
Improving the Compact Bit-Sliced Signature
Index COBS for Large Scale Genomic Data

Master’s thesis of

Daniel Ferizovic

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Karlsruhe Institute of Technology

Reviewer: Prof. Dr. Peter Sanders
Advisor: Dr. Timo Bingmann

02. June 2019 – 02. December 2019

I hereby declare that I have written and developed the enclosed thesis completely by myself,
and have not used other sources or means without acknowledging them in the text.

Karlsruhe, 29th November 2019

..
(Daniel Ferizovic)

Abstract
In this thesis we investigate the potential for improving the Compact Bit-Sliced Signature

Index (COBS) [BBGI19] for large scale genomic data. COBS was developed by Bingmann et
al. and is an inverted text index based on Bloom filters. It can be used to index k-mers of
DNA samples or q-grams of plain text data and is queried using approximate pattern matching
based on the k-mer (or q-gram) profile of a query. In their work Bingmann et al. demonstrated
a couple of advantages COBS has over other state of the art approximate k-mer-based indices,
some of which are extraordinary fast query and construction times, but as well as the fact that
COBS can be constructed and queried even if the index does not fit into main memory. This
is one of the reasons we decided to look more closely at some areas we could improve COBS.
Our main goal is to make COBS more scalable. Scalability is a very important factor when it
comes to handling DNA related data. This is because the amount of sequenced data stored in
publicly available archives nearly doubles every year, making it difficult to handle even from
the perspective of resources alone. We focus on two main areas in which we try to improve
COBS. Those are index compression through clustering and distribution. The thesis presents
our findings and improvements achieved in respect to those areas.

Zusammenfassung
In dieser Arbeit untersuchen wir verschiedene Möglichkeiten den kompakten bit-transponierten

Signaturindex COBS [BBGI19] bei der Anwendung für Genomdatenbanken zu verbessern.
COBS wurde von Bingmann et al. entwickelt und ist ein invertierter Textindex basierend auf
Bloomfiltern. Der Hauptanwendungsbereich von COBS ist die Indizierung von Nukleotidfolgen
die durch DNA-Sequenzierung gewonnen wurden. Er kann jedoch auch als allgemeiner Textin-
dex benutzt werden. COBS beantwortet Anfragen durch einen approximativen Musterabgleich
indem er sich die k-mer (oder q-gram) Profile der Anfragen zu nutze macht. Bingman et al.
haben in ihrer Arbeit gezeigt das COBS einige Vorteile gegenüber Ansätzen hat, die dem Stand
der Forschung im Bereich k-mer basiertes approximatives Textindizieren entsprechen. Einige
von den Vorteilen sind sehr schnelle Konstruktion und Bearbeitung von Anfragen, sowohl die
Möglichkeit den Index zu Konstruieren wenn dieser nicht im Hauptspeicher passt. Aus diesen
Gründen, die sich zunächst vielversprechend anhören, haben wir uns entschlossen anzuschauen
wie man COBS verbessern könnte. Das Hauptziel dieser Arbeit ist COBS skalierbar zu machen.
Skalierbarkeit ist eine wichtige Eigenschaft eines Textindexes der mit großen Datenmengen
umgehen muss. Die Größe von öffentlich verfügbaren Genomdatenbanken verdoppelt sich fast
jedes Jahr. Dies ist insbesondere problematisch aus der Sicht von Resourcen die ein Rechner
zu bieten hat, weil diese schnell an ihre Grenzen stoßen. In dieser Arbeit fokusieren wir uns auf
zwei Aspekte die das Ziel haben COBS zu verbessern. Dies sind Indexkomprimierung durch
Clustering und die Entwicklung einer verteilten COBS Variante.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Preliminaries . 4

1.3.1 Problem Definition . 5
1.3.2 Bloom Filter . 5

2 Compact Bit-Sliced Signature Index - COBS 7
2.1 Overview . 7
2.2 Approximate Search . 8
2.3 Implementation . 9
2.4 Contributions . 10

3 Document Clustering 13
3.1 AND/OR Structure . 14
3.2 Distance Measures . 17

3.2.1 Euclidean Distance . 17
3.2.2 Hamming Distance . 17
3.2.3 Cosine Distance . 18
3.2.4 Jaccard distance . 18

3.3 Dimensionality Reduction . 18
3.4 Clustering Algorithms . 19

3.4.1 Hierarchical Clustering . 19
3.4.2 K-Means and K-Means++ . 20
3.4.3 Bi-Sectional K-Means . 20

3.5 Centroid Selection . 21
3.6 Experimental Results . 22

3.6.1 Setup . 22
3.6.2 Frequency Distribution of k-mers . 23
3.6.3 Clustering Sequencing Data . 25
3.6.4 Analyzing the Effects of Noise . 26

4 Batched Queries 29
4.1 Overview . 29
4.2 Implementation Details . 30
4.3 Experimental Results . 30

4.3.1 Setup . 30
4.3.2 Evaluation . 31

iii

Contents

5 Distribution 33
5.1 Motivation . 33
5.2 Architecture . 33
5.3 Implementation Details . 34
5.4 Index Sharding . 35
5.5 Dynamic Index Updates . 36

5.5.1 COBS Compaction . 37
5.5.2 Fixed Interval Compaction . 38

5.6 Experimental Results . 38
5.6.1 Setup . 38
5.6.2 Evaluation . 39

6 Conclusion and Future Work 41

iv

List of Figures

1.1 Available tools for k-mer-based approximate pattern matching. 3
1.2 (a) Insertion and (b) lookup of 3-mers into a Bloom filter with two hash functions.

The lookup reports true, despite the fact that the 3-mer CCC was never inserted. 6

2.1 Index layout of COBS. 8
2.2 Query process of COBS. 9

3.1 Document clustering illustration. 13
3.2 AND/OR bit-sliced matrix. 16
3.3 k-mer frequency distributions for various choices of k. 24

5.1 DCOBS architecture. 34
5.2 Sharding techniques. 35
5.3 Compaction in COBS. Yellow areas of the index illustrate the wasted space by

choosing the Bloom filter size according to the largest document. 37

v

List of Tables

3.1 Cluster analysis of the AND-phase. The first column represents the fraction be-
tween the smallest and largest found intersection cluster. The second column
represents the coverage. 26

3.2 Execution time comparison of clustering algorithms. 26
3.3 Effects of random mutation on the cluster coverage. 27
3.4 Effects of low-frequency k-mers on the cluster coverage. 27

4.1 Execution times (in seconds) for sequential and batched querying. 31

5.1 Distributed construction and query times (in seconds) for varying numbers of
index nodes. 39

5.2 Comparison of index sizes for different compaction methods. 39

vii

1 Introduction

1.1 Motivation

All living beings on our planet share a common ancestry, all the way back to the first
cellular organisms that have roamed the Earth. Ever since then, it took evolution
tens of millions of years to produce the vast spectrum of life that we are able to
see today. The differences in capabilities and appearances between living organisms
are encoded within their genetic material in form of DNA molecules. A single DNA
string is encoded with 4 letters {A, T, C, G}, one for each nucleotide that can
be present in the molecule. This information is extremely valuable and being able
to extract and understand it is of great importance for us humans. The process of
extracting this information from living samples is called sequencing. In sequencing
a DNA molecule is broken up into many smaller pieces from which the encoding is
independently inferred. Those pieces are called reads. In order to recreate the
whole string a process called assembly is utilized, which tries to reconstruct the
complete DNA string based on the inferred reads. The sequencing processes is by
nature prone to errors, which makes the assembly problem even more difficult than
it already is. Ever since the first DNA was sequenced in 1970, many advances have
been made that lead to the development of faster, better and cheaper sequencing
methods. The advent of next-generation sequencing methods in the recent years
lead to an explosion of stored data in publicly available nucleotide archives, such
as the European Nucleotide Archive (ENA). As of today ENA contains more than
2 × 109 microbial sequences, while the European Bioinformatics Institute reported
to have reached 160 PB of storage in 2018 [CLS+18]. What makes matters worse is
that these archives are subjected to exponential growth, doubling every 18 months.

Being able to search those archives for certain nucleotide patterns has a multitude
of applications, including contact tracing of infectious diseases, detecting the spread
of bacteria which are resistant to certain drugs, locating mutations responsible for
known hereditary diseases and more. The most widely used tool for this purpose
has been BLAST, which was developed in 1990 [AGM+90]. BLAST and its succes-
sors perform lookups by aligning a query sequence against an assembled genomic
sequence. This is problematic because only a fraction of the sequenced data avail-
able in ENA is assembled. Their other drawback is that they scale poorly with the
rapid increase of sequenced data.

1

1.2 Related Work

Most of standard text indices from the information retrieval literature, such as the
FM-Index, compact suffix array, or the Burrows-Wheeler transform, are also not well
suited for this problem. They are not able to handle the huge amount of data with
reasonable efficiency. Furthermore the approximate nature of the search problem
poses additional difficulties to them. Since the sequencing experiments are prone to
errors, when searching for a specific nucleotide sequence we are also interested in
sequences that are close enough to our query sequence. Handling such approximate
searches becomes extremely difficult for regular text indexes.
For this reason other approaches have been developed that can deal with the approx-
imate nature of the pattern matching more efficiently. One widely used approach
in bioinformatics is k-mer (q-gram) based approximate pattern matching [Ukk92].
The term k-mer is used to to indicate a substring of fixed length k. The pattern
matching works by storing all k-mers of a given sequencing experiment in some kind
of data structure S. A match for a query is reported if enough of its k-mers are
contained in S. Some examples of such structures are SBT [SK15], SSBT [SK18],
AllSomeSBT [SHCM17], HowDe [HM18], Othello [YLL+18], BIGSI [BdBR+19] and
COBS [BBGI19]. They all differ in their approach of designing S as fast and com-
pact as possible. In most cases, however, the building blocks for S are probabilistic
structures such as the Bloom filter or quotient filter.
In this thesis we take a closer look at COBS and try to improve it in several aspects.
COBS was developed by Bingmann et al. and is a direct successor of BIGSI. In
its essence it is an inverted index based on Bloom filters. For each sequencing
experiment that is indexed there is an corresponding Bloom filter storing its k-
mers. Queries are delegated to each Bloom filter and the result is reported back to
the user. Despite its simplistic design COBS has shown to be highly competitive
with other state of the art approaches. Bingmann et al. report both faster query
and construction times for their index on several data sets. They also demonstrate
that only COBS is able to produce indexes exceeding the limitations posed by the
main memory present on a machine. There are still some things which COBS is
lacking however. Most importantly there is no distributed version of it, which is
posing limitations on its use in real world scenarios. Making it more scalable is
the main goal of this thesis. In the following sections we present our findings and
improvements of COBS, which ultimately led to the development of Distributed-
COBS.

