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Abstract—We present the design and a first performance
evaluation of Thrill – a prototype of a general purpose big
data processing framework with a convenient data-flow style
programming interface. Thrill is somewhat similar to Apache
Spark and Apache Flink with at least two main differences.
First, Thrill is based on C++ which enables performance
advantages due to direct native code compilation, a more cache-
friendly memory layout, and explicit memory management. In
particular, Thrill uses template meta-programming to compile
chains of subsequent local operations into a single binary
routine without intermediate buffering and with minimal
indirections. Second, Thrill uses arrays rather than multisets
as its primary data structure which enables additional oper-
ations like sorting, prefix sums, window scans, or combining
corresponding fields of several arrays (zipping).

We compare Thrill with Apache Spark and Apache Flink
using five kernels from the HiBench suite. Thrill is consistently
faster and often several times faster than the other frameworks.
At the same time, the source codes have a similar level of
simplicity and abstraction.

Keywords-C++; big data tool; distributed data processing;

I. INTRODUCTION

In this paper we present Thrill, a new open-source C++
framework for algorithmic distributed batch data processing.

The need for parallel and distributed algorithms cannot
be ignored anymore, since individual processor cores’ clock
speeds have stagnated in recent years. At the same time,
we have experienced an explosion in data volume so that
scalable distributed data analysis has become a bottleneck in
an ever-increasing range of applications. With Thrill we want
to make a step at bridging the gap between two traditional
scenarios of “Big Data” processing.

On the one hand, in academia and high-performance com-
puting (HPC), distributed algorithms are often handcrafted
in C/C++ and use MPI for explicit communication. This
achieves high efficiency at the price of difficult implemen-
tation. On the other hand, global players in the software
industry created their own ecosystem to cope with their
data analysis needs. Google popularized the MapReduce [1]
model in 2004 and described their in-house implementation.
Apache Hadoop and more recently Apache Spark [2] and
Apache Flink [3] have gained attention as open-source
Scala/Java-based solutions for heavy duty data processing.
These frameworks provide a simple programming interface

and promise automatic work parallelization and scheduling,
automatic data distribution, and automatic fault tolerance.
While most benchmarks highlight the scalability of these
frameworks, the bottom line efficiency has been shown to
be lacking [4], surprisingly with the CPU often being the
bottleneck [5].

Thrill’s approach to bridging this gap is a library of
scalable algorithmic primitives like Map, ReduceByKey,
Sort, and Window, which can be combined efficiently to
construct larger complex algorithms using pipelined data-
flow style programming. Thrill is written in modern C++14
from the ground up, has minimal external dependencies,
and compiles cross-platform on Linux, Mac OS, and Win-
dows. By using C++, Thrill is able to exploit compile-
time optimization, template meta-programming, and explicit
memory management. Thrill enables efficient processing of
fixed-length items like single characters or fixed-dimensional
vectors without object overhead due to the zero overhead
abstractions of C++. It treats data types of operations as
opaque and utilizes template programming to instantiate
operations with user-defined functions (UDFs). For example,
the comparison function of the sorting operation is compiled
into the actual internal sorting and merging algorithms
(similar to std::sort). At the same time, Thrill makes no
attempts to optimize the execution order of operations, as
this would require introspection into the data and how UDFs
manipulate it.

Thrill programs run in a collective bulk-synchronous man-
ner similar to most MPI programs. Thrill primarily focuses
on fast in-memory computation, but transparently uses exter-
nal memory when needed. The functional programming style
used by Thrill enables easy parallelization, which also works
remarkably well for shared memory parallelism. Hence, due
to the restriction to scalable primitives, Thrill programs run
on a wide range of homogeneous parallel systems.

By using C++, Thrill aims for high performance dis-
tributed algorithms. JVM-based frameworks are often slow
due to the overhead of the interpreted bytecode, even
though just-in-time (JIT) compilation has leveled the field
somewhat. Nevertheless, due to object indirections and
garbage collection, Java/Scala must remain less cache-
efficient. While efficient CPU usage should be a matter of
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course, especially when processing massive amounts of data,
the ultimate bottleneck for scalable distributed application
is the (bisection) bandwidth of the network. But by using
more tuned implementations, more CPU time is left for
compression, deduplication [6], and other algorithms to
reduce communication. Nevertheless, in smaller networks
the CPU is often the bottleneck [5], and for most applications
a small cluster is sufficient.

A consequence of using C++ is that memory management
has to be done explicitly. While this is desirable for more
predictable and higher performance than garbage collected
memory, it does make programming more difficult. However,
with modern C++11 this has been considerably alleviated,
and Thrill uses reference counting extensively.

While scalable algorithms promise eventually higher per-
formance with more hardware, the performance hit going
from parallel shared memory to a distributed setting is large.
This is due to the communication latency and bandwidth bot-
tlenecks. This network overhead and the additional manage-
ment overheads of big data frameworks often make speedups
attainable only with unjustifiable hardware costs [4]. Thrill
cannot claim zero overhead, as network costs are unavoid-
able. But by overlapping computation and communication,
and by employing binary optimized machine code, we keep
the overhead small.

Thrill is open-source under the BSD 2-clause license and
available as a community project on GitHub1. It currently
has more than 52 K lines of C++ code and approximately a
dozen developers have contributed.

Overview: The rest of this section introduces related
work with an emphasis on Spark and Flink. Section II
discusses the design of Thrill, in particular its API and
the rationale behind the chosen concept. We present a
complete WordCount example in Section II-B, followed by
an overview of the current portfolio of operations and details
of their implementation. In Section III, experimental results
of a comparison of Thrill, Spark, and Flink based on five
micro benchmarks including PageRank and KMeans are
shown. Section IV concludes and provides an outlook for
future work.

Our Contributions: Thrill demonstrates that with the
advent of C++11 lambda-expressions, it has become fea-
sible to use C++ for big data processing using an ab-
stract and convenient API comparable to currently popular
frameworks like Spark or Flink. This not only harvests
the usual performance advantages of C++, but allows us
moreover to transparently compile sequences of local oper-
ations into a single binary code via sophisticated template
meta-programming. By using arrays as the primary data
type, we enable additional basic operations that have to
be emulated by more complicated and more costly opera-
tions in traditional multiset-based systems. Our experimental

1http://github.com/thrill/thrill

evaluation demonstrates that even the current prototypical
implementation already offers a considerable performance
advantage over Spark and Flink.

A. Related Work

Due to the importance and hype of the “Big Data”
topic, a myriad of distributed data processing frameworks
have been proposed in recent years [7]. These cover many
different aspects of this challenge like data warehousing
and batch processing, stream aggregation [8], interactive
queries [9], and specialized graph [10], [11] and machine
learning frameworks [12].

