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Abstract. We present COBS, a compact bit-sliced signature index, which is
a cross-over between an inverted index and Bloom filters. Our target appli-
cation is to index k-mers of DNA samples or q-grams from text documents
and process approximate pattern matching queries on the corpus with a user-
chosen coverage threshold. Query results may contain a number of false pos-
itives which decreases exponentially with the query length and the false pos-
itive rate of the index determined at construction time. We compare COBS
to seven other index software packages on 100 000 microbial DNA samples.
COBS’ compact but simple data structure outperforms the other indexes in
construction time and query performance with Mantis by Pandey et al. on
second place. However, different from Mantis and other previous work, COBS
does not need the complete index in RAM and is thus designed to scale to
larger document sets.

1 Introduction

In this paper we present an approximate q-gram index named COBS [13], short for
COmpact Bit-sliced Signature index, which is a cross-over between an inverted index
and Bloom filters. The current application focus of COBS is to index DNA and
protein k-mers from sequencing experiments, but the data structure can also be used
for indexing q-grams from other domains such as English text.

In living cells, DNA exists as long contiguous molecules, typically textually en-
coded as strings of A, C, G, and T. The output of sequencing experiments are stored
both in raw format (text files of the strings) and “assembled format” – semi-heuristic
best approximations to the underlying genome, also in text format, but of very vari-
able quality, in particular when based on short read data. As sequencing technology
has advanced, it has also become much cheaper and more widespread, and its output
has been stored in publicly available archives (e.g. the European Nucleotide Archive
(ENA) and the Sequence Read Archive (SRA) which maintain mirrors of all the data.
These archives now double in size every 18 months, and it is progressively more im-
portant to be able to search within the deposited datasets, to find important genes
or mutations, or combinations of mutations which are informative of function or an-
cestry. In 2018, the ENA encompassed 1.5 · 109 microbial sequences and 8 · 1015 base
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pairs (i.e. characters) of read data [17], while the European Bioinformatics Institute
reached 160 PB of storage capacity [10].

Despite the obvious similarities to standard document retrieval problems, the prop-
erties of DNA k-mer data are very different from traditional text corpora. Google’s
index is reported to have in the order of 1013 documents containing 108 unique
terms [7], whereas the small benchmark set of 100 000 microbial sequences used in
our experiments already contain 2.2 · 1010 distinct k-mers, of which 1.8 · 1010 occur
only once. The frequency of terms in a natural language is power-law distributed,
with underlying terms generated over hundreds of years, resulting in just a few new
terms per document. Microbial genomes however encode many billions of years of
evolution; each new genome generates thousands of novel k-mers. There are also two
other aspects whereby searching biological data differs from standard text retrieval.
The first is that the index must support approximate queries allowing detection of
closely related DNA to the query. Approximate pattern matching however is a noto-
riously difficult subject for text indices [21]. The second is that users often want all
hits, not just the top few as is typical in web search.

For COBS we chose the robust q-gram indexing approach [33] and combined it
with Bloom filters to reduce the term space size. This can be considered a variant of
signature files, which have a long history in information retrieval [12] but were pushed
to the sidelines for text search by inverted indexes [37]. Recently, they have been
reconsidered as acceleration filters for large text search corpora [15] by engineering
them to adapt to the collection’s characteristics. With COBS we venture to combine
signature files with one-sided errors introduced by Bloom filters and inverted files to
design an ultra fast and scalable q-gram index which supports approximate queries
delivering a small reasonable number of expected false positives. Our contribution of
making the signature files compact first enables the index to be applied to corpora
with highly varying document sizes, such as microbial DNA samples.

1.1 Related Work

Considering q-grams or k-mers of a sequence are a staple in bioinformatics [9]. For
example, BLAST [3] uses k-mers for seeding its search for maximal local alignments.

The earliest use of Bloom filters as an index for a collection of independent doc-
uments we could find is called Bloofi by Crainiceanu and Lemire [11]. They propose
to use a Bloom filter for each document and to arrange them either in a B-tree or as
a Flat-Bloofi. The latter is similar to BIGSI and COBS without compaction.