1.2 Related Work

In biological sequence analysis k-mers have already been used in a variety of settings,
some of which are sequence assembly [ZB08], identifying species in metagenomic
samples [PB10], predicting bacterial antibiotic resistance, developing attenuated
vaccines [ETOK18] and more. The problem of finding all the sequencing experiments
containing a particular query sequence has been coined as the Experiment Discovery
Problem over the past years. It has gained a lot of attraction in the last decade

2

1.2 Related Work

1
0
1
0
0

ACTG

TTAG

Bloom Filters

Flat structure

1
0
0
0

0
0
0
1

1
1
0
0

0
1
0
1

1
1
1
0

BIGSI
COBS

Tree structure
1001010

0010001 1000101

0001110 1111001

SBT
SSBT

AllSome-SBT
HowDet-SBT

Matnis
SeqOthelo
Rainbowfish

Color-Matrix / DeBurjin Graph

100101011
101100010
000100100
011101010

Figure 1.1: Available tools for k-mer-based approximate pattern matching.

and approaches using k-mer-based approximate pattern matching have shown to be
especially attractive for solving this problem [CHM19] . They are simple, compact,
fast and highly scalable. We present an overview of the available software tools in
Figure 5.1

Bloom filter based search structures are widely used for the document discovery
problem. Bloofi was the first work that proposed using them [CL15]. The authors
suggest two different Bloofi variants, one of which is based on hierarchical trees
(such as B-trees), while the other has a flat memory design. The Sequence Bloom
Tree (SBT) by Solomon and Kingman [SK15] is the most prominent k-mer index
in literature and is based on the former Bloofi variant. In SBT each sequencing
experiment has its k-mer set represented by a Bloom filter stored in the leaves of
a binary tree, while the inner nodes represent the union of the Bloom filters stored
in their subtree. The tree is constructed using a hierarchical clustering algorithm,
combining the most similar Bloom filters in each step. To make the index more
compact the Bloom filters are RRR compressed [RRR02]. Queries are performed
by a simple search on the tree, only descending into subtrees containing a suffi-
cient amount of k-mers matching the query string. Other software tools using the
same approach include the Split-SBT [SK18], which is the direct successor of SBT,
AllSome-SBT [SHCM17] and HowDet-SBT [HM18] which have been developed
by Medvedev et al. The key difference between them is in the way they encode the
information in the inner nodes of the binary trees. In HowDet-SBT for example,
there is not a single Bloom filter for representing the union at each inner node,
rather there are two bit-vectors called det and how. det indicates which Bloom filter
bits are determined to be the same in all Bloom filters in the subtree, while how

3

1.3 Preliminaries

indicates whether the bit is set to 1 or 0.

BIGSI [BdBR+19] and COBS [BBGI19] are k-mer indices which are based on the
flat Bloofi design. In both cases the index is represented by a sequence of Bloom
filters consecutively stored in memory. BIGSI uses a single Bloom filter size for all
documents that are being indexed. This leads to a lot of space overhead, due to the
varying sizes of sequencing experiments. This issue is improved by COBS, which
is the direct successor of BIGSI. COBS provides the ability to construct the index
in a compact way by presorting the documents by size and dividing them logically
into chunks of fixed size. The Bloom filter size for each chunk is determined by the
document of maximum size.

There are also k-mer indices which are not based on Bloom filters. One such example
is SeqOthelo [YLL+18], which is using a hierarchy of minimal-perfect hash func-
tions to map k-mers to various encodings of occurrence maps. The perfect hashing
still permits false positives due to k-mers that are not present in the constructed
index. Another software package is Manits [PAB+18], based on the k-mer counting
tool Squeakr [PBJ+18], which is using counting quotient filters (CQF) in order to
construct an occurrence map for each document. In contrast to Bloom filters they
can be used in an exact mode - eliminating the one-sided error probability present in
Bloom filters. Mantis uses a k-way merge algorithm on the CQFs to obtain a map-
ping from k-mers to color-IDs, as well as an mapping from color-IDs to color-classes.
Each color-class can be interpreted as a signature file, which is a bit-vector indicating
in which documents a k-mer is present. All color classes together form the so called
color-matrix. To obtain a smaller index the bit-vectors are RRR compressed using
the SDSL, and the color-class IDs are Huffman encoded. Rainbowfish [MBN+17]
is another software tool using the color-matrix. Instead of using CQFs, Rainbowfish
is making use of the Burrows Whealer Transform [BOSS12] to encode the k-mer
mapping. Both Mantis and Rainbowfish can be seen as implicit colored De-Burjin
graph representations of the sequencing experiments. Colored De-Burjin Graphs
are a very useful tool in computational biology. They can be used for sequence
assembly analysis as well as detection of genetic variations among sequenced sam-
ples. Representations of colored De-Burjin graphs often contain k-mer indexes as
their underlying structure. Most of them however are not designed for the setting
of approximate pattern matching. The most important ones are Cortex [ICT+12],
McCortex [TGIM18] and VARI [Mug17].

1.3 Preliminaries

In this section we formalize the problem we are trying to solve and introduce some
definitions that will be used throughout this thesis.

4

1.3.1 Problem Definition

1.3.1 Problem Definition

The problem we are studying is k-mer-based approximate pattern matching. Let σ
be an arbitrary but finite alphabet. For the purposes of this thesis, we can assume
that σ = {A,C, T,G}, but note that we could have chosen any other alphabet as
well. First we give a few basic definitions:

Definition 1.1 (String).
A string S = s1s2...sl is an ordered and finite sequence over σ.

Definition 1.2 (Document).
A document D = {S1, S2, .., Sm} is a finite set of strings.

Definition 1.3 (Document Collection).
A document collection C = (D1, D2, .., Dn) is an ordered finite set of documents.

Strings in our setting represent the formal analog to DNA-reads while documents
represent sequencing experiments. Next we introduce the notion of k-mers and
k-mer profiles, which represent substrings of length k for a given string:

Definition 1.4 (k-mer of a String).
A k-mer w ∈ σk of a string S = s1s2...sl, is a substring of length k in S. In other
words, ∃i ∈ {1, ..., l − k + 1} : sisi+1...si+k−1 = w

Definition 1.5 (k-mer Profile of Strings).
The k-mer profile of a string S, is given as Mk(S) = {w ∈ σk |w is substring of S}.

Definition 1.6 (k-mer Profile of Documents).
The k-mer profile of a document D, is given as Mk(D) = ⋃

S∈D
Mk(S).

We are now ready to give a formal definition of the problem. Given a document
collection C and a query string q. We are interested in finding all documents D ∈ C
such that |Mk(q)

⋂
Mk(D)| ≥ θ · |Mk(q)|, with θ ∈ (0, 1]. The threshold parameter θ

regulates how many of the query k-mers need to be present in a document in order
for a match to be reported. One important thing to note is that our definition does
not take frequencies of individual k-mers into account. This is due to the nature of
Bloom filters used by COBS. Approaches that utilize this information may achieve
more accurate results than it is the case with Bloom filters.

1.3.2 Bloom Filter

Bloom filters are the fundamental staple on which COBS and other k-mer indices
are built on. For this reason, we will use this subsection to formally introduce them.

Definition 1.7 (Bloom Filter).
A Bloom filter B = (Am, h1, ...hr) is a compact probabilistic data structure used for
representing sets of elements, where Am is a bit-vector of length m and h1, ..., hr are
hash functions.

5

1.3 Preliminaries

0

0

0

0

0

0

1

ATG

AAC

1

1

1

ℎ1

ℎ1

ℎ2

ℎ2

(a) Insertion

0

0

0

0

0

0

1

CCC

1

1

1

ℎ1

ℎ2

(b) False positive lookup

Figure 1.2: (a) Insertion and (b) lookup of 3-mers into a Bloom filter with two hash
functions. The lookup reports true, despite the fact that the 3-mer CCC was never
inserted.

To keep things simple we will often use the notation B when referring to the bit-
vector Am, unless otherwise specified. Bloom filters support two main operations,
insertion and lookup. At the beginning B is initialized to 0. Inserting an element
x into B is equivalent to setting B[hi(x)] = 1 for all i ∈ {1, ..., r}. To test whether
x ∈ B we check if ∧ri=1 B[hi(x)] = 1 holds true. Both operations are shown in
Figure 1.2. It also shows that the lookups may return false positives, that is, the
Bloom filter may report positive membership even for elements x /∈ B. The false
positive rate for a Bloom filter holding n elements can be quantified with the given
formula:

p = (1− (1− 1
m

)nr)r < (1− e−rn/m)r (1.1)

The formula can be easily derived, which is left out here for purposes of simplicity. It
is useful for us, because we can see how different parameters affect the false positive
rate of the Bloom filter. And even more importantly, for a given false positive rate
p and expected number of inserted elements n we can derive good approximations
for m and k which leads to:

m = −n · ln p(ln 2)2 ∧ r = − log2 p (1.2)

These approximations are used by COBS to calculate Bloom filter sizes for a given
document collection while providing guarantees about the expected false positive
rate of the index.

6

2 Compact Bit-Sliced Signature In-
dex - COBS

2.1 Overview

COBS is a k-mer index which is based on Bloom filters. For a given document
collection C = {D1, ..., Dn} it creates a set of Bloom filters B1, ..., Bn, where Bi

stores all the k-mers from document Di. Each Bloom filter is a signature file of its
corresponding document and can be used to answer the membership problem for it.
Due to the one sided error of Bloom filters we can only compute an approximation
for |Mk(q)

⋂
Mk(Di)|. We will quantify this error in the next section.

In COBS the Bloom filters are not stored separately. They are stored continuously
in memory resembling a bit-matrix, as shown Figure 2.1. Each column of the matrix
represents a Bloom filter, while each row represents a slice across all Bloom filters.
Due to the fact that the documents can be of vastly different sizes, for a fixed
false probability rate p the Bloom filter sizes m1, ...,mn are also going to vary. To
overcome this issue, a single Bloom filter size m := max{m1, ...,mn} is chosen across
all Bloom filters.
This representation has several benefits to it. For one, accessing rows of the matrix
will produce sequential disk reads leading to faster IO-performance due to caching.
Another benefit is that one can exploit Single-Instruction-Multiple-Data (SIMD)
instructions on modern CPU-s to achieve bit-level parallelism. And lastly, having
the same signature size m for all Bloom filters allows us to use the same set of hash
functions h1, ..., hk across all Bloom filters. There is however one drawback in this
representation and that is the memory overhead. Having all Bloom filter sizes being
equal to that of the largest document allows COBS to have guarantees for the false
positive rate at the cost of additional memory. This is especially bad if the data set
consists of many small and a couple of large documents. COBS however comes with
two modes of operation: standard and compact.
In compact mode the memory consumption of the index is reduced significantly.
This is achieved by partitioning C into several chunks of documents C1, C2, .., Cw
and constructing a standard index for each chunk Ci. This alone leads to a smaller
memory footprint, because only local maxima will be used for the Bloom filter size of
the bit-sliced matrices. To achieve an even smaller discrepancy between the smallest

7

2.2 Approximate Search

�1 �2 �3 ��−3 ��−2 ��−1 ��

1 1 1 0 1 11

1 1 1 1 1 11

0 0 1 1 1 00

1 1 1 0 1 10

1 1 0 0 1 01

0 1 1 1 1 10

1 0 1 1 1 01

1 1 1 0 1 10

(a) Standard Bit-Sliced Matrix

�1 �2

�3

��−3 ��−2

��−1 ��

1 1 1 0 1 11

1 1 1 1 1 11

1 1 1 00

1 0 1 10

0 1 01

1 1 10

1 0

1 1

(b) Comapct Bit-Sliced Matrix

Figure 2.1: Index layout of COBS.

and largest document in a chunk, it uses a clever partitioning technique. First it
sorts all documents by size and then it defines the Ci as consecutive chunks of fixed
size. Though it is still possible to construct bad input sequences for this approach,
it has been shown to provide near optimal Bloom filter sizes on real data sets.
For the chunk size COBS uses the page size of the disk, which is 4096 bytes. This al-
lows the compact mode to combine the best of two worlds, having a smaller memory
footprint while being able to exploit the additional benefits we talked about earlier.