In 2004, Google established the MapReduce paradigm [1]
as an easy-to-use interface for scalable data analysis. Their
paper spawned a whole research area on how to express
distributed algorithms using just map and reduce in as
few rounds as possible. Soon, Apache Hadoop was created
as an open-source MapReduce framework written in Java
for commodity hardware clusters. Most notable from this
collection of programs was the Hadoop distributed file
system (HDFS) [13], which is key for fault tolerant data
management for MapReduce. Subsequently, a large body
of academic work was done optimizing various aspects of
Hadoop like scheduling and data shuffling [14].

MapReduce and Hadoop are very successful due to their
simple programming interface, which at the same time is
a severe limitation. For example, iterative computations
are reported to be very slow due to the high number of
MapReduce rounds, each of which may need a complete data
exchange and round-trip to disks. More recent frameworks
such as Apache Spark and Apache Flink offer a more general
interface to increase usability and performance.

Apache Spark operates on an abstraction called resilient
distributed datasets (RDDs) [2]. This abstraction provides
the user with an easy-to-use interface which consists of
a number of deterministic coarse-grained operations. Each
operation can be classified either as transformation or action.
A transformation is a lazy operation that defines a new
RDD given another one, e.g. map or join. An action returns
computed results to the user program, e.g. count, collect,
or reads/writes data from/to external storage. When an
action triggers computation, Spark examines the sequence
of previously called transformations and identifies so-called
execution stages. Spark runs in a master-worker architec-
ture. While the driver program runs on the master, the
actual computation occurs on the workers with a block-
based work-partitioning and scheduling system. Spark can
maintain already computed RDDs in main memory to be
reusable by future operations, in order to speed-up iterative
computations [15].

In more recent versions, Spark added two more APIs:
DataFrames [16] and Datasets. Both offer domain specific
languages for higher level declarative programming similar
to SQL, which allows Spark to optimize the query execution
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plan. Even further, it enables Spark to generate optimized
query bytecode online, aside of the original Scala/Java
program. The optimized bytecode can use more efficient
direct access methods to the data, which no longer needs
to be stored as JVM objects, and hence garbage collection
can be avoided. The DataFrame engine is built on top of the
original RDD processing interface.

Apache Flink originated from the Stratosphere research
project [3] and is progressing from an academic project to
industry. While Flink shares many ideas with Spark such
as the master-worker model, lazy operations, and iterative
computations, it tightly integrates concepts known from
parallel database systems. Flink’s core interface is a domain-
specific declarative language. Furthermore, Flink’s focus has
turned to streaming rather than batch processing.

In Flink, the optimizer takes a user program and produces
a graph of logical operators. The framework then performs
rule- and cost-based optimizations, such as reordering of
operations, pipelining of local operations, selection of algo-
rithms, and evaluation of different data exchange patterns
to find an execution plan Flink believes is best for a given
user program and cluster configuration. Flink is based on a
pipelined execution engine comparable to parallel database
systems, which is extended to integrate streaming operations
with rich windowing semantics. Iterative computations are
sped up by performing delta-iterations on changing data
only, as well as placing computation on the same worker
across iterations. Fault tolerance is achieved by continu-
ously taking snapshots of the distributed data streams and
operator states [17], a concept inspired by Chandy-Lamport
snapshots [18]. Flink also has an own memory management
system separate from the JVM’s garbage collector for higher
performance and better control of memory peaks.

The interfaces of Spark and Flink differ in some very
important ways. Flink’s optimizer requires introspection into
the components of data objects and how the UDFs operate
on them. This requires many Scala/Java annotations to the
UDFs and incurs an indirection for access to the values of
components. In contrast to Spark’s RDD interface, where
users can make use of host language control-flow, Flink
provides custom iteration operations. Hence, Flink programs
are in this respect more similar to declarative SQL state-
ments than to an imperative language. The newer DataFrame
and Dataset interfaces introduce similar concepts to Spark,
but extend them further with a custom code generation
engine. At its core, Spark is an in-memory batch engine
that executes streaming jobs as a series of mini-batches. In
contrast, Flink is based on a pipelined execution engine used
in database systems, allowing Flink to process streaming
operations in a pipelined way with lower latency than in
the micro-batch model. In addition, Flink supports external
memory algorithms whereas Spark is mainly an in-memory
system with spilling to external memory.

Overall the JVM is currently the dominant platform for
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Figure 1. Distribution of a DIA between processors (left) and a data-flow
graph (right)

open-source big data frameworks. This is understandable
from the point of view of programmer productivity but
surprising when considering that C++ is the predominant
language for performance critical systems – and big data
processing is inherently performance critical. Spark [19]
(with Project Tungsten) and Flink (with MemorySegments)
therefore put great efforts into overcoming performance
penalties of the JVM, for example by using explicit Unsafe
memory operations and generating optimized bytecode to
avoid object overhead and garbage collection. With Thrill
we present a C++ framework as an alternative that does not
incur these overheads in the first place.

II. DESIGN OF THRILL

Thrill programs are written in C++ and compile into
binary programs. The execution model of this binary code
is similar to MPI programs: one identical program is run
collectively on h machines. Thrill currently expects all
machines to have nearly identical hardware, since it balances
work and data equally between the machines. The binary
program is started simultaneously on all machines, and
connects to the others via a network protocol. Thrill cur-
rently supports TCP sockets and MPI as network backends.
The startup procedures depend on the specific backend and
cluster environment.

Each machine is called a host, and each work thread on
a host is called a worker. Currently, Thrill requires all hosts
to have the same number of cores c, hence, in total there
are p = h ·c worker threads. Additionally, each host has one
thread for network/data handling and one for asynchronous
disk I/O. Each of the h hosts have h − 1 reliable network
connections to the other hosts, and the hosts and workers are
enumerated 0 . . . h−1 and 0 . . . p−1. Thrill does not have a
designated master or driver host, as all communication and
computation is done collectively.

Thrill currently provides no fault tolerance. While our
data-flow API permits smooth integration of fault tolerance
using asynchronous checkpoints [17], [18], the execution
model of exactly h machines may have to be changed.

A. Distributed Immutable Arrays

The central concept in Thrill’s high-level data-flow API
is the distributed immutable array (DIA). A DIA is an array
of items which is distributed over the cluster in some way.