The currently most cited line of work on DNA k-mer indices for approximate
search are the Sequence Bloom Trees (SBTs) first proposed by Solomon and Kings-
ford [29]. In an SBT the k-mers of each document are individually indexed into a
Bloom filter, which are then arranged as the leaves of a binary tree. The inner nodes
of the binary tree are union Bloom filters of their descendants. A query can then
breadth-first traverse the tree pruning search paths which no longer sufficiently cover
a given threshold Θ of the query k-mers.
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In the original SBT [29] a simple greedy clustering method is used, the bit union
is stored in each inner node, and all nodes are RRR compressed [28] using SDSL [14].
The first improvement, the Split Sequence Bloom Tree (SSBT) [30], splits the inner
nodes into two Bloom filters: a similarity filter and a remainder filter, where the first
contains all bits in both child filters and the second those set in either child minus
the similarity filter. Simultaneously, Sun, Harris, Chikhi, and Medvedev proposed
the AllSome Sequence Bloom Tree (AllSome-SBT) [31], which splits each inner node
into an all and a some subfilter. The all filter contains bits in all leaves below the
node, excluding those already set in the parent node, and the some filter all bits in
some leaves but not all. The currently smallest SBT variant is called HowDe-SBT by
Harris and Medvedev [16]. It decomposes the Bloom filters in each inner node into
two bit vectors: the det vector signals if a particular bit is determined at this inner
node, meaning that it is equal in all descendant leaves, and a how vector signaling if
it is determined as zero or one. All determined bits can be omitted from any children.

A completely different approach to indexing k-mers is taken by Mantis from
Pandey et al. [26]. In Mantis, a counting quotient filter (CQF) [27] is used to construct
a mapping from k-mers to color classes, wherein k-mers with identical occurrence vec-
tors for all documents are mapped to the same color class. Incidence of color classes to
documents can then be represented as a matrix, in which columns are associated with
documents and each row corresponds to a color class. Mantis differs from the other
k-mer indexes referenced in this paper by being able to deliver exact approximate
matching results without false positives.

SeqOthello [35] is another k-mer index software package. It contains an ensemble of
encoding techniques for compressing the occurrence maps of k-mers in the document
set. To locate the correct occurrence map a hierarchy of Othellos is built, which are
minimum perfect hash function mappings and can introduce false positive results due
to mapping of alien k-mers to random results.

BIGSI (BItsliced Genomic Signature Index) by Bradley et al. [6] is the direct
ancestor of COBS and also a combination of Bloom filters and inverted indexes.
BIGSI however is a prototype programmed in Python and uses a key-value database
such as BerkeleyDB or RocksDB as storage back-end. It also does not contain the
compaction feature introduced in COBS.

Related to k-mer indexing are colored de Bruijn graph representation data struc-
tures, which often contain an exact k-mer index but do not support approximate
k-mer pattern searches. The original implementation, Cortex, stored k-mers in a
hash table, along with booleans for the four possible forward and backward edges
in a single byte. This was then followed by McCortex [20,32], which added a second
data structure to encode paths in the graph present in the original reads. By contrast,
VARI [25], Rainbowfish [1], and pufferfish [2] explore use of succinct data structures,
the Burrows-Wheeler transform, and minimal perfect hash functions to save space
and possibly even accelerate operations. The Bloom Filter Trie [19] is another col-
ored de Bruijn graph representation based on the burst trie [18], wherein lookups for
suffixes at compressed inner nodes are accelerated with Bloom filters.
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2 A Compact Bit-Sliced Signature Index

In this section we present the index structure used in COBS. We first generally review
Bloom filters as a q-gram index in subsection 2.1, then turn to COBS’ more compact
bit-sliced representation in subsection 2.2, and discuss implementation details and
algorithm engineering aspects in subsection 2.3.

2.1 Approximate Matching with Bloom Filters of Signatures

Given are an ordered set of documents D = [d0, . . . , d|D|−1], where each document
d is composed of a set of strings {t0, . . . , t|d|−1}. The number of items in a set or
array is denoted with | · |. Each string t is a zero-based array of |t| characters from
a finite ordered alphabet Σ. In the context of indexing DNA, the alphabet is usually
Σ = {A, C, G, T}, the documents are experiment samples, and the strings in each
document can be reads or assembled genome sequences. When indexing web sites,
the alphabet could the ASCII characters or English words, the documents could be
web pages, and the substrings may be words, sentences, or paragraphs.

