
Accuracy Enhancements of the 802.11 Model and
EDCA QoS Extensions

in ns-3

Diploma Thesis at the Institute of Telematics
Prof. Dr. Hannes Hartenstein
Faculty of Computer Science
University of Karlsruhe (TH)

by
cand. inform.

Timo Bingmann

Supervisors:
Prof. Dr. Hannes Hartenstein
Dr. Jérôme Härri
Dipl.-Inform. Jens Mittag

Date of Registration: 30th of October 2008
Date of Completion: 29th of April 2009

Institute of Telematics
Decentralized Systems and Network Services Research Group

ii

I hereby declare that this thesis is a work of my own, and that only sources cited in the bibliography have
been used.
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel verwendet habe.
Karlsruhe, 29th of April 2009

iii

iv

Acknowledgments

I would like to express my thankfulness to people, who supported me in preparation and creation of this
thesis. Without their suggestions and contributions it would have been less enjoyable and successful.
First I would like to express my gratitude to Jens Mittag and Felix Schmidt-Eisenlohr from the DSN. Jens
kept me on the right track and gave technical consultations leading to new ideas that would never have
occurred to me. Felix took the time to competently answer some very detailed and uncomfortable inquires
about ns-2.
Next I want to thank the ns-3 developers Mathieu Lacage and Tom Henderson for resisting and actually,
even promptly answering my initially clueless emails. Their continuous leadership and contributions make
ns-3 such a high quality simulation tool.
Extra thanks goes to my friends for helping me cope with the stress generated by this thesis. Furthermore
I want to especially thank my family for support too often taken for granted, and for proof-reading a thesis
filled with puzzling technical terms.
Lastly I want to thank the University Rechenzentrum (computing center) for providing DUKATH, the cam-
pus wireless LAN network. Over many years, my Internet access via DUKATH showed utterly unintelligible
variations in signal quality and speed. These oddities triggered and continue to sustain my interest in 802.11
wireless technology and signal propagation effects.

v

Zusammenfassung

Simulation ist ein unverzichtbares Werkzeug zur Entwicklung neuer Applikationen für drahtlose Netzwerke
wie mobile Ad-hoc- oder Fahrzeugnetze. ns-3 ist der designierte Nachfolger von ns-2, dem sehr bekannten
und in der Forschung aktuell am häufigsten eingesetzten open-source Netzwerksimulator. Mit ns-3 wurde
ein vollständig neu konstruiertes Simulatordesign entwickelt, in dem Erfahrungen von ns-2 eingehen und
modernste Softwareentwicklungsmethoden und Programmiersprachen eingesetzt werden.
In dieser Arbeit wurde die vorhandene 802.11 Implementierung des ns-3 mit dem verbesserten ns-2
Modell der DSN Forschungsgruppe vergleichen und die neuesten Erweiterungen der Kanalmodellierung
und physischen Schicht in ns-3 übertragen. Die daraus resultierenden neuen Modelle verhalten sich
identisch zu den ns-2 Vorgaben und wurden durch Wiederverwendung existierender Komponenten nahtlos
in das bestehende ns-3 Design integriert. Die vom DSN beigetragenen log-distance und Nakagami-m
Wellenausbreitungsmodelle wurden restrukturiert und in ns-3 als separate Funkfelddämpfung- und Inter-
ferenzschwundmodelle portiert. Entsprechend wurde das erweiterte auf einem SINR Empfangskriterium
basierende PHY-Schichtmodell von ns-2 nach ns-3 übertragen. Diese neue PHY Implementierung modelliert
den „Capture Effect“ und liefert identische Werte wie das entsprechende ns-2 Modell. Sowohl das neue
SINR als auch das vorhandene BER/PER Empfangskriterium werden im ersten Teil dieser Arbeit detailliert
dargelegt.
Ein weiterer Schwerpunkt ist die Eingliederung der EDCA Erweiterungen in ns-3, durch die Experimente
mit relativem, dezentralisiertem QoS in drahtlosen Ad-hoc-Netzen möglich werden. Die entwickelte EDCA
Implementierung baut auf dem bestehenden DCF Design auf, welches in dieser Arbeit eingehend untersucht
wird. Um den 802.11e Standard zu erfüllen, wurden entsprechende Basisänderungen vorgenommen und
darüber hinaus TXOP Zeitschranken und „burst“ Paketfolgen implementiert. Die EDCA Erweiterungen
wurden mit zwei Experimenten überprüft, wobei in der ersten Untersuchung simulativ gemessene maximale
Durchsatzwerte mit rechnerisch ermittelten Referenzwerten verglichen wurden und im zweiten Szenario
die von EDCA ermöglichte relative QoS an Hand einer steigenden Zahl von Paketflüssen unterschiedlicher
Priorität besonders herausgestellt wurde.
Die in dieser Arbeit implementierten Modelle ermöglichen einen aussagekräftigen Geschwindigkeitsvergleich
von Wireless LAN Experimenten in ns-2 und ns-3. In beiden Simulatoren wurde ein abstraktes Auto-
bahnszenario identisch nachgebildet mit exakt denselben experimentellen Ergebnissen. Zur Messung wurden
verschiedene Compiler, Optimierungsstufen und Linkertechniken angewandt und deren Auswirkungen auf
die Ausführungszeit untersucht und begründet. Mögliche zukünftige Ansätze zur weiteren Verkürzung der
Simulationslaufzeit werden kurz umrissen. Die Geschwindigkeitsmessungen ergaben erhebliche Laufzeiter-
sparnisse von bis zu 59% mit ns-3 gegenüber identische ns-2 Simulationen.