3



1 void WordCount(thrill::Context& ctx,
2 std::string input, std::string output) {
3 using Pair = std::pair<std::string, size_t>;
4 auto word_pairs = ReadLines(ctx, input)
5 .template FlatMap<Pair>(
6 // flatmap lambda: split and emit each word
7 [](const std::string& line, auto emit) {
8 Split(line, ’ ’, [&](std::string_view sv) {
9 emit(Pair(sv.to_string(), 1));

10 });
11 });
12 word_pairs.ReduceByKey(
13 // key extractor: the word string
14 [](const Pair& p) { return p.first; },
15 // commutative reduction: add counters
16 [](const Pair& a, const Pair& b) {
17 return Pair(a.first, a.second + b.second);
18 })
19 .Map([](const Pair& p) {
20 return p.first + ": "
21 + std::to_string(p.second); })
22 .WriteLines(output);
23 }

Figure 2. Complete WordCount Example in Thrill

No direct array access is permitted. Instead, the programmer
can apply so-called DIA operations to the array as a whole.
These operations are a set of scalable primitives, listed in
Table I, which can be composed into complex distributed
algorithms. DIA operations can create DIAs by reading
files, transform existing DIAs by applying user functions,
or calculate scalar values collectively, used to determine
the further program control flow. In a Thrill program, these
operations are used to lazily construct a DIA data-flow graph
in C++ (see Figure 1). The data-flow graph is only executed
when an action operation is encountered. How DIA items are
actually stored and in what way the operations are executed
on the distributed system remains transparent to the user.

In the current prototype of Thrill, the array is usually
distributed evenly between the p workers in order. DIAs can
contain any C++ data type, provided serialization methods
are available (more in Section II-F). Thrill contains built-
in serialization methods for all primitive types, and most
STL types; only custom non-trivial classes require additional
methods. Each DIA operation in Table I is implemented
as a C++ template class, which can be instantiated with
appropriate UDFs.

B. Example: WordCount

We now present a complete code of the popular Word-
Count benchmark in Algorithm 2 to demonstrate how easy
it is to program in Thrill. The program counts the number of
occurrences of each unique word in a text. In Thrill, Word-
Count including file I/O consists of five DIA operations.

ReadLines (line 4) and WriteLines (line 22) are used to
read the text and write the result from/to the file system.
Thrill currently uses standard POSIX filesystem methods
to read and write to disk, and it requires a distributed
parallel file system such as NFS, Lustre, or Ceph to provide

a common view to all compute hosts. ReadLines takes a
thrill::Context object, which is only required for source DIA
operations, and a set of files. The result of ReadLines is a
DIA〈std::string〉, which contains each line of the files as an
item. The set of files is ordered lexicographically and the
set of lines is partitioned equally among the workers.

However, this DIA is not assigned to a variable name.
Instead, we immediately append a FlatMap operation
(line 5) which splits each text line into words and emits
one std::pair〈std::string,size t〉 (aliased as Pair) containing
(word, 1) per word. In the example, we use a custom
Split function and std::string view to reference characters
in the text line, and copy them into word strings. The emit
auto parameter of the FlatMap lambda function (line 7)
enables Thrill to pipeline the FlatMap with the following
ReduceByKey operation. Details on pipelining are discussed
in Section II-E. The result of FlatMap is a DIA〈Pair〉, which
is assigned to the variable word pairs. Note that the keyword
auto makes C++ infer the appropriate type for word pairs
automatically.

The operation ReduceByKey is then used to reduce
(word, 1) pairs by word. This DIA operation must be pa-
rameterized with a key extractor (take word out of the pair,
line 14) and a reduction function (sum two pairs with the
same key together, line 17). Thrill currently implements
ReduceByKey using hash tables, as described in Section II-G.
Notice that C++ will infer most types during instantiation of
ReduceByKey, both input and output are implicit; only with
FlatMap it is necessary to specify what type gets emitted.

The output of ReduceByKey is again a DIA〈Pair〉. We
need to use a Map to transform the Pairs into printable
strings (lines 19–21), which can then be written to disk
using the WriteLines action. Again, the return type of the
Map (std::string) is inferred automatically, and hence the
result of the Map operation is implicitly a DIA〈std::string〉.

Notice that it is not obvious that the code in Algorithm 2
describes a parallel and distributed algorithm. It is the
implementation of the DIA operations in the lazily built data-
flow graph which perform the actual distributed execution.
The code instructs the C++ compiler to instantiate and
optimize these template classes with the UDFs provided. At
runtime, objects of these template classes are procedurally
created and evaluated when actions are encountered in the
DIA data-flow graph.

C. Overview of DIA Operations

Table I gives an overview of the DIA-operations currently
supported by Thrill. The immutability of a DIA enables
functional-style data-flow programming. As DIA operations
can depend on other DIAs as inputs, these form a directed
acyclic graph (DAG), which is called the DIA data-flow
graph. We denote DIA operations as vertices in this graph,
and directed edges represent a dependency. Intuitively, one
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Table I
DIA OPERATIONS OF THRILL

Operation User Defined Functions
Sources

Generate(n) : [0, . . . , n− 1] n : DIA size
Generate(n, g) : [A] g : unsigned→ A
ReadLines() : files→ [string]
ReadBinary〈A〉() : files→ [A] A : data type

Local Operations (no communication)
Map(f) : [A]→ [B] f : A→ B
FlatMap(f) : [A]→ [B] f : A→ list(B)
Filter(f) : [A]→ [A] f : A→ bool
BernoulliSample(p) : [A]→ [A] p : success probability
Union() : [A]× [A] · · · → [A]
Collapse() : [A]→ [A]
Cache() : [A]→ [A]

Distributed Operations (communication between workers)
ReduceByKey(k, r) : k : A→ K
ReduceToIndex(i, r, n) : i : A→ [0, n)

[A]→ [A] r : A×A→ A
GroupByKey(k, g) : g : iterable(A)→ B
GroupToIndex(i, g, n) : n : result size

[A]→ [B]
Sort(c) : [A]→ [A] c : A×A→ bool
Merge(c) : [A]× [A] · · · → [A] c : A×A→ bool
Concat() : [A]× [A] · · · → [A]
PrefixSum(s, i) : [A]→ [A] s : A×A→ A

i : initial value
Zip(z) : [A]× [B] · · · → [C] z : A×B · · · → C
ZipWithIndex(z) : [A]→ [B] z : unsigned×A · · · → B
Window(k,w) : [A]→ [B] k : window size
FlatWindow(k, f) : [A]→ [B] w : Ak → B

f : Ak → list(B)

Actions
Execute()
Size() : [A]→ unsigned
AllGather() : [A]→ list(A)
Sum(s, i) : [A]→ A s : A×A→ A
Min(i) : [A]→ A i : initial value
Max(i) : [A]→ A
WriteLines() : [string]→ files
WriteBinary() : [A]→ files

can picture a directed edge as the values of a DIA as they
flow from one operation into the next.

