Accuracy Enhancements of the 802.11 Model and EDCA QoS Extensions in ns-3

Completion Talk

Timo Bingmann

Decentralized Systems and Network Services Research Group Institute of Telematics, University of Karlsruhe

June 26, 2009

DgN

Roadmap

- Thesis Objectives
- 2 Enhancements
 - Propagation Loss Models
 - Reception Criteria
 - Frame Capture Effect
 - EDCA Implementation
- 3 Speed Comparison
- 4 Conclusion

Feature Comparison: ns-3.3 vs. ns-2.33

PHY Layer:

- No probabilistic Nakagami propagation model.
- Lacks modeling of frame capture effect.
- + BER/PER reception criterion for 802.11a. Results unequal to ns-2's SINR criterion.

MAC Layer:

- Support for EDCA extensions missing.
- + Overall good software design.

Nakagami Propagation Loss Model in ns-3

Ported Nakagami propagation loss model to ns-3.

Extensively verified against ns-2 and the analytic probability density function.

0.2

0

 10^{-4} 10^{-5} 10-20 5 10 15 25 SINR per bit γ_b (dB)

> Timo Bingmann - 8/19 University of Karlsruhe

2000

2500

Ns2Ext

1500

1000

Distance (m)

500

802.11 Enhancements in ns-3

Frame Capture Effect

Added frame capture effect to Ns2ExtWifiPhy. Evaluated against ns-2.

Frame Capture Effect

Added frame capture effect to Ns2ExtWifiPhy. Evaluated against ns-2.

Time

varying

Ĉ

fixed

B ·

EDCA Implementation

Maximum Throughput Experiment

Maximum Throughput Experiment

Reference value in B/s and relative difference of experimental result with 99% error margin for 54 Mb/s data rate.

	80 B - noACK	80 B - ACK	2304 B - ACK
DCF	$\begin{array}{c} 4522908 \\ 0.01\pm0.11\% \end{array}$	$\begin{array}{c} 3176179\\ 0.01\pm0.10\%\end{array}$	$\begin{array}{r} 34810198 \\ 0.01\pm0.04\% \end{array}$
AC_VO 802.11p/D4.02	$\begin{array}{c} 7314286\\ 0.03\pm0.05\%\end{array}$	$\begin{array}{r} 4338983\\ 0.01\pm0.02\%\end{array}$	$\begin{array}{c} 38763407\\ 0.01\pm0.01\%\end{array}$
AC_BK 802.11p/D4.02	$3129584\ -0.06\pm0.1\%$	$\begin{array}{r} 2419660\\ 0.02\pm0.09\%\end{array}$	$\begin{array}{c} 31108861\\ 0.01\pm0.04\%\end{array}$

Tested 216 configurations.

Maximum relative difference was 0.85 ± 0.11 ‰.

802.11 Enhancements in ns-3

EDCA Traffic Streams Experiment

Speed Comparison – Results

^{802.11} Enhancements in ns-3

Timo Bingmann - 17/19 University of Karlsruhe

Conclusion

- Extended ns-3 802.11 PHY layer to show equivalent behavior as ns-2.
- Improved MAC layer with EDCA extensions.
- All enhancements thoroughly verified.
- Speed test of ns-3 shows up to 59% execution time reduction over ns-2.

Thank you for your attention.