Losertree
	3.5.3 LCP Losertree

	4 Distributed Merge String Sort
	4.1 Description of the Algorithm
	4.1.1 Local Sorting
	4.1.2 Distributed Ordered Partitioning
	4.1.3 String Exchange
	4.1.4 Merging

	4.2 Total Running Time

	5 Distributed Prefix-Doubling String Sort
	5.1 Description of the Algorithm
	5.1.1 Local Sorting
	5.1.2 Distinguishing Prefix Computation
	5.1.2.1 Distributed Duplicate Detection
	5.1.2.2 Prefix-Doubling Algorithm for Computing Distinguishing Prefixes

	5.1.3 Distributed Ordered Partitioning
	5.1.4 String Exchange
	5.1.5 Merging

	5.2 Total Running Time

	6 Implementation Details
	6.1 Memory Layout of Strings
	6.2 Sequential String Sorting
	6.3 Sending Strings/LCP Values with MPI
	6.4 LCP Losertree
	6.5 Distinguishing Prefix Computation
	6.5.1 Hashing
	6.5.2 Local Duplicate Detection
	6.5.3 Sorting/Merging of Hash Values

	6.6 Hypercube Quicksort

	7 Experimental Evaluation
	7.1 Data
	7.1.1 DNGenerator
	7.1.2 Skewed DNGenerator
	7.1.3 Other Data Sets

	7.2 Evaluation Setup
	7.2.1 Distribution of the Data
	7.2.2 Algorithms

	7.3 Evaluation
	7.3.1 DN-Data Weak Scaling
	7.3.2 DN-Data Strong Scaling
	7.3.3 CommonCrawl
	7.3.4 Wikipedia
	7.3.5 Suffixes

	7.4 Summary

	8 Conclusion
	8.1 Future Work

	Bibliography
	Appendix
	A Running Times and Communication
	B Speed-up