We classify all DIA operations into four categories.
Source operations have no incoming edges and generate a
DIA from external sources like files, database queries, or
simply by generating the integers 0 . . . n − 1. Operations
which have one or more incoming edges and return a DIA
are classified further as local (LOps) and distributed opera-
tions (DOps). Examples of LOps are Map or Filter, which
apply a function to every item of the DIA independently.
LOps can be performed locally and in parallel, without any
communication between workers. On the other hand, DOps
such as ReduceByKey or Sort may require communication
and a full data round-trip to disks.

The fourth category are actions, which do not return a
DIA and hence have no outgoing edges. The DIA data-flow
graph is built lazily, i.e. DIA operations are not immediately
executed when created. Actions trigger evaluation of the

graph and return a value to the user program. For example,
writing a DIA to disk or calculating the sum of all values are
actions. By inspecting the results of actions, a user program
can determine the future program flow, e.g. to iterate a
loop until a condition is met. Hence, control flow decisions
are performed collectively in C++ with imperative loops or
recursion (host language control-flow).

Initial DIAs can be generated with Thrill’s source op-
erations. Generate creates a DIA by mapping each index
[0, size) to an item using a generator function. ReadLines
and ReadBinary read data from the file system and create a
DIA with this data.

Thrill’s FlatMap LOp corresponds to the map step in
the MapReduce paradigm. Each item of the input DIA is
mapped to zero, one, or more output items by a function
f . In C++ this is done by calling an emit function for each
item, as shown in the WordCount example. Special cases
of FlatMap are Map, which maps each item to exactly one
output, Filter, which selects a subset of the input DIA, and
BernoulliSample, which samples each item independently
with constant probability p. The LOp Union fuses two
or more DIAs into one without regard for item order. In
contrast, the DOp Concat keeps the order of the input DIAs
and concatenates them, which requires communication.

Cache explicitly materializes the result of a DIA operation
for later use. Collapse on the other hand folds a pipeline of
functions, as described in more detail in Section II-G.

The reduce step from the MapReduce paradigm is rep-
resented by Thrill’s ReduceByKey and GroupByKey DOps.
In both operations, input items are grouped by a key. Keys
are extracted from items using the key extractor function k,
and then mapped to workers using a hash function h. In
ReduceByKey, the associative reduction function r specifies
how two items are combined into one. In GroupByKey,
all items with a certain key are collected on one worker
and processed by the group function g. When possible,
ReduceByKey should be preferred as it allows local reduction
and thus lowers communication volume and running time.

Both ReduceByKey and GroupByKey also offer a ToIndex
variant, wherein each item of the input DIA is mapped by
a function i to an index in the result DIA. The size of the
resulting DIA must be given as n. Items which map to the
same index are either reduced using an associative reduction
function r, or processed by a group function g. Empty slots
in the DIA are filled with a neutral item.

Sort sorts a DIA with a user-defined comparison function
c and Merge merges multiple sorted DIAs, again using
a user-defined comparison function c. PrefixSum uses an
associative function s to compute the prefix sum (partial
sum) for each item.

Zip combines two or more DIAs index-wise using a zip
function z similar to functional programming languages. The
function z is applied to all items with index i to deliver the
new item at index i. The regular Zip function requires all
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DIAs to have equal length, but Thrill also provides variants
which cut the DIAs to the shortest or pad them to the
longest. ZipWithIndex zips each DIA item with its global
index. While ZipWithIndex can be emulated using Generate
and Zip, the combined variant requires less communication.

Window respects the ordering of a DIA and delivers all k
consecutive items (a sliding window) to a function w which
returns exactly one item. In the FlatWindow variant, the
window function f can emit zero or more items. Thrill also
provides specializations which delivers all disjoint windows
of k consecutive items.

Sum is an action, which computes an associative function
s over all items in a DIA and returns the result on every
worker. By default Sum uses +. Max and Min are special-
izations of Sum with other operators. Size returns the number
of items in a DIA and AllGather returns a whole DIA as
std::vector〈T 〉 on each worker. WriteLines and WriteBinary
write a DIA to the file system. Execute can be used to
explicitly trigger evaluation of DIA operations.

Besides the actions which trigger evaluation, Thrill also
provides action futures, SumFuture, MinFuture, AllGather-
Future, etc, which only insert an action vertex into the DIA
data-flow graph, but do not trigger evaluation. Using action
futures one can calculate multiple results (e.g. the minimum
and maximum item) with just one data round trip.

The current set of scalable primitive DIA operations
listed in Table I is definitely not final, and more dis-
tributed algorithmic primitives may be added in the future
as necessary and prudent. In Section II-G we describe the
implementations of some of the operations in more detail.
We also envision future work on how to accelerate scalable
primitives, which can then be use as drop-in replacement to
our current straight-forward implementations.

D. Why Arrays?

Thrill’s DIA API is obviously similar to Spark and
Flink’s data-flow languages, which themselves are similar
to many functional programming languages [20]. However,
we explicitly define the items in DIAs to be ordered. This
order may be arbitrary after operations like ReduceByKey,
which hash items to indexes in the array, but they do have an
order. Many of our operations like PrefixSum, Sort, Merge,
Zip, and especially Window only make sense with an ordered
data type.

Having an order on the distributed array opens up new
opportunities in how to exploit this order in algorithms.
Essentially, the order reintroduces the concept of locality
into distributed data-flow programming. While one cannot
access DIA items directly, such as in a imperative for
loop over an array, one can iterate over them using a
Window function in parallel with adjacent items as context.
A common design pattern in Thrill programs is to use Sort
or ReduceToIndex to bring items into a desired order, and
then to process them using a Window. Furthermore, if the

computation in a Window needs context from more than one
DIA, these can be Zip-ped together first.

We are looking forward to future work on how this order
paradigm can be exploited. Furthermore, extending Thrill
beyond one-dimensional arrays to higher dimensional arrays,
(sparse) matrices, or graphs is not only useful but also
conceptually interesting since these data types have a more
complex concept of locality.

E. Data-Flow Graph Implementation

Contrary to the picture of DIAs we have drawn for appli-
cation programmers in the preceding sections, the distributed
array of items usually does not exist explicitly. Instead, a
DIA remains purely a conceptual data-flow between two
concrete DIA operations. This data-flow abstraction allows
us to apply an optimization called pipelining or chaining.
Chaining in general describes the process of combining the
logic of one or more functions into a single one (called
pipeline). In Thrill we chain together all independently
parallelizable local operations (FlatMap, Map, Filter, and
BernoulliSample), and the first local computation steps of the
next distributed DIA operation into one block of optimized
binary code. Via this chaining, we reduce both the overhead
of the data flow between them, as well as the total number
of operations, and obviate the need to store intermediate
explicit arrays. Additionally, we leverage the C++ compiler
to combine the local computations on the assembly level with
full optimization, thus reducing the number of indirections
to a minimum, which additionally improves cache efficiency.
In essence, we combine all local computation of one bulk-
synchronous parallel (BSP) superstep [21] using chaining
into one block of assembly code.