2.2 Approximate Search

A query q is performed by counting how many of its k-mers are present in each
document Bloom filter Bi. Let u ∈ Mk(q) be an arbitrary k-mer of q. First all of
its hash values get computed h1(u), ..., hr(u), which will be used as indices for the
rows of the bit-sliced matrix. The corresponding rows of the matrix are scanned
sequentially from left to right computing ci = ∧rj=1 Bi[hj(u)] for each Bloom filter.
Each ci gets added into a global score array R of size n. After processing all k-mers,
R[i] will contain an approximation to the number of k-mers present in Di. This is
shown more illustratively in Figure 2.2. The score array can be further used to rank
the documents by relevance and to report only the most relevant documents for a
given query.
One important question that arises is what the false positive rate for a single query
actually looks like. We note that this is not the same as the false positive rate p
of a single Bloom filter. A query q is reported to be contained in Di if more than
θ · |Mk(q)| of its k-mers are found in Bi. The lookups of individual k-mers can be
seen as independent Bernoulli trials, which lead us to the following theorem:

8

2.3 Implementation

+

ATG

AAC &

1 2 1
�1 �2�0

��
0

��
1

��
2

�2

�2

ℎ��ℎ���

0

1

0

1

0

0

0

0

1

1

0

0

1

1

0

1

1

0

1

0

0

1

0

0

0

0

0

0 1 1

�0 �1

1 1 0

�0 �1

&
1

1

1

1

1

0

0

0

1

1

1

0

Figure 2.2: Query process of COBS.

Theorem 2.1 (False Positive Rate of k-mer Sets).
Let w0, w1, ..., wt−1 be a sequence of t independent k-mers. Further let B be a Bloom
filter with false positive rate p. Then the probability that more than bθ · tc k-mers
are false positives is 1−∑bθ·tci=0

(
t
i

)
pi(1− p)t−i

Using Chernoff bounds for the case θ > p, Solomon and Kingsford [SK15] further
bounded the probability that a query is falsely reported to be contained within a
document.

Theorem 2.2 (False Positive Rate of a Query).
Let q be query with l = |Mk(q)|. Further let D be a document with a corresponding
Bloom filter B and false positive rate p. The probability for q to be falsely reported
as contained in D is bounded by ≤ e

−l(θ−p)2
2(1−p)

Since the bound given by Theorem 2.2 is inversely proportional to the query length,
it is possible to choose larger false positive rates for Bloom filters than it would
be the case in conventional use. While for single membership queries Bloom filters
often use values less than 0.01, In COBS the default false positive rate is set to
p = 0.3, which also leads to the use of a single hash function r = 1. Using only one
hash function also allows COBS to significantly reduce the number of cache faults
as only one row needs to be accessed per k-mer lookup.

2.3 Implementation

COBS is implemented in C++ and is available online under the following link
https://github.com/bingmann/cobs.
Launching COBS opens a simple terminal client which allows the user to construct
indices from documents and query those respectively. It supports various types

9

https://github.com/bingmann/cobs

2.4 Contributions

of documents, including the most commonly used formats for storing sequencing
data: FASTA, FASTQ, Multi-FASTA, Multi-FASTQ, Cortex, and simple txt files. It
is also able to read compressed documents, but as of now only supports gzip based
compression. The implementation also enables manual tweaking of configuration
parameters. When building an index the user can specify the index type (standard
or compact), the false positive rate p, the number of hash functions k and even the
Bloom filter size. When performing queries, the query threshold θ and the number
of documents in the result set can be specified as well. Both the index construction
and queries are parallelized using OpenMP.

COBS supports out of memory construction which allows for index sizes not limited
by the main memory. In the following we describe the standard index construction,
but the note that the compact variant is implemented in a similar manner. COBS
loads documents in blocks, one after the other, whose estimated index size fits in
main memory. The documents of each block get processed in parallel to obtain a
Bloom filter matrix as shown in Figure 2.1. After all indices have been serialized
into persistent memory, they get streamed and simultaneously merged into a single
index. This is done in parallel over all document blocks.

The query is performed by firstly computing all hash values of its k-mers. They
are used to identify which rows of the bit-sliced matrix need to be loaded. In
order to speed up disk reads COBS uses memory-mapped IO to access parts of
the index. This is achieved with the mmap instruction. The rows are consequently
logically partitioned and processed in parallel, where each thread is responsible for
computing the query score for a subset of documents.

2.4 Contributions

We are now ready to give a full list our contributions towards improving COBS.
Those include analyzing the clusterability of Bloom filters, support for batched
queries, multi-index search, dynamic index updates and a distributed COBS variant
which we call DCOBS. We briefly describe each of those points.

Cluster Analysis As we mentioned in the previous section, COBS does not pro-
vide any compression of its index. This was a conscious design decision, since
compressing the index, with for example RRR, would add an additional de-
compression step during the query process. To guarantee fast query times,
COBS was kept as simple as possible. Nonetheless, there are still other ways
to compress the index without having to sacrifice the query speed as much.
We tried to cluster the Bloom filters of the bit-sliced matrix together in order
to achieve a more compact index representation. We describe this approach
in more detail in Chapter 3.

Batched Queries Executing queries one after the other may not lead to optimal
resource utilization. This is due to a multitude of reasons. Reading multiple

10

2.4 Contributions

rows of the bit-sliced matrix will inevitably lead to cache faults, this effect is
magnified if the rows are read in an arbitrary fashion. Another drawback of
sequential query execution comes into play if the rows that need to be read do
not fit into main memory. This will cause each query to re-read the rows from
the disk back into the memory, causing expensive disk reads. To overcome
this issue we implemented batched queries, which basically executes multiple
queries simultaneously. This is further described in Chapter 4.

Multi-Index Search There is no support in COBS for searching multiple indices
simultaneously. This means that all documents are contained within a single
bit-sliced matrix. We added support for multiple indices in the distributed
version of COBS. As we will see later it plays a crucial role for achieving
distribution. It allowed us to add support for dynamic index updates and
a search filter based on the desired k-mer size of the query. Adding further
search filters in the future is desirable, for example one would like to retrieve
only for documents coming from a specific taxonomic group. Such filters will
require splitting up the index along some attributes in order to support fast
queries.

Dynamic Index Updates Dynamic index updates are crucial for any indexing
structure. Building the index from scratch is very expensive and depending
on the amount of data, this can take anywhere between days and weeks. COBS
currently does not support adding new documents to an index, which means
everything has to be built anew. This is highly undesirable, especially for the
distributed variant where availability plays a crucial role. We implemented
dynamic index updates and describe them further in Chapter 5.

Distribution The likely largest contribution of this thesis is the development of
a distributed version of COBS. As we have already mentioned the amount of
data stored in sequencing archives is overwhelmingly large. On top of that
it grows exponentially by each year. Faced with these constraints a single
machine quickly runs out of its computing resources, leading to the necessity
of distributing COBS on multiple computing nodes. This will ultimately allow
COBS to index complete sequencing archives under real time constraints. We
develop and present our distributed COBS variant in Chapter 5.

11

3 Document Clustering

Figure 3.1: Document clustering illustration.

In this chapter we will talk about our efforts to achieve a more compact represen-
tation of the bit-sliced matrix in COBS. A straightforward thing to do would be to
use a succinct representation for the columns of the bit-sliced matrix. Using RRR-
indices to compress the columns would help us reduce the index size somewhat,
but at cost of the query execution time. Reading multiple rows of the matrix would
translate to a bunch of select queries for each column of the matrix. This would slow
down our queries considerably for multiple reasons: overhead due to RRR structure,
lower cache efficiency and no instruction parallelism. Because of this we opted to
a different approach. The basic idea is to use a single Bloom filter to represent a
group of documents and not just one. For this to work the documents within each
group have to be reasonably similar. This is because Bloom filters will now store
k-mers from multiple documents, leading to an increase in the false positive rate
for every k-mer not shared among documents in the same group. To verify whether
this approach could work for sequencing experiments we tried to cluster several data
sets.

Document clustering has been an ongoing problem in cluster analysis for a long
time [Wil88]. Most approaches fall either into hierarchical or partitioning clustering
algorithms. But there are also mixtures of both approaches [SKK00]. Documents
are usually represented and clustered using frequency vectors. The frequency vector
of a document D ∈ C is given as fD = (c1, c2, c3...), where fD represents an ordered
vector of frequency counts over all words available in the document collection. In

13

3.1 AND/OR Structure

our setting, we are working with a slightly different document representation. The
frequency vectors are replaced by Bloom filters, and instead of words, documents
consist of k-mers. Since Bloom filters are bit-vectors they do not carry any frequency
information within them. This makes them an inferior representation for the doc-
ument clustering problem. We, however, are not directly interested in clustering
documents, but rather the Bloom filters obtained from them. This is because one
Bloom filter will replace several other Bloom filters in our compressed index. The
increase in the false positive rate due to this is directly proportional to how similar
the Bloom filters are and not the documents per se.

This reduces our clustering problem to that of clustering high-dimensional bit-
vectors. This is difficult for two main reasons, firstly because of the discrete nature
of bit-vectors, and secondly becauses of the high dimensionality. The size of Bloom
filters obtained in our experiments are usually within the range of 108 – 109 bits,
making the vector space in which they fall extremely sparse. In the following sec-
tion we describe in more detail how the clustering of Bloom filters can be exploited
to construct a better index representation that uses less space and provides search
prunning for queries. We note that we did not end up implementing the proposed
structure as our clustering results were not good enough to justify the effort.

3.1 AND/OR Structure

The idea to cluster Bloom filters in the setting of k-mer indices is nothing new.
All Bloom tree approaches use a hierarchical clustering algorithm to build the tree
structure of their index. Doing so gives them two main advantages: index compres-
sion and search pruning. We decided to take is similar approach to that of split
sequence Bloom trees. The leaves of their tree store the document Bloom filters,
while each inner node consists of two Bloom filters, an AND and an OR Bloom
filter.