To facilitate approximate pattern matching we consider q-grams of the strings [33],
commonly called k-mers for DNA. For each string t with |t| ≥ q there are |t| − q + 1
consecutive substrings of length q. For a document d, we denote with Gq(d) the union
of all q-grams in the strings in d. Due to similarities with full-text indexing we also
refer to the q-grams in a document as terms.

The COBS index is composed of |D| Bloom filters [5], each representing an approx-
imate membership data structure with one-sided error. To construct a Bloom filter
for a document d we assume k pairwise independent hash functions h0, . . . , hk−1 with
range [0, w) and set the k bits hi(s) in an array f of w bits for each q-gram s ∈ Gq(d).
Testing for membership of a q-gram s is perform by checking if all k cells hi(s) are
set, which can lead to false positives but never false negatives.

The entire document collection is thus represented by |D| bit arrays [f0, . . . , f|D|−1],
each a Bloom filter with possibly different parameters. From previous work, the false
positive rate p of a Bloom filter of size w with k hash functions and v inserted elements
is known to be at most (1−(1− 1

w )kv)k ≤ (1−e−kv/w)k. Given a desired false positive
rate p and number of elements v, one can calculate a partial derivative of the last
bound to determine good approximate parameters k = w

v ln 2 and w = − v ln p
(ln 2)2 [8,23].

To perform approximate matching for a pattern P , we follow previous work [33]
and determine the q-gram distance of P to all documents in the collection D by
testing each of the query’s q-grams Gq(P ) on all documents. In COBS we present
this positively as the q-gram score of the query for each document. The score is used
to rank and return all documents containing at least a given percentage K of the
|Gq(P )| terms in the query.

As Solomon and Kingsford already noticed for SBTs, in the case of approximate
pattern search on Bloom filters, we are not ultimately interested in the false positive
rate of a single Bloom filter lookup. Instead we are concerned with the false positive
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Fig. 1. Architecture of the bit-sliced signature index and query processing steps.

rate of a query P . More precisely, given ℓ = |Gq(P )| q-grams with the probability
that more than Kℓ terms are false positives in the same filter.

Theorem 1 (False Positive Rate of a Query, Theorem 2 in [29]).
Let P be a query pattern containing ℓ = |Gq(P )| distinct terms. If we consider the

terms as being independent, the probability that more than ⌊Kℓ⌋ false-positive terms

occur in a filter f with false positive rate p is 1 −
∑⌊Kℓ⌋

i=0

(

ℓ
i

)

pi(1 − p)ℓ−i .

This theorem is derived by considering lookups of terms as independent Bernoulli
trials and summing over the probability of zero to ⌊Kℓ⌋ false positives among the
ℓ trials, which yields a binomial distribution. Given K ≥ p, Solomon and Kingsford
also apply a Chernoff bound and show that the false positive probability for a query
to be detected in a document is ≤ exp(−ℓ(K − p)2/(2(1 − p))).

These repeated trials into the Bloom filter allow us to push the false positive rate
p up higher than commonly used. Traditional uses of Bloom filters for approximate
membership queries consider an error rate of 0.01 or less and multiple hash functions
as desirable. Due to the inverse exponential relationship of a query’s false positive
rate with its length, coupled with the fact that more hash functions cost more cache
faults or I/Os, the minimum k = 1 and a high false positive rate around 0.3 are
desirable for our q-gram index application.

For example, if we consider a query of length 100 containing ℓ = 70 distinct 31-
grams, a false positive rate of p = 0.3, and threshold K = 0.5, then Theorem 1 yields
a false positive rate of about 0.000143. Which means there will be about 143 false
positive results in one million documents on average.

2.2 Bit-Slicing and Compaction

Provided all Bloom filters are of the same size w, one can store them as a w × |D|
bit matrix such that a row contains all bit cells at one index in the |D| filters (see
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left side of Figure 1). This is also called a “bit-sliced” layout [34] and was chosen
for BIGSI and COBS to reduce the number of random accesses needed to evaluate
a query. This is particularly important if the index is read from external memory,
where scanning is much more efficient than random accesses. The approach however
requires all Bloom filters to use the same hash functions and be the same size.