To integrate the implementations of DIA operations into
the pipelining framework we subdivide them into three
parts: Link, Main and Push (see Figure 3 for an example).
The Link part handles incoming items by performing some
finalizing local work like storing or transmitting them. This
process closes the pipeline and results in a single executable
code block containing its logic. The Main part contains
the actual DIA operation logic like sorting, synchronous
communication, etc. And finally, the Push part represents
the start of a new pipeline by emitting items for further
processing. Depending on the type of a DIA operation,
subdivisions can also be empty or trivial.

We explain these subdivisions using PrefixSum as an
example. In the Link part, PrefixSum receives a stream
of items from a preceding operation and stores them in
sequence. While storing them, each worker keeps a local
sum over all items. In the Main part, the workers perform a
global synchronous exclusive prefix sum on the local sums
to calculate the initial value of their items. This local initial
value is then added to items while they are being read and
Push-ed into the next operation.
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Figure 3. Subdivisions of DOps and chained Push, LOps, and Link parts

Chaining also affects how data dependencies between DIA
operations are represented in Thrill’s data-flow graph. Due
to pipelining of local operations into one assembly block,
all LOp are fused with the succeeding DOp vertices. Hence
only vertices representing distributed operations remain in
the DAG. This optimized data-flow DAG corresponds to a
set of BSP supersteps and their data dependencies, and is
executed lazily when an action is encountered.

Execution is done by Thrill’s StageBuilder, which per-
forms a reverse breadth-first stage search in the optimized
DAG to determine which DIA operations need to be calcu-
lated. The gathered vertices are then executed in topological
order such that their data dependencies are resolved prior
to execution. Unnecessary recomputations are avoided by
maintaining the state of each vertex, and DIA operations
are automatically disposed via reference counting.

We implemented chaining and our execution model by
making heavy use of C++ template programming. More
precisely, we compose a pipeline by chaining together the
underlying (lambda) functions using their static functor
types. Since these types can be deduced by static analysis,
chaining can take place during compile time, and hence
chained operations can be optimized into single pipelined
functions on the assembly code level. In the end all trivially-
parallel local operation like Map, FlatMap, etc. introduce
zero overhead during runtime, and are combined with the
following DIA operation’s Link part.

The caveat of Thrill’s chaining mechanism is that the
preceding LOp and DOp’s (lambda) functions f1, f2, . . .
become part of the DIA operation’s template instantiation
types as DIA〈T, f1, f2, . . .〉. This is usually not a problem,
since with C++11 we can encourage liberal use of the
auto keyword instead of using concrete DIA〈T〉 types. How-
ever, in iterative or recursive algorithms DIA〈T〉 variables

have to be updated. These variables are only references
to the actual DIA operations, which are immutable, but
the references must point to the same underlying DIA
operation template type. We address this issues by adding a
special operation named Collapse which constructs a DIA〈T〉
from DIA〈T, f1, f2, . . .〉. This operation creates an additional
vertex in the data-flow DAG that closes the current pipeline,
stores it, and creates a new (empty) one. The framework will
issue compilation errors when Collapse is required.

In Thrill we took pipelining of data processing one step
further by enabling consumption of source DIA storage while
pushing data to the next operation. DIA operations transform
huge data sets, but a naive implementation would read all
items from one DIA, push them all into the pipeline for
processing, and then deallocate the data storage. Assuming
the next operation also stores all items, this requires twice
the amount of storage. However, with consume enabled,
the preceding DIA operation’s storage is deallocated while
processing the items, hence the storage for all items is
needed only once, plus a small overlapping buffer.

F. Data, Network, and I/O Layers

Below the convenient high-level DIA API of Thrill lie
several software layers which do the actual data handling.
DIA operations are C++ template classes which are chained
together as described in Section II-E. These operations store
and transmit the items using the data, net, and io layers.

Items have to be serialized to byte-sequences for transmis-
sion via the network or for storage on disk. Thrill contains a
custom C++ serialization framework which aims to deliver
high performance and low to zero overhead. This is possible
because neither signatures nor versioning are needed. In
general, fixed-length trivial items like integers and fixed-size
numerical vectors are stored with zero overhead. Variable
length items like strings and variable-length vectors are
prepended with their length. Compound objects are stored
as a sequence of their components.

DIA operations process a stream of items, which need
to be transmitted or stored, and then read. Such a stream
of items is serialized directly into the memory buffer of a
Block, which is by default 2 MiB in size. Items in a Block are
stored without separators or other per-item overhead. This
is possible because Thrill’s serialization methods correctly
advance a cursor to the next item. Hence, currently only
four integers are required as overhead per Block and zero
per item. This efficient Block storage format is important for
working with small items like plain integers or characters,
but Thrill can also process large blobs spanning multiple
Blocks.

A sequence of Blocks is called a File, even though it is
usually stored in main memory. DIA operations read/write
items sequentially to/from Files using template BlockReader
and BlockWriter classes.
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To transmit items to other workers, DIA operations have
two choices. One is a set of efficient synchronous collective
communication primitives similar to MPI, such as AllRe-
duce, Broadcast, and PrefixSum. These utilize the same
serialization framework and are mostly used for blocking
communication of small data items, e.g. an integer AllRe-
duce is often used to calculate the total number of items in
a DIA.

The second choice are Streams for transmitting large
amounts of items asynchronously. Streams enable bulk all-
to-all communication between all workers. Thrill contains
two subtypes of Streams which differ in the order items
are received from other workers: CatStreams deliver items
strictly in worker rank order, while MixStreams deliver items
in the arbitrary order in which Blocks are received from
the network. Besides transmitting items in Blocks using
the BlockReader and BlockWriter classes, Streams can also
scatter whole ranges of a File to other workers without an
additional deep copy of the Block’s data in the network layer.
Items in Blocks scattered via Streams to workers on the same
host are “transmitted” via reference counting and not deeply
copied. All communication with workers on the same host
is done via shared memory within the same process space.

All Blocks in a Thrill program are managed by the Block-
Pool. Blocks are reference counted and automatically deleted
once they are no longer in any File or used by the network
system. The BlockPool also keeps track of the total amount
of memory used in Blocks. Once a user-defined limit is
exceeded, the BlockPool asynchronously swaps out the least
recently used Blocks to a local disk. To distinguish which
Blocks may be evicted and which are being used by the data
system, Blocks have to be pinned to access their data. Pins
can be requested asynchronously to enable prefetching from
external memory. However, all the complexity of pinning
Blocks is hidden in the BlockReader/Writer such as to make
implementation of DIA operations easy.