vi

Abstract

For studying wireless networks like mobile or vehicular ad-hoc networks, simulation is an indispensable tool.
ns-3 is the designated successor of ns-2, the well-known open-source packet-level simulator widely used in
network research. ns-3 is a new modern network simulator designed from scratch blending state-of-the-art
software engineering methods with experiences gained from ns-2.
For this thesis, the 802.11 implementation in ns-3 was compared to the ns-2 models improved by the DSN
research group in 2007. These contributed physical and channel layer enhancements were transferred to
ns-3. The implemented model code yields equal results as in ns-2, while adapting applicable code modules
and integrating cleanly in the existing ns-3 model design. The log-distance and Nakagami-m propagation
loss models, as added to ns-2 by the DSN, were restructured and ported to ns-3 as separate path loss and
fast fading components. Likewise the improved ns-2 PHY layer model, based on a SINR reception criterion,
was transferred from ns-2 to ns-3. This new PHY implementation features the frame capture effect and is
verified to produce equal results as the corresponding ns-2 code. Both the new SINR and existing BER/PER
reception criteria are thoroughly discussed in the first part of this thesis.
The second focus is on EDCA extensions, which were added to ns-3 and enable experiments with relative,
decentralized QoS in wireless ad-hoc networks. The developed EDCA implementation builds on the existing
DCF design, which was minutely examined and is reviewed in this thesis. Necessary modifications thereof
and further extensions as TXOP limits and burst sequences were added to fulfill 802.11e specifications. The
added code is verified using maximum throughput experiments, which are compared against analytically
determined reference results. Furthermore, relative QoS as provided by EDCA is spotlighted in a second
simulation scenario with an increasing number of differently prioritized traffic streams.
Use of the 802.11 models added in this thesis allow a convincing speed comparison of wireless simulations in
ns-2 and ns-3. For this purpose a complex abstract highway scenario was designed and identical experiments
were created with both simulators. These were tested to produce exactly equal results by using components
added for this thesis. Different compilers, optimization levels and build options were tested and their
effects on simulation execution time are explained. Possible future work on ns-3 to further reduce wireless
simulation run time is shortly sketched. In the speed test, execution time of ns-3 showed a reduction of up
to 59% over identical ns-2 simulations.