ANDT :=∩B∈T B, ORT :=∪B∈T (B − ANDT) (3.1)

The AND Bloom filter stores the intersection of all Bloom filters in its sub tree,
while the OR Bloom filter stores the union of the same Bloom filters subtracted by
the AND Bloom filter. Search pruning using this structure is relatively easy. If a k-
mer is present in the AND Bloom filter of a node, it is also present in all documents
of that sub tree. Thus, the search can be stopped at that point. Otherwise, one looks
in the OR Bloom filter to decide whether the k-mer is present in any documents
at all. Compression is achieved by RRR and improved by not storing bits in child
nodes if they are present in the AND Bloom filter of the parent.

We have already argued against using RRR compression in the case of COBS. For
the same reasons we do not want to build a tree structure, because it would nullify
most of the benefits COBS has to offer. Having those considerations in mind we

14

3.1 AND/OR Structure

devised a similar approach to that of SSBT while trying to keep most advantages
COBS has to offer. The structure is build in two phases: AND and OR phase.

AND Phase Starts by clustering all Bloom filters B1, ..., Bn into a fixed number of
clusters K∩, 1, ..., K∩, c. We will refer to such clusters as intersection clusters.
For each of them an AND-Bloom filter is constructed, similar to that of SSBT.
It is defined as: ANDi :=∩B∈K∩, i B.

OR Phase Clusters Bloom filters within each
∼
K∩, i := {B − ANDi |B ∈ K∩, i},

obtaining one or more new clusters K∪, i, j, ..., K∪, i, ci . We will refer to those
clusters as union clusters. For each of them an OR-Bloom filter is constructed,
again similar to the one in SSBT. It is defined as: ORi, j :=∪B∈K∪, i, j B. The
resulting AND/OR structure is represented by the concatenation of all AND
and OR Bloom filters as illustrated in Fig 3.2.

15

3.1 AND/OR Structure

��� ��

1 1 0 0 . . . 1

ACTGT

�∩, 1 �∩, 2

1 0

1 1 11 0

1. . .

�∩, �−2 �∩, �−1 �∩, �

1 1�

(a) AND-Bloom filter match

��� ��

1 1 0 0 . . . 1 1 1

ACTGT

�∩, 1 �∩, 2

1 0

1 1 11 0

1. . .

�∩, �−2 �∩, �−1 �∩, �

1 1�

0 1

1

(b) AND-Bloom filter missmatch

Figure 3.2: AND/OR bit-sliced matrix.

In Figure 3.2 we can see how a search would be performed on the new bit-sliced
matrix. One important thing to note is that one can determine an arbitrary but
fixed order of documents within the score array. The first entries will correspond
to documents in K∩, 1, then to documents in K∩, 2 and so on. The entries for each
intersection cluster will be further ordered by their correspondence to the union
clusters, first comes K∪, i, 1, then K∪, i, 2 and so on. The AND and OR Bloom filters
are ordered in a similar fashion. This allows for a purely sequential access of the
score array. We do however have to sacrifice some cache performance due to pruning.
Searching for a particular k-mer only scans the AND-part of the matrix directly.
Whenever we hit a bit set to 1, we increase the score of all documents corresponding
to that intersection cluster, Figure 3.2 (a). On the contrary, we have to scan all

16

3.2 Distance Measures

the union Bloom filters corresponding to that intersection cluster, Figure 3.2 (b).
This leads to frequent jumps to the OR-part of the bit sliced matrix. Because of
the document order proposed above those jumps are not completely random. The
jumps will always access increasing parts of memory, mitigating the effects of cache
trashing somewhat.

Whether this approach is sensible to use is highly dependant on how similar the
Bloom filters are. Intersection clusters consisting of dissimilar Bloom filters will
be extremely sparse and be barely of any use at all. Union clusters consisting
of dissimilar Bloom filters will increase the false positive rate of their documents
drastically. And depending on the number of clusters one finds, the AND/OR
matrix may consume even more memory than before, but not more than by a factor
of two. In the next sections we will explain the clustering algorithms and techniques
we used to cluster our Bloom filters. At the end we give an experimental evaluation
on clustering several sequencing data sets.

3.2 Distance Measures

Most clustering algorithms rely on the presence of an distance measure between the
points that are being clustered. There are many different distance measures that
have been used in the context of document clustering in the past [Hua08]. We have
implemented and compared some of the most popular ones, which we introduce in
the following.

3.2.1 Euclidean Distance

Let x = (x1, ..., xd) and y = (y1, ..., yd) be two d-dimensional vectors, x, y ∈ Rn.
The Euclidean distance between them is defined as:

distE(x, y) :=
√∑n

i=1(xi − yi)2 (3.2)

3.2.2 Hamming Distance

Let x = (x1, ..., xn) and y = (y1, ..., yn) be two n-dimensional bit-vectors, x, y ∈
{0, 1}n. The Hamming distance between them is defined as:

distH(x, y) := |x⊕ y| =
∑n

i=1 xi ⊕ yi (3.3)

where ⊕ is the binary xor operator. We note that for bit-vectors it holds that
distH(x, y) = distE(x, y)2.

17

3.3 Dimensionality Reduction

3.2.3 Cosine Distance

Let x = (x1, ..., xn) and y = (y1, ..., yn) be two n-dimensional vectors, x, y ∈ Rn.
The cosine distance between them is defined as:

distC(x, y) := 1− x · y
||x|| ||y||

∈ [0, 1] (3.4)

The later term is the cosine of the angle between the vectors x and y. Thus vectors
that have the same orientation will have distC = 0, while orthogonal vectors will
have distC = 1.

3.2.4 Jaccard distance

Let X = {x0, ..., xn} and Y = {y0, ..., ym} be two sets drawn from the same space.
The Jaccard distance between them is definded as:

distJ(X, Y) = 1− |X ∩ Y |
|X ∪ Y |

= 1− |X ∩ Y |
|X ∩ Y |+ |X4Y | (3.5)

We use 4 to denote the symmetrical difference between two sets. Bit-vectors can
also be interpreted as finite sets, with a 1 indicating presence and a 0 indicating
absence of an element. As such, we are able to define the Jaccard distance on
bit-vectors x, y ∈ {0, 1}n as well:

distJ(x, y) = 1− |x ∧ y|
|x ∧ y|+ |x⊕ y| (3.6)

3.3 Dimensionality Reduction

Documents storing sequencing experiments often contain up to several gigabytes of
data. This results in a proportional amount of k-mers extracted from each document.
Since our Bloom filters have a fixed false positive rate, their size has to accommodate
for the larger number of k-mers. In our experiments the Bloom filter sizes were
between 108 and 109 bits.
This is problematic for two main reason. Firstly, clustering algorithms dealing with
high dimensional data are likely to suffer from the curse of dimensionality. The space
containing our data points is going to be extremely sparse due to the large number
of dimensions, reducing the informative value we obtain from distance functions.
Secondly, computing the distance between two vectors in a d-dimensional space
usually takes O(d) time. Moreover, the number of dimensions has a multiplicative
effect on the running time of our clustering algorithms, leading to a prohibitively
large execution time.

18

3.4 Clustering Algorithms

To deal with these problems, one usually applies a technique called dimensionality
reduction. It projects the input data onto a lower dimensional subspace, while ide-
ally preserving important properties such as relative distances. The arguably most
famous approach is Principle Component Analysis [WEG87]. It projects the input
data onto a new space whose bases point along directions of maximal variability in
the input data. Due to its time complexity of Ω(d2) it is only feasible for moderately
high dimensions. Slightly less sophisticated, but in practice good alternatives are
Random Projections [BM01] and Min-Hashes [Bro97]. Random Projections however
are still too expensive for our scenario, so we opted to an approach that is similar
to Min-Hashes. Instead of choosing the lowest p hash values like in Min-Hash, our
reduction consist of choosing a random segment of the Bloom filter and extracting
all hash-values from it. Since our Bloom filters are relatively dense and the bits are
randomly distributed, it is expected to perform as good as the Min-Hash approach.

3.4 Clustering Algorithms

In this section we give a short overview of the clustering algorithms we have evalu-
ated in our experiments. How exactly we compute distances between clusters, and
distances between Bloom filters and clusters, will be explained in the next section
when we introduce the notion of centroids.

3.4.1 Hierarchical Clustering

Algorithm 1 Ward’s algorithm Time: O(n2 log n)
1: procedure Ward(B1, ..., Bn, c)
2: C := {C1, ..., Cn} ← B1, ..., Bn . Each Bloom filter is initially a cluster
3: heap← ∅
4: for (i, j) ∈ {1, ..., n}2 do
5: heap.insert(Ci, Cj) . Ordered by dist(Ci, Cj)
6: end for
7:
8: while n ≥ c do
9: (Ca, Cb)← heap.pop() . Gets the closest cluster pair

10: C ← C \ {Ca, Cb}
11: for Ck ∈ C do
12: heap.insert(Ck, Ca ∪ Cb)
13: end for
14: C ← C ∪ {Ca ∪ Cb}
15: n← n− 1
16: end while
17: return C

19

3.4 Clustering Algorithms

The main drawbacks of this algorithm are its running time and space consumption
which are both in Ω(n2). In order to speed up Algorithm 1 we tried not to insert
all possible cluster pairs into the heap. Instead we pick n′ < n clusters at random
and insert only those pairs into the heap.

3.4.2 K-Means and K-Means++

Algorithm 2 K-Means Time: O(n)
1: procedure KMeans(B1, ..., Bn, c)
2: C := {C1, ..., Cc} ← Init(B1, ..., Bn) . Initialization as in [AV07]
3: for r ∈ 1, ..., Rounds do
4: C ′1, ..., C

′
c ← ∅

5: for i ∈ 1, ..., n do
6: k = arg min

j∈{1,...,c}
dist(Bi, Cj)

7: C ′k ← C ′k ∪ {Bi}
8: end for
9: C ← {C ′1, ..., C ′c}

10: end for
11: return C

Compared to Ward’s algorithm K-Means has a lower time and space complexity.
Its running time is however affected by a lot of hidden constants. There are also
some pitfalls and difficulties when it comes to K-Means. It is not obvious how to
initialize the clusters at the beginning. A poor choice may slow down or prevent
the algorithm from finding a good clustering. Instead of choosing points at random,
we implemented K-Means++ [AV07] which tries to maximize the pairwise distances
between the initial cluster points. The second problem we had to deal with are
empty clusters. Some of the newly computed clusters in line 9 of Algorithm 2 can
be empty. To avoid this we re-assign points with the greatest distance to their host
cluster into empty clusters.

3.4.3 Bi-Sectional K-Means

This clustering algorithm tries to combine a hierarchical top-down approach with a
K-Means based partitioning. It has shown to deliver promising results in the setting
of document clustering [SKK00].