Figure 1 also illustrates how a query P is performed using the bit-sliced Bloom
filter matrix. The q-grams of the query are hashed to determine the corresponding
rows. These k|Gq(P )| rows are then scanned and an AND join of k rows is performed
to determine which q-grams occur in which document. This yields an indicator bit
vector ordered by document number. All indicator vectors are then added together
to calculate the score for each document. Only those documents reaching the query
threshold K|Gq(P )| are then reported as approximate matches. Due to the one-sided
error of the Bloom filters, only more documents may be reported due to hash collisions;
false negatives, i.e. missed hits, cannot occur.

One can also view the Bloom filter bit matrix as an inverted index: each row
simply lists the document numbers containing the corresponding q-gram as indexes
in a bit vector. Unlike a traditional inverted index however, multiple q-gram terms
are superimposed in one row. This leads to false positive matches. In theory, one
could apply all the methods developed by the information retrieval community [36]
to these bit vectors or posting lists.

The current version of a bit-sliced index however relies on all documents and
resulting Bloom filters having the same size. But larger documents result in denser
bit vectors and smaller documents in sparser, as the number of bits set depends on
the number of q-gram terms in the document. Depending on the dataset, this creates
vastly different false positive rates in the bit matrix. Hence, we propose to adapt the
size of each Bloom filter bit array to the document it indexes and aim to keep the
false positive rate constant. We call this a compact bit-sliced signature index (the CO
in COBS).

In theory one could adapt the Bloom filter size and hash function for each doc-
ument. In practice we want to store bits of rows as blocks of size B in external
memory, thus keep the parameters constant for Θ(B) consecutive documents. Fur-
thermore, instead of calculating a new hash function for each filter, we propose to
use only one function with a larger output range and then use a modulo operation to
map it down to each individual filter’s size. Both practical optimizations only incur
a small deviation from the optimal index size and false positive rates.

Figure 3 shows in light blue the desired Bloom filter size for the 100 000 microbial
documents used in our experiments ordered by size and with false positive rate 0.3
and one hash function. The dark blue staircase function above the upward sloping
curve shows batches of B = 4 096 documents encoded with the maximum Bloom
filter size of that block. The visible dark blue area is the minor overhead for encoding
documents block-wise. If one uses only one Bloom filter size (the classic approach),
then the index size would be the entire filled orange area, which extends upward to
ensure the desired false positive rate for the largest document.
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Due to the variance in size of microbial and other real-world documents, the
compact representation in COBS is essential. In designing COBS, we also considered
that today’s SSD and NVMe storage technology now has orders of magnitude faster
random access speeds [4] compared to rotational disks. Thus with these new storage
devices, the batched random access for many smaller blocks of size B, as used in the
compact layout and illustrated in Figure 2, first becomes viable.

2.3 Implementation and Engineering

We implemented COBS as a command line search engine tool using C++ and plan
to provide a Python interface to the underlying algorithm library. The tool is open
source and available from https://panthema.net/cobs/. It can read DNA FASTA
files, multi-document protein FASTA files, McCortex, or text files as documents and
extract q-grams from them. Depending on the format, the input data is broken into
different q-gram sets: DNA reads are for example hashed independently, while English
text is processed continuously. The q-grams or k-mers can optionally be canonicalized
if their reverse complement are considered equivalent.

Classic and Compact. The COBS program can currently construct two index
variants: classic and compact. In the classic index all documents are hashed using
the same Bloom filter size, which depends on the desired false positive rate and the
number of q-grams in the largest document. This is the non-compact version, which
is similar to BIGSI, but was written for performance in C++ and with direct file
accesses.

When constructing a compact index, the size of all documents are determined and
the document set is reordered by size. Then a subindex is constructed for every Θ(B)
documents, as described in subsection 2.2. Each subindex is actually a classic COBS
index. The subindices are simply concatenated into one large file.

Parallelization. Due to the massive amount of data to process, we parallelized
construction and query for shared-memory systems. Classic index construction we
parallelized by building temporary indexes over batches of the documents and then
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merging them into larger indexes. For compact index construction we parallelized
construction of the subindices. Pattern search is parallelized by processing disjoint
partitions of the document scores in parallel and then selecting the top scores sequen-
tially using a partial sort operation.