vii

viii

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

I Related Work 3

2 IEEE 802.11 5
2.1 802: The Big Picture . 5
2.2 Outline of 802 and 802.11 Layers . 6
2.3 PHY Layers . 7

2.3.1 The ISM and U-NII Bands . 7
2.3.2 802.11a – OFDM . 8
2.3.3 802.11p – WAVE . 12

2.4 MAC Layer . 13
2.4.1 Communication Context . 13
2.4.2 CSMA/CA using CS and NAV . 14
2.4.3 Interframe Space . 15
2.4.4 DCF . 16
2.4.5 PCF . 18
2.4.6 HCF . 19
2.4.7 EDCA . 20
2.4.8 HCCA . 23

3 The ns-2 Network Simulator 25
3.1 Overview . 25
3.2 Problems with 802.11 and Overhaul by DSN . 26

4 The ns-3 Network Simulator 29
4.1 Design Overview . 30
4.2 Architecture of 802.11 Implementation . 35

II Enhancements 39

5 Propagation Model Enhancements 41
5.1 Propagation in ns-3 . 42

ix

Table of Contents

5.2 Basic Propagation Loss Models . 43
5.3 Further Models in ns-3.4 . 44
5.4 Nakagami-m Fast Fading . 45
5.5 Implementation and Verification . 47

6 PHY Layer Enhancements 51
6.1 Modeling the Transceiver . 51
6.2 Implementation of Cumulative Noise . 52
6.3 SINR Reception Criterion . 54
6.4 Frame Capture Effect . 55
6.5 Implementation Issues . 56

6.5.1 ns-2 Implementation . 56
6.5.2 Porting to ns-3 . 57

6.6 BER/PER Reception Criterion . 60
6.6.1 Digital Modulation . 61
6.6.2 Convolutional Decoding . 62
6.6.3 Packet Error Rate . 65

6.7 Verification . 66
6.7.1 Two Nodes Distance Scenario . 66
6.7.2 Three Nodes Capture Scenario . 67

6.8 Discussion of Reception Criteria . 73

7 EDCA QoS Extensions 75
7.1 Modeling DCF . 75

7.1.1 Simulating Channel Access Rules . 76
7.1.2 Initiating Frame Transmission . 78

7.2 Extending Model with EDCA . 78
7.2.1 Implementing TXOPLimits . 78

7.3 Implementation Issues . 79
7.4 Verification . 79

7.4.1 Maximum Throughput . 80
7.4.2 EDCA Traffic Streams . 83

8 Speed Comparison – ns-2 vs. ns-3 87
8.1 Highway Lanes Scenario . 87

8.1.1 Compilers, Optimization Levels and Build Options . 88
8.1.2 Execution Time Results . 89

9 Conclusion 95
9.1 Summary . 95
9.2 Future Work . 95

Bibliography 97

A Background 101
A.1 A Note on Decibel . 101

x

Table of Contents

B Extra Figures and Tables 104
B.1 802.11a Convolutional Encoder . 104
B.2 Default EDCA Parameters . 106

C ns-3 Crash Course 109
C.1 Callbacks . 109
C.2 Objects, Ptrs, Attributes and TraceSources . 111
C.3 Highway Lanes Scenario Code . 117

xi

Table of Contents

xii

List of Figures

2.1 General 802.11 architecture as ISO/OSI layer diagram . 7
2.2 802.11a OFDM preamble and PLCP header with 20MHz channels 9
2.3 802.11a scrambler as linear feedback shift register . 10
2.4 802.11a convolutional encoder as linear shift register . 11
2.5 Keying constellation bit encoding . 11
2.6 OFDM subcarrier layout . 12
2.7 802.11 MAC header . 14
2.8 Hidden terminal scenario . 14
2.9 RTS/CTS/ACK frame protection sequence with NAV . 15
2.10 Interframe spaces . 16
2.11 Backoff coordination example in DCF . 17
2.12 CFP/CP alteration . 18
2.13 Example PCF contention-free period . 19
2.14 EDCA queues . 20
2.15 First transmission attempt with default EDCA parameter . 22
2.16 HCCA CAP/CF/CP periods . 24