Algorithm 3 Bi-Sectional K-Means Time: O(n)
1: procedure Bi-Sectional-KMeans(B1, ..., Bn, c)
2: C := {B1, ..., Bn}
3: heap = {C}
4: while heap.size() < c do

20

3.5 Centroid Selection

5: Ck ← heap.pop() . Cluster with worst evaluation
6: (Ca, Cb)← KMeans(Ck.elements(), 2)
7: heap.insert(Ca)
8: heap.insert(Cb)
9: end while

10: return heap.elements()

What we mean by worst cluster in line 5 of Algorithm 3 will become apparent when
we introduce our evaluation function in the experimental section of this chapter.
But an equally good heuristic would be splitting along the largest cluster.

3.5 Centroid Selection

One thing which was left out from the previous section was how to compute the
distances to a cluster, that is dist(Bi, Cj) and dist(Ci, Cj). There are several possible
ways to define this. One could for example pick a random document within the
cluster and use it to compute the distance. One could also pick multiple random
documents and average the sum over all distances to the cluster. We decided to
take a centroid based approach. A cluster centroid is a point which minimizes the
sum of distances to all other points in the cluster. The centroid does not have
to be a member of the cluster. For example, the centroid of {v1, v2, ..., vn} in the
d-dimensional Euclidean space is given as:

Tw = 1
n

∑n

i=1 vi (3.7)

We will denote Tw as the weighted centroid. The problem with the above equation is
that Tw ∈ Rd is not necessarily a bit-vector. This would render some of our metrics
useless, such as the Hamming- and Jaccard distance. There are two ways to adapt
the centroid based approach for bit-vector metrics as well. One way is by defining
a centroid which is also a bit-vector, the modal centroid:

Tm[i] =

1, if ∑

B∈C
B[i] ≥ n

2

0, otherwise
, ∀i ∈ {1, ..., d} (3.8)

Each coordinate is set to 1 or 0 based on whether the majority of the documents
has a 1 or 0 set at that position. It is a natural extension of the weighted centroid to
the bit-vector space. We also went the other way around and adapted the Hamming
distance to work with the weighted centroid. This new metric will be denoted by
weighted Hamming distance in our experiments. The extension to the Euclidean
space makes this new metric equivalent to the Manhattan distance.

21

3.6 Experimental Results

3.6 Experimental Results

The experiments we did in this section mostly revolve around analyzing whether
the clustering idea is feasible in the first place. As it turned out clustering noisy
high dimensional bit vectors is difficult. We did not manage to get any meaningful
clusters out of our data, as shown the in sections to come. For this reason we did
not implement the proposed AND/OR structure but took a hold after performing
initial clustering experiments. In order to figure out why the data is difficult to
cluster we performed two additional experiments. In the first we tried to cluster
manually generated data by introducing random noise, and in the second we tried to
investigate the effect that low-frequency k-mers have on the quality of the clustering.

3.6.1 Setup

In the following we give a brief introduction to the platform and sequencing data
the experiments were performed on.
Platform We run our experiments on a 32-core machine with 4 x Intel Xeon E5-

4640 (2.4 GHz, 8 cores), 512 GiB of DDR3-PC16000 RAM, and 2 TB of SATA
hard drives. The machine was running the Linux distribution Ubuntu 18.04
and the code was compiled using gcc 7.4.0.

Datasets There are 3 main data sets that we will be using throughout this the-
sis. The first data set contains sequencing reads of genomic microbial data,
which we will call microbial. The entire corpus of microbial data present
in ENA, about 450,000 files, was indexed for the first time by Bradley et
al. [BdBR+19]. The accession list of the data used can be found at http:
//ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/. Depend-
ing on our experiments we will be using a subset of those documents. We also
note that all our sequencing data is in raw format. That is, unless stated oth-
erwise, we did not clean any low-frequency k-mers from the data in order to
remove noise introduced by the sequencing process. Our second data set, which
we call sbt, contains sequencing reads of trancriptomes obtained from various
human tissues. This data set was obtained from Solomon and Kingsford and
has been used in the evaluation of their SBT trees. The corresponding ac-
cession list can be found in http://ftp.ebi.ac.uk/pub/software/bigsi/
nat_biotech_2018/ctx. The third and last data set contains sequencing
reads from human gut microbiomes and was obtained from the BioProject
PRJEB2054. This data set will be denoted as human-gut. All of our data was
downloaded from the Sequence Read Archive (SRA).

In order to test how good our clustering algorithms perform we used the following
evaluation function, which we will denote by coverage:

f =
∑c

1 |ANDi| · |K∩, i|∑n
1 |Bi|

(3.9)

22

http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/
http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/
http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx
http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx

3.6.2 Frequency Distribution of k-mers

The coverage is used to evaluate the AND-phase of our clustering. First of all, it holds
that 0 ≤ f ≤ 1. Furthermore if the Bloom filters within each cluster are identical
it follows that f = 1. And if the Bloom filters within the clusters do not share any
bits it follows that f = 0. From these considerations one can see why the choice of
f is meaningful for our problem. Consequently the coverage represents a very good
indicator of how good the prunning quality of the AND/OR structure is going to
be. We note that a very similar coverage function can be used for the OR-phase,
which we omitted from the following experiments due to simplicity.

3.6.2 Frequency Distribution of k-mers

One thing that has been interesting to us while doing our experiments is the question
about what the right k-mer size is. The original sources from which we obtained
some of our data sets (sbt, microbial) did not provide a reasoning for their choice
of the k-mer size. Neither did we find much useful information otherwise. There
are two main factors that influence the choice of the k-mer size in our view. The
first factor is inherit to the nature of approximate pattern matching. Choosing a
k-mer size that is too small will lead to a drastic increase in the false positive rate
of the queries. On the other hand if the k-mer size is too large we will not be able
to have small queries. The second factor that can influence the choice of the k-mer
size is the presence of noise in the data, which is due to errors in the sequencing
process. The larger the k-mer size the more likely it is that some of its characters
are erroneous. Having these considerations in mind we can see why it is not easy
to choose a right k-mer size. A common rule of thumb seems to be to look for
a k-mer size that produces a more or less uniform frequency distribution. This is
a reasonable choice in so far that it prevents us from choosing a k-mer size that
is too big or too small. Due to influence of noise the frequency distributions are
likely to have a large spike in their low-frequency parts. In order to gain more
insight, in Figure 3.3 we analyze the behavior of the k-mer frequency distribution
for various choices of k. The frequency data was generated using the k-mer counting
tool jellyfish [MK11]. Since there is a lot of variability in the frequency data we
have smoothened it out by fitting the curves through the points using the loess
function in R with a local windows size of 0.03 · p, where p is the total number of
frequency points. We picked three representative k-mer sizes for each data set to
illustrate the change in frequency distribution, k ∈ {12, 14, 30}.

23

3.6 Experimental Results

0 2000 4000 6000 8000

0

5

10

15

20

25

30

35

Frequency

Lo
g2

 C
ou

nt
●

●

●

sbt−12
sbt−14
sbt−30

0

5

10

15

20

25

30

35

Frequency

Lo
g2

 C
ou

nt
●

●

●

sbt−12
sbt−14
sbt−30

0

5

10

15

20

25

30

35

Frequency

Lo
g2

 C
ou

nt
●

●

●

sbt−12
sbt−14
sbt−30

(a) sbt

0 500 1000 1500 2000 2500 3000

0

5

10

15

20

25

30

35

Frequency

Lo
g2

 C
ou

nt

●

●

●

microbial−12
microbial−14
microbial−30

0

5

10

15

20

25

30

35

Frequency

Lo
g2

 C
ou

nt

●

●

●

microbial−12
microbial−14
microbial−30

0

5

10

15

20

25

30

35

Frequency

Lo
g2

 C
ou

nt

●

●

●

microbial−12
microbial−14
microbial−30

(b) microbial

0 1000 2000 3000 4000

0

5

10

15

20

25

30

35

Frequency

Lo
g2

 C
ou

nt

●

●

●

human_gut−12
human_gut−14
human_gut−30

0

5

10

15

20

25

30

35

Frequency

Lo
g2

 C
ou

nt

●

●

●

human_gut−12
human_gut−14
human_gut−30

0

5

10

15

20

25

30

35

Frequency

Lo
g2

 C
ou

nt

●

●

●

human_gut−12
human_gut−14
human_gut−30

(c) human_gut

Figure 3.3: k-mer frequency distributions for various choices of k.

24

3.6.3 Clustering Sequencing Data

We can see that for k = 12 the number of high-frequency k-mers is large relatively
to the amount of low-frequency k-mers. This is not ideal because it leads to an
increase in the false positive rate of our pattern matching and allows noise to blend
in throughout the distribution. For k > 12 we can see a clear change. The low-
frequency part shows a steep drop, which is most likely caused due to noise in the
sequencing data. The high-frequency parts also start to experience a drop compared
to k ≤ 12. Which k > 12 is the best choice for which data is not really clear. It
seems to be about finding the right balance between low-frequency k-mers falling
into the noisy part of our distribution and the high-frequency part. Increasing that
gap by using a larger k again leads to negative effects in our pattern matching due
to larger influence of noise.

3.6.3 Clustering Sequencing Data

From each of our data sets we picked n = 100 random sequencing documents and
clustered them into c = 10 clusters. In order to evaluate the quality of our clustering
we used the coverage function f introduced above. For KMeans we performed IK =
20 rounds while for Ward we initialized the heap by computing the distances between
all points. We note that none of our clustering algorithms directly optimizes the
criterion function f . In order to see whether a direct optimization of f leads to better
clustering results, we have implemented a K-Means variant that tries to optimize f
locally for each iteration of the algorithm. We denote this clustering approach by
OptKMeans. For the sbt data set we used a k-mer size of k = 20, while for the other
two data sets a k-mer size of k = 31 was used. In Table 3.1 we give an overview of the
coverage, as well as the size of the smallest- and largest intersection cluster that were
found in our experiments. In terms of coverage the best clusterings were obtained
by Ward’s algorithm followed by KMeans. We have to note that a coverage of 30%
may not be as good as it seems on the first sight. This can be seen from the size
of the largest found intersection cluster, which in most cases contains almost all of
our Bloom filters. The corresponding AND Bloom filter in such cases is empty, which
means that almost all of our documents would not benefit from any prunning or
potential memory savings. The relatively high coverage is contributed by relatively
large Bloom filters that got clustered into singleton clusters – for which again we
have no added value by introducing an AND Bloom filter. When it comes to execution
time Ward was the fastest from our algorithms, leaving BisectionalKMeans by more
than an order of an magnitude behind on the sbt data set, which can be seen in
Table 3.2.