Thrill divides available system memory into three parts
(by default equally): BlockPool memory, DIA operations
memory, and free floating heap memory for user objects like
std::string. All memory is tracked in Thrill by overloading
malloc(), hence the user application needs no special al-
locators. Memory limits for DIA operations’ internal data
structures are negotiated and defined when executed during
evaluation. The StageBuilder determines which DIA opera-
tions participate in a stage and divides the allotted memory
fairly between them. It is important for external memory
support that the operations adhere to these internal memory
limits, e.g. by correctly sizing their hash tables and sort
buffers.

G. Details on the Reduce, Group, and Sort Implementations

Besides pipelining DIA operations, careful implementa-
tions of the core algorithms in the operations themselves
are important for performance. Most operations are currently

implemented rather straight-forwardly, and future work may
focus on more sophisticated versions of specific DIA oper-
ations. Due to the generic DIA operation interface, these
future implementations can then be easily plugged into
existing applications.

1) Reduce Operations: ReduceByKey and ReduceToIndex
are implemented using multiple levels of hash tables, be-
cause items can be immediately reduced due to associative
or even commutative reduction operations r : A×A→ A.

Thrill distinguishes two reduction phases: the pre-phase
prior to transmission and the post-phase receiving items from
other workers. Items which are pushed into the Reduce-DOp
are first processed by the key extractor k : A→ K or index
function i : A → [0, n) (see Table I). The key space K
or index space [0, n) is divided equally onto the range of
workers [0, p). During the pre-phase, each worker hashes
and inserts items into one of p separate hash tables, each
destined for one worker. If a hash table exceeds its fill-factor,
its content is transmitted. If two items with matching keys
are found, they are combined locally using r.

Items that are received from other workers in the post-
phase are inserted into a second level of hash tables. Again,
matching items are immediately reduced using r. To enable
truly massive data processing, Thrill may spill items into
external memory during the post-phase. The second level
of hash tables are again partitioned into k separate tables.
If any of the k tables exceeds its fill-factor, its content is
spilled into a File. When all items have been received by
the post-phase, the spilled Files are recursively reduced by
choosing a new hash function and reusing the hash table.

The pre- and post-phases use custom linear probing
hash tables with built-in reduction on collisions. One large
memory segment is used for p separate hash tables. Initially,
only a small area of each partition is filled and used to save
allocation time. When a hash table is flushed or spilled, its
allocated size is doubled until the memory limit prescribed
by the StageBuilder is reached.

2) Group Operations: GroupByKey and GroupToIndex
are based on sorting and multiway merging of sorted runs.
Items pushed into the Group-DOp are first processed by the
key extractor k : A → K or index function i : A → [0, n),
the result space K or [0, n) is distributed evenly onto all
p workers. After determining the destination worker, items
are immediately transmitted to the appropriate worker via
a Stream. Each worker stores all received items in an in-
memory vector. Once the vector is full or heap memory
is exhausted, the vector is sorted by key, and serialized
into a File which may be swapped to external memory.
Once all items have been received, the sorted runs are
merged using an efficient multiway merger. The stream of
sorted items is separated into subsequences with equal keys,
and these sequences are delivered to the group function
g : iterable(A)→ B as a multiway merge iterator.
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3) Distributed Sorting: The operation Sort rearranges all
DIA items into a global order as defined by a comparison
function. In the Link step on each worker, all local incoming
items are written to a File. Simultaneously, a random sample
is drawn using reservoir sampling and sent to worker 0
once all items have been seen. In the Main part, Thrill uses
Super Scalar Sample Sort [22] to redistribute items between
workers: worker 0 receives all sample items, sorts them
locally, chooses p−1 equidistant splitters, and broadcasts the
splitters back to all workers. These build a balanced binary
tree with p buckets to determine the target worker for each
item in dlog pe comparisons. As Super Scalar Sample Sort
requires the number of buckets to be a power of two, the tree
is filled with sentinels as necessary. Items are then read from
the File, classified using the splitter tree, and transmitted via
a Stream to the appropriate worker. When a worker reaches
its memory limit while receiving items, the items are sorted
and written to a File. If multiple sorted Files are created,
these are merged during the Push part.

Datasets with many duplicated items can lead to load
balance problems if sorting is implemented naively. To
mitigate skew, Thrill uses the global array position of the
item to break ties and determine its recipient. When an item
is equal to a splitter, it will be sent to the lower rank worker
if and only if its global array position is lower than the
corresponding quantile of workers.

III. EXPERIMENTAL RESULTS

We compared Apache Spark 2.0.0, Apache Flink 1.0.3,
and Thrill using five synthetic micro benchmark applications
on the Amazon Web Services (AWS) EC2 cloud. Our
benchmark and input set is based on HiBench [23], which
we extended2 with implementations for Flink and Thrill.

We selected five micro benchmarks: WordCount,
PageRank, TeraSort, KMeans, and Sleep. To focus on the
performance of the frameworks themselves, we attempted
to implement the benchmarks equally well using each of the
frameworks, and made sure that the same basic algorithms
were used. Spark and Flink can be programmed in Java or
Scala, and we include implementations of both whenever
possible. The code for Spark and Flink benchmarks was
taken from different sources, all implementations for Thrill
were written by us and are included in the Thrill C++
source code as examples. While we tried to configure Spark
and Flink best possible, the complexity and magnitude of
configuration options these frameworks provide make it
possible that we may have missed some tuning parameters.
For the most part we kept the parameters from HiBench.
The experiments are run with weak scaling of the input,
which means that the input size increases with the number
hosts h, where each AWS host has 32 cores.

2http://github.com/thrill/fst-bench

A. The Micro Benchmarks
Implementations of WordCount were available in Java and

Scala from the examples accompanying Spark and Flink.
The WordCount benchmarks process h · 32GiB of text
generated by a C++ version of Hadoop’s RandomTextWriter.
There are only 1 000 distinct words in this random text,
which we do not consider a good benchmark for reduce,
since only very little data needs to be communicated, but
this input seems to be an accepted standard.

For PageRank we used only implementations which per-
form ten iterations of the naive algorithm involving a join of
the current ranks with all outgoing edges and a reduction to
collect all contributions to the new ranks. We took the im-
plementation from Spark’s examples and modified it to use
integers instead of strings as page keys. We adapted Flink’s
example to calculate PageRank without normalization and to
perform a fixed number of iterations. Thrill emulates a join
operation using ReduceToIndex and Zip with the page id as
the index into the DIA. The input graph for the experiments
contained h ·4M vertices with an average of 39.5 edges per
vertex, totaling ≈ h · 2.7GiB in size, and generated using
the PagerankData generator in HiBench.

TeraSort requires sorting 100 byte records, and we used
the standard sort method in each framework. HiBench pro-
vided a Java implementation for Spark, and we used an
unofficial Scala implementation3 [24] for Flink. Hadoop’s
teragen was used to generate h · 16GiB as input.