3.1 Basic ns-2 simulation architecture . 26
3.2 802.11 simulation modules and architecture in ns-2 . 27

4.1 ns-3 main components . 31
4.2 ns-3 node architecture . 32
4.3 ns-3 802.11 wifi module architecture . 36

5.1 Composition of different scale propagation loss effects . 42
5.2 Propagation modeling with WifiChannel . 43
5.3 Three deterministic propagation loss models in ns-3 . 45
5.4 Histograms of new ns-3 random distributions . 46
5.5 UML diagram of propagation loss mode classes . 47
5.6 Nakagami propagation loss model in ns-3 . 49
5.7 Reception power histogramm from ns-2 Nakagami propagation model 50
5.8 Nakagami-m reception power distribution for different m parameters 50

6.1 Noise, signal, interference and SINR . 53
6.2 ns-3 InterferenceHelper event list . 54
6.3 SINR threshold reception criterion . 54
6.4 Capture effect with two packets . 55

xiii

List of Figures

6.5 ns-2 WirelessPhyExt state diagram . 56
6.6 State transitions of WifiStateHelper . 57
6.7 SINR check time points . 58
6.8 UML diagram of WifiPhy classes . 59
6.9 Modulation sequence modeled by BER/PER . 60
6.10 BER plot of BPSK, QPSK and M -QAM . 62
6.11 Diagrams of a simple convolution code . 63
6.12 Trellis diagram of the simple convolution code . 63
6.13 BER/PER segments with equal γb . 65
6.14 PER plots for 802.11a rates with 200, 400 and 2 304 bytes frame size 66
6.15 Two nodes scenario for reception criteria . 67
6.16 Two nodes experiment at 6 Mb/s with different propagation loss models 68
6.17 Three nodes scenario . 69
6.18 Three nodes experiment with free-space propagation . 70
6.19 Three nodes scenario – Reception probability with Nakagami propagation 72
6.20 Two nodes reception probability with Friis propagation loss models and Ns2ExtWifiPhy or

YansWifiPhy in ns-3 . 74
6.21 Two nodes reception probability with ThreeLogDistance- and NakagamiPropagationLoss-

Models, and Ns2ExtWifiPhy or YansWifiPhy in ns-3 . 74

7.1 UML diagram of EDCA related classes . 77
7.2 Maximum throughput frame sequences . 81
7.3 Wrapping of payload with headers and trailers . 82
7.4 EDCA traffic streams broadcast throughput . 86

8.1 Highway lanes scenario with 102 nodes . 87
8.2 Total packets sent and received during simulation . 90
8.3 Time measurements of different compilers, optimization levels and build options 91

B.1 State machine of the 802.11a convolutional encoder . 105

C.1 Results from the highway example experiment . 124

xiv

List of Tables

2.1 Selection of 802.11 standards and amendments . 6
2.2 ISM and U-NII bands . 8
2.3 Data rates and modulation parameters for 802.11a . 9
2.4 Timing and DCF parameters for different PHYs . 18
2.5 Default EDCA parameters using OFDM PHY in 5GHz bands 21

5.1 Free-space and log-distance reception range for common parameters 44

6.1 ns-2 SINR thresholds and new ns-3 values . 54
6.2 Property values of (punctured) convolutional codes of 802.11a 66

7.1 Frame durations used in maximum throughput experiment 82
7.2 Analytic maximum throughput and difference to experimental data 85

B.1 Default 802.11p/D4.02 EDCA parameters . 106
B.2 Default 802.11e EDCA parameters for different PHY . 107

xv

List of Tables

xvi

List of Acronyms

AC access category. 20, 21
ACI access category index. 20
ACK acknowledgment. 17
ACM admission control mandatory. 21, 23
AIFS arbitration interframe space. 16, 20, 21, 76, 78
AIFSN arbitration interframe space number. 20, 78
AP access point. 6, 13, 18
API application programming interface. 30, 32, 34
AWGN additive white Gaussian noise. 36, 51, 52