Memory Mapped I/O. For querying an index, we map the file into virtual
address space using mmap. The necessary rows of the inverted Bloom filter index are
then read using a simple memory transfer. We experimented with directly issuing
asynchronous I/O commands, but found only a negligible performance advantage
that did not outweigh the higher code complexity.

Alternatively, COBS can also read the complete index into RAM and then run
all queries. This was added to compare performance against other indexing software
which only work in RAM, e.g. Mantis, in section 3.

3 Experimental Evaluation

In this section we present a comprehensive evaluation of eight software packages for
indexing k-mers from read or assembled genomic sequence data.

Software Packages. We acquired a copy of the original SBT [29] (git hash
977adfa from March 1st 2019), the Split-SBT (SSBT) [30] (git hash 710c95f from
July 10th 2018), the AllSome-SBT [31] (git hash 4e1f2c5 from October 28th, 2018),
the HowDe-SBT [16] (git hash 76e3c89 from March 1st, 2019), SeqOthello [35]
(git hash 68d47e0 from September 6th, 2018), Squeakr and Mantis [26] (git hash
3853c82 from January 29th, 2019), and BIGSI [6] (git hash 2ab35e5 from May 15th,
2019) using BerkeleyDB 4.8.30. More reference about each package can be found in
the related work subsection 1.1. We compiled all from source and additionally used
ntCard [24] (v1.1.0) as a preprocessing step for the SBTs, jellyfish [22] (v2.2.10) in
other steps and as a library.

Data. Bradley et al. [6] previously indexed the complete global corpus of mi-
crobial DNA data, some 450,000 files. In doing this, they processed the raw data
into k-mers. Since this contains low frequency errors from the sequencing instru-
ments, they “de-noised” it using standard methods from McCortex, and stored the
remaining k-mers in a binary format. We downloaded 100 000 of these files from
http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/. For micro-
bial genomic read data k was chosen as 31, as this is large enough to (generally)
guarantee uniqueness within a genome, without being so large as to frequently hit a
sequencing error. For scaling experiments we selected random subsets containing 100,
250, 500, 1 000, 2 500, 5 000, 10 000, 25 0000, and 50 000 documents from the 100 000
base set, each contained in the larger subsets. The 10 000 document subset is the same
as used in one of the BIGSI experiments [6]. The average document size is 42.77 MiB
stored in McCortex format, such that the entire 100 000 microbial dataset is 3.984 TiB
in total. Each document contains 3.4 M 31-mers on average with the minimum being
zero and the largest containing 138 M 31-mers. In total the 100 000 dataset contains
336 846 M 31-mers to index. While building the indexes using the various software all
k-mers were included, without any occurrence threshold or cut-off.
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Platform. We ran the experimental evaluation on a quad-socket Intel Xeon
Gold 6138 2.0 GHz 4 × 20-core machine with 768 GiB DDR4-2666 RAM and 4 × 2 TB
NVMe Samsung 970 EVO SSD storage devices combined using RAID 0. The machine
was running Ubuntu 18.04 with Linux kernel 4.15.0-48-generic and gcc 7.3.0. The com-
bined SSDs reached 12.2 GiB/s sequential read, 2.3 GiB/s sequential write, 741 MiB/s
random 4 KiB block read, and 1 188 MiB/s random 4 KiB block write speeds.

Queries. We designed four sets of batch queries to measure the performance of
the indices, each set containing known true positives and true negatives in random
order. In each batch all queries are of the same length ℓ ∈ {31, 100, 1 000, 10 000}base
pairs (bp). To generate true positives, we first extracted all unitigs from the colored
de Bruijn graph representation of each document using McCortex, and then randomly
chose queries from all ℓ-grams in the unitigs. To generate true negatives, we generated
random query strings of length ℓ, broke these down into k-mers, and checked that
none of the k-mers were contained in any document. To balance the size, we selected
100 000 true positives and 100 000 true negatives for ℓ = 31 and ℓ = 100, for ℓ = 1 000
we selected 10 000 true positives and negatives each, and for ℓ = 10 000 we selected
1 000 each.