25

3.6 Experimental Results

Distance Measure
Algorithm Dataset Euclidean Hamming W-Hamming Cosine Jaccard

Ward sbt 1/92 0.38 1/92 0.38 1/92 0.38 1/81 0.002 1/77 0.006
microbial 1/94 0.34 1/94 0.34 1/94 0.34 1/93 0.013 1/37 0.001
human-gut 1/93 0.18 1/93 0.18 1/93 0.18 1/88 0.0005 1/71 0.0002

KMeans sbt 1/92 0.31 1/55 0.32 1/91 0.35 1/33 0.011 2/60 0.0022
microbial 1/91 0.31 1/77 0.31 1/94 0.34 1/75 0.002 1/58 0.0001
human-gut 1/93 0.16 1/93 0.17 1/82 0.1 1/65 0.0002 1/62 0.0006

BisectionalKmeans sbt 1/81 0.19 1/45 0.11 1/90 0.32 1/68 0.018 1/81 0.0004
microbial 1/75 0.21 1/73 0.17 1/89 0.29 1/36 0.018 1/54 0.014
human-gut 1/93 0.15 1/93 0.15 1/58 0.08 1/71 0.0004 1/71 0.0005

OptKmeans sbt - - 1/91 0.31 - - - - - -
microbial - - 1/65 0.26 - - - - - -
human-gut - - 1/93 0.17 - - - - - -

Table 3.1: Cluster analysis of the AND-phase. The first column represents the fraction
between the smallest and largest found intersection cluster. The second column
represents the coverage.

Algorithm Dataset Time[s] Bloom Filter Size
Ward sbt 234.806 22405036765

microbial 17.8093 3755021565
human-gut 131.343 1732588147

KMeans sbt 871.075 22405036765
microbial 120.931 3755021565
human-gut 592.96 1732588147

OptKmeans sbt 1948.93 22405036765
microbial 119.604 3755021565
human-gut 716.016 1732588147

BisectionalKmeans sbt 7031.16 22405036765
microbial 1895.02 3755021565
human-gut 5838.78 1732588147

Table 3.2: Execution time comparison of clustering algorithms.

3.6.4 Analyzing the Effects of Noise

The process of obtaining sequencing reads is not exact. Random noise gets intro-
duced into the data due to the chemical process involved in generating the reads. A
valid question that arises is to what extent does this noise influence the clusterability
of our Bloom filters. To investigate this question we performed two experiments:

Generating Synthetic Data We generated c = 5 synthetic clusters with nc = 20
documents per cluster. For each cluster we initially constructed a random

26

3.6.4 Analyzing the Effects of Noise

base string of length l = 100000 with the characters {A, C, T, G}. Each of
the nc documents within a cluster is a random mutation of this base string.
The base string is mutated by changing each character with a probability of
mr ∈ [0, 1]. The characters are changed to a random nucleotide base letter.
In Table 3.3 we illustrate the effect of the mutation rate mr on the coverage
of the obtained clusters. For the clustering of the data we used K-Means with
Euclidean distance and a k-mer size of k = 20. We can see from the results
how much impact noise can have in k-mer-based indexing. The problem is that
a single faulty character introduces noise in up to k different k-mers. Having
uniformly distributed noise is especially bad since it affects mostly distinct
k-mers of a string. Unfortunately we do not have any information about how
noisy our sequencing data actually is. This experiment rather shows us that
even a small amount of constant noise can make the Bloom filters too noisy
for our clustering application.

mr = 0.001 mr = 0.005 mr = 0.01 mr = 0.05 mr = 0.1
coverage 0.7886 0.3370 0.1240 0.0068 0

Table 3.3: Effects of random mutation on the cluster coverage.

Removing Low-Frequency k-mers Low-frequency k-mers, especially those that
occur only once, are likely introduced due to errors in the sequencing process.
In the frequency plots introduced in this chapter, we can see that low-frequency
k-mers are especially abundant. This means that the data we are trying to
cluster is potentially extremely noisy. In order to investigate the influence of
this noise we performed an experiment by deriving three new data sets from
sbt. The data sets were obtained by filtering out all k-mers which occur with
a frequency less than two, three and four respectively. The effects this had on
the coverage quality of our clustering can be seen in Table 3.4. The results were
obtained by using K-Means with Euclidean distance and a k-mer size of k = 20
If we compare these results to Table 3.1, where we did not filter out any k-
mers from the data, we can see that our clustering performance initially drops.
This would indicate that a large portion of the k-mers that occur only once are
actually shared across the sequencing experiments. Filtering out increasingly
more low-frequency k-mers shows to have a positive impact on our clustering
coverage, overall confirming our assumption. It is unclear however, how much
noise and how much actual data is removed by this process, which is something
that requires further investigation.

cutoff = 2 cutoff = 3 cutoff = 4
coverage 0.2238 0.3174 0.3540

Table 3.4: Effects of low-frequency k-mers on the cluster coverage.

27

4 Batched Queries

4.1 Overview

Queries in COBS are executed sequentially one after the other. This may be optimal
for the execution time of a single query, but looking at t ∈ N queries {q1, q2, ..., qt}
as a whole, one might do better. For each query that is executed sequentially a set
of rows has to be read from the bit-sliced matrix:

Ri :=∪r
i=1{hi(s) mod m | s ∈Mk(qi)} (4.1)

That is, we first read all rows indexed by R1, then those by R2 and so on. Depending
on how many queries are executed and how large they are, the number of rows that
are shared among the Ri increases. We can exploit that fact to our advantage.
When batching, we compute the set of all rows:

R :=∪t
i=1 Ri (4.2)

Instead of scanning the index multiple times, we only scan it once for all rows present
in R. Since we are processing t queries simultaneously, we also need to update t
different score arrays while reading the rows. That means, the expected speed up of
this approach does not necessarily come from a lower number of operations executed.

Our batched queries are going to have a better cache performance and require less
disk reads. The better cache performance comes from the fact that we are scanning
through the bit-sliced matrix only once instead of t times. Even more importantly,
in contrast to COBS we access the rows of the matrix in a sorted fashion. The
decrease in disk reads only comes into play when the index does not fit into main
memory. Let M be the size of the main memory in bytes, and B the block size of
our disk. Further let the index size be I = kM , for k ≥ 2. The sequential query
execution will perform O(t · I

B
) disk reads. In comparison, the batched approach will

only require O(I
B

) disk reads. Batching does have a drawback in real time systems
however. Depending on how large the batch size is, the query execution time will
be delayed correspondingly. Thus designing a proper batching system is subjected
to experimental evaluation.

29

4.3 Experimental Results

4.2 Implementation Details

In this section we discuss a few implementation and design choices we had to face
while modifying COBS to support batched queries:

Number of hash functions We restrict the number of hash functions used by
COBS to r = 1. Since this is the default value which COBS uses anyway, it
only represents a weak limitation. For r = 1 one can simply add up the row
entries into the score arrays directly. While for r > 1, one has to compute
the bit-wise AND from multiple row entries before the result can be added into
the score array Figure 2.2. Which means that we need additional space to
compute the bit-wise AND for each k-mer from all queries in the batch. The
additional space needed for that would be in O(n ·∑t

i=1 |qi|). For moderately
large batches this can get close to our index size. Due to this additional cost,
we affirm that the choice of r = 1 is likely also the best when dealing with
batched queries.

Sorted vs. Random access The order in which COBS reads the rows of the bit-
sliced matrix is random. Accessing rows in a sorted fashion can be beneficial
due to cache effects. This is especially true for smaller rows. In order to test
whether we can get a performance gain through this, we have presorted the
row indices before scanning the matrix. The sorting algorithm used for this is
the In-Place Parallel Super Scalar Samplesort [AWFS17] by Axtmann et al.

SSE Instructions COBS uses the SSE2 instruction _mm_add_epi16 in order to
speed up the row processing. When computing the score array COBS is able
to update 8 documents simultaneously this way. One drawback we noticed
is that when two k-mers from a query hash into the same row, COBS would
just read that row twice, and update the score array accordingly. Instead we
store for each row a list of pairs containing the query id and the number of
k-mers hashed into that row {(id1, f1), ..., (idw, fw)}. The score array of each
query gets incremented as before with _mm_add_epi16. In addition we use
_mm_mullo_epi16 to premultiply the operand with the k-mer frequency.

4.3 Experimental Results

4.3.1 Setup

The same platform and data sets were used as in the previous Chapter 3.6.1.

30

4.3.2 Evaluation

4.3.2 Evaluation

We did a direct comparison between executing queries sequentially and in a batched
fashion for n = 104 random sequencing experiments from themicrobial data set. In
Table 4.1 we show the execution times of both variants, while varying the number
of queries performed. The size of the queries was equal to the k-mer size used
for indexing the documents k = 31. Half of them were obtained by sampling the
actual document set, while the other half was generated at random. We can see a
performance increase of more than a factor of 10 which is mostly due to the better
utilization of CPU and disk cache that comes from processing the rows in a sorted
manner. The accessed data rows fit into RAM regardless of whether we used the
compact or classic variant of COBS. Since designing an experiment where the rows
do not fit into RAM is very artificial and unlikely to occur in real world scenarios,
we choose not to conduct such an experiment.

queries = 103 queries = 104 queries = 105 queries = 106

sequential 0.331595 3.18695 31.6946 325.397
batched 0.0417439 0.244372 2.18177 22.4698

Table 4.1: Execution times (in seconds) for sequential and batched querying.

31

5 Distribution

5.1 Motivation

Querying sequenced genomic data for particular occurrences becomes computation-
ally more and more expensive as the amount of sequenced data nearly doubles every
year. To handle the massive increase in computational and storage requirements,
indexing such data efficiently requires a distributed approach. In the following we
introduce our distributed version of COBS, which we will call for short by DCOBS.

5.2 Architecture

DCOBS uses a master-slave architecture. As such we distinguish between two
types of compute nodes in our system: query (master) and index (slave) node.
Ideally we would like to have a n : m relation between the roles. For reasons of
simplicity the current implementation only supports a 1 : m relation, but it should
be easily extendable to support the former case. In the following we give a short
description of the different roles in the system:

Query Node Responsible for orchestrating all operations on the distributed index.
Accepts incoming user queries and distributes them among the index nodes
for processing. Once the query results from all index nodes are received and
merged together, it sends the result back to the user. It maintains a consistent
view on the index and deals with fault tolerance.

Index Node Is essentially a wrapper around a COBS implementation. The index
node accepts query requests from the query node and sends the computed
result back to it. Each index node builds an index from a subset of the entire
document collection. The documents a node is responsible for are stored in
persistent memory on the node itself.

DCOBS Client A terminal client which connects to the query node. It can be
used to dispatch queries to the query node and view the corresponding result.
The terminal client will block until the result from the query node is received
or a timeout has been reached.

33

5.3 Implementation Details

COBS

Query Node

Index Node Index Node Index Node

COBS

SRR122

SRR659

....

SRR154

SRR709

....

ERR002

SRR832

....

DCOBS Client

ACTGAT

--

COBS

Figure 5.1: DCOBS architecture.