For KMeans we used the implementations from Spark
and Flink’s examples. Spark calls its machine learning
package, while Flink’s example is a whole algorithm. We
made sure that both essentially perform ten iterations of
Lloyd’s algorithm using random initial centroids, and we
implemented this algorithm in Thrill. We fixed the number
of dimensions to three, because Flink’s implementation
required a fixed number of dimensions, and the number
of clusters to ten. Following HiBench’s settings, Apache
Mahout’s GenKMeansDataset was used to generate h ·16M
sample points, and the binary Mahout format was converted
to text for reading with Flink and Thrill (≈ h · 8.8GiB in
size).

The Sleep benchmark is used to measure framework
startup overhead time. It launches one map task per core
which sleeps for 60 seconds.

B. The Platform
We performed our micro benchmarks on AWS using

h r3.8xlarge EC2 instances. Each instance contains 32 vCPU
cores of an Intel Xeon E5-2670 v2 with 2.5 GHz, 244 GiB
RAM, and two local 320 GiB SSD disks. We measured
86 GiB/s single-core/L1-cache, 11.6 GiB/s single-core/RAM,
and 74 GiB/s 32-core/RAM memory bandwidth using a
memory benchmark tool4. The SSDs reached 460 MiB/s

3https://github.com/eastcirclek/terasort
4http://panthema.net/2013/pmbw/
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when reading 8 MiB blocks, and 397 MiB/s when writing.
The h instances were allocated in one AWS availability

zone and were connected with a 10 gigabit network. Our
network performance measurements showed ≈ 100µs ping
latency, and up to 1 GiB/s sustained point-to-point band-
width. All frameworks used TCP sockets for transmitting
data.

We experimented with AWS S3, EBS, and EFS as data
storage for the benchmark inputs, but ultimately chose to
run a separate CephFS cluster on the EC2 instances. Ceph
provided reliable, repeatable performance and minimized
external factors in our experiments. Each EC2 instance
carried one Ceph ODS on a local SSD, and we configured
the Ceph cluster to keep only one replication block to
minimize bandwidth due to data transfer. We did not use
HDFS since Thrill does not support it, and because a POSIX-
based distributed file system (DFS) provided a standard view
for all frameworks. The other SSD was used for temporary
files created by the frameworks.

All Spark implementations use the RDD interface. Sup-
port for fault tolerance in Spark and Flink incurred no ad-
ditional overhead, because no checkpoints were written. By
default checkpointing is deactivated and must be explicitly
configured. All compression was deactivated, and Spark was
configured to use Kyro serialization.

We used Ubuntu 16.04 LTS (Xenial Xerus) with Linux
kernel 4.4.0-31, Ceph 10.2.2 (jewel), Oracle Java 1.8.0 101,
Apache Spark 2.0.0, Apache Flink 1.0.3, and compiled Thrill
using gcc 5.4.0 with cmake in Release mode.

C. The Results

Figure 4 shows the median result of three benchmark runs
for h = 1, 2, 4, 8, 16 hosts. We plotted the time divided by
the number of input bytes on one host, which is proportional
to the number of items per host. Figure 5 shows the same re-
sults as Figure 4, except plotted as the slowdown in running
time of each framework over the fastest. Additionally, we
measured a performance profile of the CPU, network, and
disk I/O utilization during the benchmarks using information
from the Linux kernel, and show the results for h = 16 in
Table II and Figures 6–7.

Thrill consistently outperforms Spark and Flink in all
benchmarks on all numbers of hosts, and is often several
times faster than the other frameworks. The speedup of Thrill

over Spark and Flink is highest on a single host, and grows
smaller as network and disk I/O become bottlenecks.

In WordCount, the text is read from the DFS, split into
words, and the word pairs are reduced locally. As only
1 000 unique words occur, the overall result is small and
communication thereof is negligible. Thrill maximizes net-
work utilization with 1 127 MiB/s via the DFS and uses only
27% of the available CPU time for splitting and reducing.
Spark also nearly maximizes the network with 939 MiB/s,
but utilizes the CPU 64% of the running time. Flink is a
factor 5.7 slower than Thrill in WordCount with 16 hosts,
uses the CPU 78% of the time, and is not network bound.
Thrill’s reduction via hash tables are very fast, the other
frameworks require considerable more CPU time for the
same task. With 16 hosts Thrill is network bound due to
the network file system, and Spark (Scala) is only a factor
1.28 slower.

In PageRank, the current rank values are joined with
the adjacency lists of the graph and transmitted via the
network to sum all rank contributions for the next iteration
in a reduction. Hence, the PageRank benchmark switches
back and forth ten times between high CPU load while
joining, and high network load while reducing (see Fig-
ure 6). Spark (Java) is a factor 4.0 slower than Thrill on
16 hosts, while Flink (Java) is a factor 1.6 slower. Flink’s
pipelined execution engine works well in this benchmark,
and reaches 61% CPU and 15% network utilization. From
the execution profile of Spark one can see that it does
not balance work well between the hosts due to stragglers.
Hence, each iteration takes longer than necessary. We believe
Thrill’s performance could be increased even further by
implementing a Join algorithm.

In TeraSort, Spark is only a factor 1.7 slower and Flink
a factor 1.18 than Thrill on 16 hosts. Spark reaches only
20% CPU and 42% network utilization on average, Flink
26% and 45%, and Thrill 25% and 39%, respectively.
Flink’s pipelined execution outperforms Spark in TeraSort,
as was previously shown by an other author [24]. The
implementations appear well tuned, however, due to the CPU
and network utilization we believe all can be improved.

In the KMeans algorithm, the set of centroids are broad-
cast. Then all points are reclassified to the closest centroid,
after which new centroids are determined from all points

Table II
RESOURCE UTILIZATION OF FRAMEWORKS WITH IN BENCHMARKS

Spark (Scala) Flink (Scala) Thrill
CPU Net CPU Net CPU Net

WordCount 49 s 64 % 939 MiB/s 290 s 78 % 183 MiB/s 16 s 27 % 1 127 MiB/s
PageRank 392 s 29 % 36 MiB/s 284 s 61 % 151 MiB/s 70 s 27 % 217 MiB/s
TeraSort 76 s 20 % 421 MiB/s 69 s 26 % 452 MiB/s 49 s 25 % 393 MiB/s
KMean 81 s 27 % 66 MiB/s 183 s 4.3 % 29 MiB/s 35 s 50 % 253 MiB/s

The table shows the CPU utilization as seconds and percentage of total running time, and the average network bandwidth in MiB/s, both averaged over
all hosts during the benchmark run with 16 hosts. TeraSort shows Spark (Java), as we have no Scala implementation.