The queries are stored in FASTA format and annotated with their origin (random
negative or the correct document id). After running the queries, we checked the results
of each index software by comparing it against the true origin. Using the true negatives
in the ℓ = k = 31 set we can determine the false positive rate of each index.

Measurements. To evaluate the software we measured many different perfor-
mance metrics while running construction and the batch queries. The machine was
used exclusively when running the experiments. Using interfaces from the Linux ker-
nel, we measured wall-clock time, CPU user time which captures time spent comput-
ing in any user thread, the maximum resident set size (RSS) in memory as returned
by the time utility, the number of bytes read and written to the SSDs in each step,
and the change in storage usage. We also recorded the resulting size of the index data
files. We flushed the disk cache before each build phase or query batch. Each query
batch was run three times: the first round started with a flushed (cold) cache, and
the two subsequent rounds with a warm cache. The rounds are labeled r0, r1, and r2.

3.1 Results

In this section we present and discuss the results of our experiments with the eight
index software packages. The machine we selected for the experiments is a large server-
class platform with 160 cores and large amounts of RAM. While these properties are
always good, we primarily chose it due to the 8 TB of fast SSD storage, which is many
times faster than traditional rotational disks. For rapidly performing the experiments,
this storage speed was crucial.

On the other hand the fast storage speed and massive multi-core processing power
in our machine may highlight different aspects in the indexing software than previous
comparisons. Most prominently, algorithms which previously only had to process data
rates known from rotational disks (100s of MiB/s) may become a bottleneck when
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Table 1. Construction wall-clock time, CPU time, memory usage, resulting index size, and
query wall-clock time for 1 000 microbial documents and all k-mer index software in our
experiment

AllSome- HowDe- Seq- COBS COBS
phase SBT SSBT SBT SBT Othello Mantis BIGSI Classic Compact

Construction Wall-Clock Time in Seconds
count 2 018 1 974 1 954 1 959

bloom 114 117 140 144 295 232 1 881
build 3 097 21 378 1 401 68 034 2 225 987 2 574 99 43

compress 1 768 5 187 80 3 802 45
total 6 996 28 657 3 576 73 939 2 520 1 264 4 455 99 43

Construction CPU (User) Time in Seconds
count 4 574 4 511 4 475 4 488

bloom 11 133 10 967 10 234 10 278 28 123 19 162 169 345
build 855 5 178 449 66 872 2 198 943 1 767 1 604 1 430

compress 1 569 4 832 1 663 2 857 3 423
total 18 131 25 489 16 821 84 495 30 320 23 527 171 113 1 604 1 430

Construction Maximum RSS Memory Usage in MiB
count 518 518 518 518

bloom 641 640 640 640 634 1 756 4 244
build 11 028 1 523 7 140 108 147 12 137 88 357 246 806 16 245 2 616

compress 10 953 992 560 963 16 613
maximum 11 028 1 523 7 140 108 147 12 137 88 357 246 806 16 245 2 616

Index Size in MiB
size 19 844 3 254 21 335 1 911 4 410 16 486 27 794 16 236 3 022

ℓ Query Wall-Clock Time in Seconds
31 bp r0 31 80 20 34 62 12 281 10 8
31 bp r2 26 76 19 33 62 13 289 9 8

100 bp r0 663 3 183 100 600 73 22 783 14 9
100 bp r2 649 3 153 95 588 73 23 455 14 9

1000 bp r0 794 3 466 112 670 63 21 660 15 10
1000 bp r2 781 3 435 108 659 64 27 310 13 10

10000 bp r0 802 3 273 112 622 62 23 699 16 11
10000 bp r2 790 3 243 111 613 62 22 316 15 11
total r0–r2 6 775 29 833 1 007 5 710 783 252 5 177 154 114

Document False Positive Rate for 31 bp Queries
rate 0.004 0.004 0.004 0.004 0.001 0.000 0.027 0.024 0.227

dealing with SSD speeds (currently around 10 GiB/s). Furthermore, most of the index
software packages had no built-in provisioning for utilizing multi-core parallelism.
While we were able to accelerate embarrassingly parallel parts of the construction
using bash (like creating Bloom filters for each file), in some software the main index
build was still sequential. On the other hand, one can argue that index construction
time is not as important as query performance, but it still limits scalability.