5.3 Implementation Details

The implementation was done in C++ using the Boost ASIO library:
https://think-async.com/Asio.
In order to increase the portability of our code we decided to use the standalone
version of the library, rather than the one integrated in Boost. However, we could
not get rid of Boost completely. We did not find an easy way around using its
serialization library, which we require in order to serialize the messages between
different hosts. ASIO enabled us to implement the communications in a completely
asynchronous manner. This means that no thread in the query or index node will
be wasting computing resources waiting for a response. Both nodes are also multi-
threaded and concurrent safe. As such they are able to deal with multiple incoming
query requests simultaneously.
The distributed index is constructed without any interaction between index nodes.
Each node has its own accession list of sequencing documents. The nodes read those
lists and download the documents required to build their local index. This is done
by using a custom FTP-client written in C++. After the downloads are complete, each
node invokes COBS in order to build their index, and upon successful construction,
they connect to the query node signaling their readiness to process queries.
A user connects to DCOBS by using a terminal client. It allows the user to query the
system by either providing a raw query string or a text file. When the query node
receives a query, it gets delegated to all connected index nodes. The query node

34

https://think-async.com/Asio

5.4 Index Sharding

COBS

1
0

0
0

1
1

1
0

1
0

0
1

0
1

1
0

0
0

1
1

1
0

1
0

0
1

0
1

1
1

0
1

1
1

1
1

0
0

1
0

1
1

1
1

0
1

1
1

1
1

0
0

1
0

1
1

0
0

1
0

0
1

0
0

0
1

1
1

0
1

0
0

1
0

0
1

0
0

0
1

1
1

0
1

COBSCOBS

(a) Sharding by hash

COBSCOBSCOBS

01
0 1
0 1
0 0
0 1
1 1

11
1 0
1 1
1 1
0 0
1 0 1

0
1
1
1
001

0 0
1 0
1 1
0 1
0 0

01
0 0
1 0
1 1
0 1
0 0

1
0
0
0
0
1

11
1 0
1 1
1 1
0 0
1 0

0
1
1
0
1
1 1

0
1
1
1
0

(b) Sharding by document

Figure 5.2: Sharding techniques.

needs to be able to later identify which incoming results from index nodes belong
to the same query. To achieve this each request gets associated with a unique
transaction id. The individual results from different index nodes get stored into a
concurrent hash table. When the results from all index nodes are received they get
merged using a k-way-merge algorithm in O(n log k) time. Here n is the total size
of the result set and k is the number of index nodes. The merging order is provided
by the score array just like in COBS, which also gets sent back to the query node
as part of the result set.
In addition to the query, users can provide three optional parameters: the k-mer
size k, a threshold value θ and the number of documents in the result set t. This is
the same as in the implementation of COBS, so the parameters are just delegated
directly to it. The k-way-merge is adapted accordingly to stop after having found
t documents, reducing the running time to O(t log k).

5.4 Index Sharding

Index sharding refers to the logical partitioning of a single COBS index into mul-
tiple smaller indices, which in turn get distributed across the index nodes. The
sharding should strive to achieve fast query times and robustness against system
failure. There are two main ways to shard the COBS index across multiple nodes:
by hash-space and document-space. In the following we address the advantages
and drawbacks of them. Since sharding by document-space turned out to be more
advantageous, it is the technique we employed in our implementation.

Sharding by hash-space Represents a horizontal partitioning of the bit-sliced
matrix. Each index node is assigned one or more partitions. An incoming

35

5.5 Dynamic Index Updates

query to the query node is not forwarded directly to index nodes. Instead a
Bloom filter containing all of its k-mers has to be computed first, which con-
sequently gets partitioned along the same boundaries as the COBS matrix.
The individual index nodes then receive corresponding parts of that Bloom
filter, which they use to perform a local query. Although it provides good load
balancing, because the entries in Bloom filters are randomly distributed, this
approach has several drawbacks. Firstly, the same Bloom filter size has to be
used across all documents, increasing the overall memory footprint of the in-
dex. Secondly, this approach has a poor fault tolerance. If one index node goes
down, it eliminates at least one complete horizontal partition from our index.
If we want to recover this lost data, we have to re-build the complete index
using all documents from scratch, which is computationally very expensive.

Sharding by document-space Represents a vertical partitioning of the bit-sliced
matrix. In other words, each index node is responsible for a subset of the entire
document collection. This allows for queries to be directly forwarded to index
nodes, without any prior processing by the query node. And because of this,
index nodes are able to choose Bloom filter sizes to their liking, reducing the
amount of wasted memory overall. The last advantage is that the failure of
a single node is not as costly as when sharding by hash-space. We only have
to re-build an index out of the documents that have been lost. Thus, the
computational cost is proportional to the lost data and not the entire data
collection in the distributed system.

5.5 Dynamic Index Updates

Once the distributed index is initially constructed, it should be possible to insert
and delete documents from it. We will call such operations dynamic index updates.
As we have already mentioned before, each index node in our system has its own
list of unique document keys it is responsible for. Furthermore, we implemented an
asynchronous event in our index node that periodically checks whether this list has
been modified. If so, the node will start fetching new documents via FTP and trigger
a dynamic index update.

The most trivial way to implement dynamic index updates is to re-construct the
local index completely (with or without the documents in question). This however
can get very expensive as the index size grows. We should not have to re-compute
Bloom filters of documents that are not part of the update operation. We present
two different ways to achieve this: by adapting compact COBS and by designing an
alternative index representation.

36

5.5.1 COBS Compaction

5.5.1 COBS Compaction

The problem that arises with compact COBS lies in how the bit-sliced matrix is
constructed. It gets build by pre-sorting the document collection by size and par-
titioning the resulting sequence into chunks C1, C2, ..., Cp of fixed size W . For each
chunk we build a bit-sliced matrix by choosing the Bloom filter size according to
the largest document in the chunk, as shown in Figure 5.3.

�1 �2 �3

������� ������������

1
0
1
1
0
1
1
1
0
1
0
1
0
1

1
0
1
0
1
1
0
1
1
1
1
0
0
0

1
1

0
1
1
1
0

1
1
0
0
0
0
0 1

0
1
1
0
1
1
1
0
1
0
1
0
1

1
0
1
0
1
1
0
1
1
1
1
0
0
0

1
1

0
1
1
1
0

1
1
0
0
0
0
0

1
0
1
1 1

1
1 1 0

1
0
1
1
0
1
1
1
0
1
0
1
0
1

1
0
1
0
1
1
0
1
1
1
1
0
0
0

1
1

0
1
1
1
0

1
1
0
0
0
0
0

1
0
1
1 1

1
1 1 0

1
0
0
1 0
0

Figure 5.3: Compaction in COBS. Yellow areas of the index illustrate the wasted
space by choosing the Bloom filter size according to the largest document.

In order to remove a document from the index we need to know in which chunk
it resides. This can be answered in O(1) time by simple pre-computation. For a
new document that is to be inserted in the index we have to choose into which
chunk it should go. To maintain the sorted order of documents, we have to find the
chunk whose largest document is as small as possible while still being larger than
the new document. This can be done with binary search in O(log n) time, where
n is the number of documents in the index. Adding and removing documents will
inevitably produce an in-balance in the index, because chunks will start to vary in
size. A chunk with too many elements will start to look more and more like the
classic COBS variant, wasting unnecessary space on large Bloom filters. Chunks
that become to small will negatively effect the cache performance of the reads. To
avoid this one can use a balanced binary search tree for each chunk to store the
document sizes. Once there are more than 2 ·W documents in a chunk it gets split
in two. And once there are less than W

2 documents in a chunk, we can join it with
the previous chunk (following a potential split). Joining and splitting will require
the re-computation of Bloom filters for all documents affected. In all other cases
an insertion and deletion will only do a scan/copy of the index. Split and join on
balanced binary search trees can be done in O(log n) time [BFS16].

37

5.6 Experimental Results

5.5.2 Fixed Interval Compaction

An alternative way to implement compaction is to use fixed-value chunks. In our
implementation we define chunks in terms of powers of two. For each i ∈ N the
chunk with index i will store all documents whose sizes fall in the range (2i−1, 2i].
The Bloom filter size for chunk i is determined by the largest possible document in
that chunk, which is 2i. This makes insertion and deletion especially easy, because
Bloom filter sizes within a chunk never change. For this reason we also never have to
recompute Bloom filters of documents that are not directly affected by an dynamic
operation. This is important because in order to re-compute the Bloom filters one
has to have access to the raw documents. Storing all of them permanently may not
be a viable option in some scenarios due to large amount of data. Finding out in
which chunk a document belongs to can be easily computed in O(log n) time.

Because of its simplicity and the earlier mentioned advantages we opted to partition
our index locally based on intervals of powers of two, rather than a fully sorted
arrangement like in compact COBS. Depending on the distribution one compaction
may deliver better results than the other. But overall the COBS compaction is
expected to deliver better space savings due to its smaller chunks sizes. We can
however give a bound on the worst case of our approach. If M is the space con-
sumption of all Bloom filters, individually computed on a document basis, then the
index partitioned in terms of powers of two will require at most 2 ·M space.

5.6 Experimental Results

5.6.1 Setup

We conducted our experiments on the high performance computing cluster ForHLR
II, which is operated by the Steinbuch Centre for Computing (SCC) in Karlsruhe.
The computing node consists of two Deca-core Intel Xeon processors E5-2660 v3
(Haswell) with hyper-threading enabled. Each core runs at a clock speed of 2.1 GHz
and has 10 × 256 KB of level 2 cache and 25 MB level 3 cache. Each node has 64
GB of main memory and 480 GB of local SSDs.

All nodes in the cluster are connected through InfiniBand 4X EDR interconnect,
which is characterized by a very low latency of 1 microsecond and a point to point
bandwidth between two nodes of more than 6000 MB/s. We store our sequencing
data on the distributed file system which is operated by Lustre. It allows for a
read/write performance of 2GB/s per computing node and a total read/write per-
formance of 50 GB/s. The computed indexes were stored on the local SSDs of each
computing node.

38

5.6.2 Evaluation

5.6.2 Evaluation

We evaluated DCOBS by spinning up N + 2 computing nodes, which includes N
index nodes, one query node and one client node. The data we used to construct
our index was the same as in the previous chapter - n = 104 random sequencing
experiments from the microbial data set. The data set was split up into N equal
parts and each part was assigned to a corresponding index node. After construction
the client node would generate q = 105 queries and dispatch them sequentially to
the query node. The size of each query was equal to the k-mer size of k = 31,
while half of them were obtained by sampling the sequencing documents, and the
other half was generated at random. In Table 5.1 we report construction and query
times for different numbers of N . The reported construction time is the maximum
over all index nodes, while the reported query time is measured from when the first
query is dispatched utill all the results were obtained from the query node. We
can see that DCOBS scales very well, although we are not sure what caused the
drastic increase in query performance from N = 4 to N = 8. One thing to note
is that the communication overhead is also considerable. We start getting slightly
better query performance than a single node for N ≥ 8. Which is not bad given
that the query performance of COBS is already super fast. At last we also want
to mention the space consumption of the fixed interval compaction in comparison
to the standard and compact variants of COBS. Even though the fixed interval
compaction is considerably simpler than the compact variant of COBS, we can see
in Table 5.2 that it was able to construct a bit-sliced matrix that is almost by factor
of 2 smaller than the matrix produced by compact COBS.

nodes = 1 nodes = 2 nodes = 4 nodes = 8 nodes = 16
build 10707.1 5070.3 2743.24 1691.57 1131.49
query 819.368 590.762 401.762 23.859 16.3288

Table 5.1: Distributed construction and query times (in seconds) for varying num-
bers of index nodes.

standard COBS compact COBS fixed interval DOBS

Index Size in GB 451 34 18

Table 5.2: Comparison of index sizes for different compaction methods.