10



1 2 4 8 16
0

5

10

tim
e

pe
r

by
te

pe
r

ho
st

[n
s]

WordCount

1 2 4 8 16
0

200

400

PageRank

1 2 4 8 16
0

10

20

TeraSort

1 2 4 8 16
0

100

200

300

number of hosts h

tim
e

pe
r

by
te

pe
r

ho
st

[n
s]

KMeans

1 2 4 8 16
0

5

10

number of hosts h

ov
er

he
ad

tim
e

[s
]

Sleep

Spark (Java) Spark (Scala)
Flink (Java) Flink (Scala)
Thrill

Figure 4. Experimental results of Apache Spark 2.0.0, Apache Flink 1.0.3, and Thrill on h AWS r3.8xlarge hosts

1 2 4 8 16
0

5

10

sl
ow

do
w

n
ov

er
fa

st
es

t

WordCount

1 2 4 8 16
0

2

4

6

PageRank

1 2 4 8 16

1

1.5

2

TeraSort

1 2 4 8 16
0

20

40

60

number of hosts h

sl
ow

do
w

n
ov

er
fa

st
es

t

KMeans

1 2 4 8 16
0

5

10

15

20

number of hosts h

sl
ow

do
w

n
ov

er
fa

st
es

t

Sleep

Spark (Java) Spark (Scala)
Flink (Java) Flink (Scala)
Thrill

Figure 5. Slowdown of Apache Spark 2.0.0, Apache Flink 1.0.3, and Thrill on h AWS r3.8xlarge hosts over the fastest framework

11



5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

WordCount with Spark (Scala)

0

500

1 000

1 500 N
etw

ork/D
isk

T
hroughput

[M
iB

/s]

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

WordCount with Flink (Scala)

0

200

400

600 N
etw

ork/D
isk

T
hroughput

[M
iB

/s]

5 10 15 20 25 30 35 40 45 50 55
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

WordCount with Thrill

0

1 000

2 000 N
etw

ork/D
isk

T
hroughput

[M
iB

/s]

0 100 200 300 400 500 600 700 800 900 1 000 1 100 1 200 1 300
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

PageRank with Spark (Scala)

0

500

1 000

1 500

2 000

N
etw

ork/D
isk

T
hroughput

[M
iB

/s]

50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

PageRank with Flink (Scala)

0

500

1 000

1 500

N
etw

ork/D
isk

T
hroughput

[M
iB

/s]

20 40 60 80 100 120 140 160 180 200 220 240 260
0

20

40

60

80

100

Execution Time [s]

C
PU

U
til

iz
at

io
n

[%
]

PageRank with Thrill

0

1 000

2 000 N
etw

ork/D
isk

T
hroughput

[M
iB

/s]

CPU Utilization Network Throughput Disk Throughput

Figure 6. CPU utilization, and network and disk throughput averaged over all hosts during the median WordCount and PageRank benchmark runs with
16 hosts.

12



20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

TeraSort with Spark (Java)

0

500

1 000

1 500

2 000

N
etw

ork/D
isk

T
hroughput

[M
iB

/s]

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

TeraSort with Flink (Scala)

0

200

400

600

800 N
etw

ork/D
isk

T
hroughput

[M
iB

/s]

20 40 60 80 100 120 140 160 180 200 220 240 260
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

TeraSort with Thrill

0

500

1 000

N
etw

ork/D
isk

T
hroughput

[M
iB

/s]

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

KMeans with Spark (Scala)

0

500

1 000 N
etw

ork/D
isk

T
hroughput

[M
iB

/s]

0 500 1 000 1 500 2 000 2 500 3 000 3 500 4 000
0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

[%
]

KMeans with Flink (Scala)

0

500

1 000

N
etw

ork/D
isk

T
hroughput

[M
iB

/s]

5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

20

40

60

80

100

Execution Time [s]

C
PU

U
til

iz
at

io
n

[%
]

KMeans with Thrill

0

500

1 000

1 500

2 000 N
etw

ork/D
isk

T
hroughput

[M
iB

/s]

CPU Utilization Network Throughput Disk Throughput

Figure 7. CPU utilization, and network and disk throughput averaged over all hosts during the median TeraSort and KMeans benchmark runs with 16
hosts.

13



via a reduction. Like PageRank, the KMeans algorithm in-
terleaves high local work and high network load (a reduction
and a broadcast). Spark (Scala) is a factor 4.1 slower than
Thrill on 16 hosts, Spark (Java) a factor 13, and Flink more
than 50. We believe this is due to the JVM object overhead
for vectors, and to inefficiencies in the way Spark and Flink
broadcast the centroids. Flink’s query optimizer does not
seem to work well for the KMeans example accompanying
their source package. Thrill utilizes the CPU 50% and the
network 25% of the running time, while Spark reach 27%
CPU and only 7% network utilization.

The Sleep benchmark highlights the startup time of the
frameworks. We plotted the running time excluding the slept
time in Figure 4. Spark requires remarkably close to 5+h ·
0.4 seconds to start up. Apparently, hosts are not started in
parallel. Flink’s start up time was much lower, and Thrill’s
less than one second.

IV. CONCLUSION AND FUTURE WORK

With Thrill we have demonstrated that a C++ library can
be used as a distributed data processing framework reaching
a similarly high level of abstraction as the currently most
popular systems based on Java and Scala while gaining con-
siderable performance advantages. In the future, we want to
use Thrill on the one hand for implementing scalable parallel
algorithms (e.g. for construction of succinct text indices) that
are both advanced and high level. Thrill has already been
used for more than five suffix sorting algorithms, logistic
regression, and graph generators. On the other hand, at a
much lower level, we want to use Thrill as a platform for
developing algorithmic primitives for big data tools that
enable massively scalable load balancing, communication
efficiency, and fault tolerance.

While Thrill is so far a prototype and research platform,
the results of this paper are sufficiently encouraging to see a
possible development into a main stream big data processing
tool. Of course, a lot of work remains in that direction
such as implementing interfaces for other popular tools like
Hadoop and the AWS stack, and creating frontends in script-
ing languages like Python for faster algorithm prototyping.
To achieve practical scalability and robustness for large clus-
ter configurations, we also need significant improvements in
issues like load balancing, fault tolerance and native support
for high performance networks like InfiniBand or Omni-
Path.

Furthermore, we view it as useful to introduce additional
operations and data types like graphs and multidimensional
arrays in Thrill (see also Section II-D). But, we are not
sure whether automatic query plan optimization as in Flink
should be a focus of Thrill, because that makes it more
difficult to implement complex algorithms with a sufficient
amount of control over the computation. Rather it may be
better to use Thrill as an intermediate language for a yet

higher level tool that would no longer be a plain library but
a true compiler with a query optimizer.
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