Table 1 shows our results from all eight software packages for 1 000 microbial DNA
documents. The steps in the construction of each index are shown as separate rows
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if it was possible to measure these independently. We show both wall-clock time and
CPU user time such that parallelized construction can highlight its speedup without
obscuring the actual amount of computation. For queries we show only wall-clock
due to space, but all query computations are performed with a single threaded such
that this is a fair comparison. Furthermore, for COBS classic and COBS compact
the index is completely loaded into RAM such that the comparison with the others is
fair.

Considering construction wall-clock time, COBS compact is clearly the fastest
index taking only 43 seconds on 1 000 documents. COBS classic is a factor 2.3 slower,
Mantis a factor 30 slower, SeqOthello a 59 factor, and AllSome-SBT a factor 83 slower
than COBS compact. The same is reflected in construction CPU time, with COBS
compact being fastest and taking 1430 seconds. COBS classic is a factor 1.12 slower,
AllSome-SBT a factor 11.8 slower, and Mantis a factor 16.5.

One can also see that we parallelized the Bloom filter construction (the “bloom”
row) effectively for all indexes, while the build steps are usually only partially par-
allelized. COBS compact has a CPU/wall-clock speedup of 33, while BIGSI has 38,
Mantis has 18, and SeqOthello 12. However, since COBS compact performs the least

amount of computation and has among the highest speedups, the combination of
these two factors really diminishes wall-clock construction time.

The amount of RAM required by the indexing software also limits their applica-
bility, especially if the complete index itself needs to be constructed in RAM. BIGSI,
HowDe-SBT, and Mantis have the highest main memory usage in the experiment. For
BIGSI and Mantis memory was the limiting scalability factor, while for HowDe-SBT
the construction time grew too long.

In terms of query performance, the fastest software was COBS Compact with 114
seconds to run all query sets three times, followed by COBS classic with 154 seconds.
Mantis was 2.2 times slower, SeqOthello 6.9 times lower, and the fastest SBT version,
AllSome-SBT, was 8.8 times slower.

Figure 4 shows scaling results for all software packages on increasing subsets of
the indexed microbial document set. We skipped running the SBT variants for data
sets larger than 10 000 because their construction time was growing super-linearly.
SeqOthello and Mantis scaled much better in terms of construction time per docu-
ment. These plots show that COBS scales well with an order of magnitude faster
construction time per document than Mantis and SeqOthello, both in wall-clock and
CPU time. While COBS classic’s index size appears to increase with the number of
documents (due to the maximum document size), the size per document of COBS
compact actually decreases because it can better pack documents into blocks.

As expected COBS’ query time for single k-mers increases linearly with the num-
ber of documents in the index, due to the scoring method without pruning. The
query time of all other indexes also increases with the number of documents, but not
quite linearly. The best index in terms of query time increase per document is the
AllSome-SBT followed by HowDe-SBT, but only COBS compact index scales to the
full 100 000 microbial dataset.
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Fig. 4. Construction time, index size, query time for 200 000 · 31 bp and for 2 000 · 10 000 bp
round 2 after disk cache warm-up.

4 Conclusion and Future Work

With COBS we presented a signature index based on Bloom filters which enables
approximate pattern matching on large q-gram datasets. It outperforms all other
q-gram indexes in both construction and query time due to its simple data structure.

There are many avenues for future work on possible improvements to COBS’
ideas. For example, dynamic operations on the index such as insertion, replacement,
and removal of documents are very important for practical applications. We already
provide a merge operation for classic indexes, but not for compact ones. Within
time of an extended version of this paper we plan to support querying of multiple
index files, such that a frontend may select different datasets or categories. Another
important topic is better support for batch or bulk queries. And for further scalability
it is important to explore distributed index construction and query processing.

Deriving from the simplicity of COBS are research avenues which could explore
compression of rows in the Bloom filter matrix using techniques from information
retrieval. And similar to Mantis’ use of the CQF one could explore how to adapt
other Bloom filter variants to the indexing problem with allowed false positives.
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