BER bit error rate. 60–62, 65
BPSK binary phase shift keying. 11, 61, 62
BSS basic service set. 13

CBR constant bit rate. 34
CCK complementary code keying. 6
CEPT Conference of Postal and Telecommunication Administrations. 7
CFP contention-free period. 18, 19, 23
CP contention period. 18, 19
CSMA/CA carrier sense multiple access with collision avoidance. 14
CSMA/CD carrier sense multiple access with collision detection. 14
CTS clear to send. 15
CW contention window. 16, 17, 20, 21

DCF distributed coordination function. 16–18, 75, 76
DFS dynamic frequency selection. 6
DIFS DCF interframe space. 15–17
DS distribution system. 35
DSN Decentralized Systems and Network Services Research Group. 26, 45
DSRC Dedicated Short Range Communication. 8
DSSS direct sequence spread spectrum. 6, 7

EDCA enhanced distributed channel access. 6, 19–21, 23, 75, 78–80, 82–84
EDCAF enhanced distributed channel access function. 20, 21, 75, 76, 78
EIFS extended interframe space. 26
ERP extended rate PHYs. 6

FCC Federal Communications Commission. 7, 8

xvii

List of Acronyms

FHSS frequency hopping spread spectrum. 6, 7

GOT Global Offset Table. 92

HC hybrid coordinator. 23, 24
HCCA HCF controlled channel access. 6, 19, 23, 24
HCF hybrid coordination function. 6, 19, 20
HR/DSSS high rate direct sequence spread spectrum. 6, 7

IBSS independent basic service set. 13, 21
IEEE Institute of Electrical and Electronics Engineers. 5
IFS interframe space. 15, 16
ISM industrial, scientific and medical. 6, 8
ITU International Telecommunication Union. 7

LAN local area network. 5, 7
LL link layer. 88
LLC logical link control. 5, 35

MAC medium access control. 13
MANET mobile ad-hoc network. 75
MIMO multiple input and multiple output. 6, 96
MLME MAC sublayer management entity. 6
MPDU MAC protocol data unit. 81
MPI message passing interface. 30, 93
MSDU MAC service data unit. 82

NAV network allocation vector. 14, 15

OFDM orthogonal frequency division multiplexing. 6–8
OLSR Optimized Link State Routing. 34

PC point coordinator. 18, 19
PCF point coordination function. 18, 19
PER packet error rate. 60, 62, 65, 66
PHY physical layer. 7, 51
PIC position-independent code. 92
PIFS PCF interframe space. 15, 16, 18, 19, 23
PLCP physical layer convergence procedure. 6, 9
PLME physical layer management entity. 6
PLT Procedure Linkage Table. 92
PMD physical medium dependent. 6
PSK phase shift keying. 11

QAM quadrature amplitude modulation. 11, 62
QoS quality of service. 6, 16, 19, 20, 23
QPSK quadrature phase shift keying. 11, 61, 62

xviii

List of Acronyms

RTS request to send. 15
RTT round trip time. 34

SDL Specification and Description Language. 57
SIFS short interframe space. 15
SINR signal to interference and noise ratio. 52, 54–56
SME station management entity. 6
SNAP subnetwork access protocol. 35
STA station. 6, 12
STL standard template library. 29

TBTT target beacon transmission time. 19
TID traffic identifier. 78
TPC transmit power control. 6
TS traffic stream. 23, 24
TSID traffic stream identifier. 23
TSPEC traffic specification. 23
TXOP transmission opportunity. 19, 21, 23, 78, 79

U-NII unlicensed national information infrastructure. 6, 8
UML Unified Modeling Language. 47, 57, 75
UP user priority. 20