39

6 Conclusion and Future Work

We conclude this thesis by looking back at some of the outcomes and goals we
have set at the beginning. Unfortunately we did not get good results by clustering
Bloom filters obtained from sequencing experiments. Thus we did not manage to
provide a justification for using the proposed AND/OR structure for prunning and
compaction. The clustering problem was surrounded by many challenging aspects,
from noisy and high dimensional data to properly parametrizing the clustering algo-
rithms. Whether the clusterability changes with a larger amount of data or having a
more flexible parametrization is left as an open question. Furthermore it is unclear
how much of noise is present in the data, making it difficult to derive conclusions
from it. Another different approach would be to look into whether the rows of the
bit-sliced matrix share similarities and exploit those to reduce the size of the index
- similar to the color-matrix used by De Brujin graphs. The Bloom filters in COBS
also have the disadvantage of not being able to store the multiplicity of k-mers.
Whether different encoding techniques could be used to modify the Bloom filters
or perhaps a different structure altogether is left as an open question for the future
as well. Things that ended up delivering promising results are the query batching
and index distribution. Our batching mechanism managed to improve the query
execution time by a factor of 10, while DCOBS showed to be very scalable - quickly
overturning the query execution times of COBS. One thing that we did not have
time to implement is a batching mechanism for distributed queries. Given our results
it might be worth while to look into integrating this feature into DCOBS at some
point. And lastly, another important characteristic that COBS is lacking is the abil-
ity to provide query filters. At the current state it is not possible to express queries
to only consider sequencing experiments fulfilling certain characteristics, i.e. having
the same taxonomic identifier, coming from the same species, sampling project and
similar. Looking into how to build this into COBS is another interesting question
open for future considerations.

41

Bibliography

[AGM+90] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic local
aligment search tool,” Journal of molecular biology, vol. 215, pp. 403–10,
11 1990.

[AV07] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, ser. SODA ’07. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[AWFS17] M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders, “In-Place Parallel
Super Scalar Samplesort (IPSSSSo),” in 25th Annual European Sym-
posium on Algorithms (ESA 2017), ser. Leibniz International Proceed-
ings in Informatics (LIPIcs), K. Pruhs and C. Sohler, Eds., vol. 87.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2017, pp. 9:1–9:14.

[BBGI19] T. Bingmann, P. Bradley, F. Gauger, and Z. Iqbal, “Cobs: A compact
bit-sliced signature index,” in String Processing and Information Re-
trieval, N. R. Brisaboa and S. J. Puglisi, Eds. Springer International
Publishing, 2019, pp. 285–303.

[BdBR+19] P. Bradley, H. C. den Bakker, E. P. C. Rocha, G. McVean, and Z. Iqbal,
“Ultrafast search of all deposited bacterial and viral genomic data,”
Nature Biotechnology, vol. 37, p. 152–159, 02 2019.

[BFS16] G. E. Blelloch, D. Ferizovic, and Y. Sun, “Just join for parallel ordered
sets,” in Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures, ser. SPAA ’16. New York, NY, USA:
ACM, 2016, pp. 253–264.

[BM01] E. Bingham and H. Mannila, “Random projection in dimensionality re-
duction: Applications to image and text data,” in Proceedings of the
Seventh ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, ser. KDD ’01. New York, NY, USA: ACM,
2001, pp. 245–250.

43

Bibliography

[BOSS12] A. Bowe, T. Onodera, K. Sadakane, and T. Shibuya, “Succinct de bruijn
graphs,” in Proceedings of the 12th International Conference on Algo-
rithms in Bioinformatics, ser. WABI’12. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 225–235.

[Bro97] A. Broder, “On the resemblance and containment of documents,” in
Proceedings of the Compression and Complexity of Sequences 1997, ser.
SEQUENCES ’97. Washington, DC, USA: IEEE Computer Society,
1997, pp. 21–.

[CHM19] R. Chikhi, J. Holub, and P. Medvedev, “Data structures to represent
sets of k-long dna sequences,” 2019.

[CL15] A. Crainiceanu and D. Lemire, “Bloofi: Multidimensional bloom filters,”
Information Systems, vol. 54, 01 2015.

[CLS+18] C. E. Cook, R. Lopez, O. Stroe, G. Cochrane, C. Brooksbank, E. Birney,
and R. Apweiler, “The european bioinformatics institute in 2018: tools,
infrastructure and training,” Nucleic Acids Research, vol. 47, no. D1,
pp. D15–D22, 11 2018.

[ETOK18] K. Eschke, J. Trimpert, N. Osterrieder, and D. Kunec, “Attenuation of
a very virulent marek’s disease herpesvirus (mdv) by codon pair bias
deoptimization,” PLOS Pathogens, vol. 14, p. e1006857, 01 2018.

[HM18] R. Harris and P. Medvedev, “Improved representation of sequence
bloom trees,” 12 2018.

[Hua08] A. Huang, “Similarity measures for text document clustering,” Pro-
ceedings of the 6th New Zealand Computer Science Research Student
Conference, 01 2008.

[ICT+12] Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean, “De novo
assembly and genotyping of variants using colored de bruijn graphs,”
Nature genetics, vol. 44, pp. 226–32, 02 2012.

[MBN+17] M. Muggli, A. Bowe, N. Noyes, P. Morley, K. Belk, R. Raymond,
T. Gagie, S. Puglisi, and C. Boucher, “Succinct colored de bruijn
graphs,” Bioinformatics, vol. 33, 02 2017.

[MK11] G. Marcais and C. Kingsford, “A fast, lock-free approach for efficient
parallel counting of occurrences of -mers,” Bioinformatics (Oxford, Eng-
land), vol. 27, pp. 764–70, 03 2011.

[Mug17] M. D. Muggli, “Vari,” 2 2017. [Online]. Available: https:
//github.com/cosmo-team/cosmo/tree/VARI

44

https://github.com/cosmo-team/cosmo/tree/VARI
https://github.com/cosmo-team/cosmo/tree/VARI

Bibliography

[PAB+18] P. Pandey, F. Almodaresi, M. Bender, M. Ferdman, R. Johnson, and
R. Patro, “Mantis: A fast, small, and exact large-scale sequence-search
index,” Cell Systems, vol. 7, p. 201–207, 06 2018.

[PB10] S. Perry and R. Beiko, “Distinguishing microbial genome fragments
based on their composition: Evolutionary and comparative genomic
perspectives,” Genome biology and evolution, vol. 2, pp. 117–31, 05
2010.

[PBJ+18] P. Pandey, M. Bender, R. Johnson, R. Patro, and B. Berger, “Squeakr:
An exact and approximate k -mer counting system,” Bioinformatics
(Oxford, England), vol. 34, pp. 568–575, 02 2018.

[RRR02] R. Raman, V. Raman, and S. S. Rao, “Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets,” in Proceed-
ings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, ser. SODA ’02. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2002, pp. 233–242.

[SHCM17] C. Sun, R. S. Harris, R. Chikhi, and P. Medvedev, “Allsome sequence
bloom trees,” in Research in Computational Molecular Biology, S. C.
Sahinalp, Ed. Springer International Publishing, 2017, pp. 272–286.

[SK15] B. Solomon and C. L. Kingsford, “Large-scale search of transcriptomic
read sets with sequence bloom trees,” 2015.

[SK18] B. Solomon and C. Kingsford, “Improved search of large transcrip-
tomic sequencing databases using split sequence bloom trees,” Journal
of Computational Biology, vol. 25, 03 2018.

[SKK00] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of document
clustering techniques,” Proceedings of the International KDD Workshop
on Text Mining, 06 2000.

[TGIM18] I. Turner, K. Garimella, Z. Iqbal, and G. McVean, “Integrating long-
range connectivity information into de bruijn graphs,” Bioinformatics
(Oxford, England), vol. 34, 03 2018.

[Ukk92] E. Ukkonen, “Approximate string-matching with q-grams and maximal
matches,” Theor. Comput. Sci., vol. 92, no. 1, pp. 191–211, Jan. 1992.

[WEG87] S. Wold, K. H. Esbensen, and P. Geladi, “Principal component analy-
sis,” 1987.

[Wil88] P. Willett, “Trends in... a critical review recent trends in hierarchic
document clustering: A critical review,” 1988.

45

Bibliography

[YLL+18] Y. Yu, J. Liu, X. Liu, Y. Zhang, E. Magner, E. Lehnert, C. Qian, and
J. Liu, “Seqothello: querying rna-seq experiments at scale,” Genome
Biology, vol. 19, 12 2018.

[ZB08] D. Zerbino and E. Birney, “Velvet: Algorithms for de novo short read
assembly using de bruijn graphs,” Genome research, vol. 18, pp. 821–9,
06 2008.

46

	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Preliminaries
	1.3.1 Problem Definition
	1.3.2 Bloom Filter

	2 Compact Bit-Sliced Signature Index - COBS
	2.1 Overview
	2.2 Approximate Search
	2.3 Implementation
	2.4 Contributions

	3 Document Clustering
	3.1 AND/OR Structure
	3.2 Distance Measures
	3.2.1 Euclidean Distance
	3.2.2 Hamming Distance
	3.2.3 Cosine Distance
	3.2.4 Jaccard distance

	3.3 Dimensionality Reduction
	3.4 Clustering Algorithms
	3.4.1 Hierarchical Clustering
	3.4.2 K-Means and K-Means++
	3.4.3 Bi-Sectional K-Means

	3.5 Centroid Selection
	3.6 Experimental Results
	3.6.1 Setup
	3.6.2 Frequency Distribution of k-mers
	3.6.3 Clustering Sequencing Data
	3.6.4 Analyzing the Effects of Noise

	4 Batched Queries
	4.1 Overview
	4.2 Implementation Details
	4.3 Experimental Results
	4.3.1 Setup
	4.3.2 Evaluation

	5 Distribution
	5.1 Motivation
	5.2 Architecture
	5.3 Implementation Details
	5.4 Index Sharding
	5.5 Dynamic Index Updates
	5.5.1 COBS Compaction
	5.5.2 Fixed Interval Compaction

	5.6 Experimental Results
	5.6.1 Setup
	5.6.2 Evaluation

	6 Conclusion and Future Work