VANET vehicular ad-hoc network. 26, 75

WAVE wireless access in vehicular environments. 6, 12
WEP wired equivalent privacy. 6
WLAN wireless LAN. 5
WPA Wi-Fi protected access. 6

xix

List of Acronyms

xx

Chapter 1

Introduction

1.1 Motivation

Wireless communication in computer networks enables novel and fascinating applications and increasingly
pervades everyday life. The IEEE 802.11 standard is the foundation of this omnipresent technology and
future extensions will continue its success. These extensions allow operation of wireless devices in new
environments and open fields for innovative research.
For studying wireless networks simulation is an indispensable tool. Design and development of network
protocols and components can be done in simulation with less cost and time. Particularly for large-scale
mobile or vehicular networks, deployment and management of new technology is very expensive, whereas
flexible simulation allows rapid prototyping and evaluation of new protocols and ideas.
ns-3 is the designated successor of ns-2, which is currently the most popular open-source packet-level network
simulator used in research. The new ns-3 project aims at developing a network simulator aligned with modern
network research. It is written from scratch with a state-of-the-art design, which utilizes up-to-date software
engineering methods and incorporates lessons learned from ns-2’s aged code and development history.
First goal of this thesis is to compare the existing 802.11 model in ns-3 with the one contributed to ns-2
by the Decentralized Systems and Network Services Research Group (DSN). Enhancements made to ns-2’s
model will be transferred to ns-3, while reusing available components and embedding cleanly in the existing
structure. Goal is to have both models produce equal results or show accountable differences.
To achieve this, an in-depth comparison of both simulators’ propagation models and reception criteria is
necessary. The Nakagami-m fast fading propagation model, as contributed by the DSN to ns-2, will be
restructured and ported to ns-3. Both SINR threshold reception criterion and BER/PER calculations will
be discussed and their different approaches highlighted. Cumulative noise and frame capture effects are
relevant for both criteria and will be integral parts of these discussions.
While the first thesis goal focuses on models of medium and physical layers, the second goal addresses QoS
in the MAC layer. In the beginning wireless LAN had a free-ride: it was a cool new technology operating in
far-spread areas with little cooperation troubles. No one expected any reliable service in densely operated
areas. However, increasingly wireless LAN is used for critical applications with high costs of failure, and
dependable services must be delivered.
The 802.11e amendment addresses this need by adding QoS features, of which the EDCA extensions will
be implemented in ns-3 as the second part of this thesis. These extensions will provide relative QoS using a
distributed medium access coordination algorithm, which is based on DCF. To implement EDCA in ns-3,
the existing, well designed DCF implementation will be modified and extended to provide multiple different
priorities. Moreover, EDCA-TXOP limits and burst sequences will be added to the medium access control
code.
Programming of simulation code requires a high level of accuracy and expertise, due to its own complexity
and complexity of the entities modeled. Good and verified code is a necessity, because errors in simulation
code often go unnoticed for long periods of time. Other researchers expect to be able to use the models
without needing to check their implementations. Moreover, lower simulation layers are often used without

1

1 Introduction

detailed knowledge of their workings. For this reason, all added components will be thoroughly tested with
specially designed scenarios, which pinpoint crucial parts of the code. The contributed propagation loss
models and reception criteria including frame capture will be tested using two reduced scenarios containing
only two or three communication nodes. Maximum throughput of both the new EDCA and the existing
DCF implementations will be checked against analytically determined values, and thereby verifying the
tightest allowed sequence of frames and waiting intervals. The effects of relative QoS as provided by EDCA
will be showcased in a simple scenario.
Finally, a speed comparison of ns-2 and ns-3 will be performed with an abstract highway scenario imple-
mented in both simulators. Equal behavior and results for all speed test experiments can be achieved
despite the disparate simulation platforms. Remaining differences between both simulators will be high-
lighted. Speed test results with the GNU and Intel C++ compilers with and without static linking will be
put into relation and their causes discussed.

1.2 Contributions

The main contributions of this thesis can be grouped into two categories: comparison and augmenting of
PHY and channel models, and enabling EDCA QoS simulations in ns-3.
Behavior of the PHY and channel models of ns-2 and ns-3 were compared and contributions to ns-2 by the
DSN were transferred to ns-3. In this context the SINR-based reception criterion including frame capture
effect was successfully integrated into existing ns-3 code. Furthermore, the Nakagami-m propagation loss
model was added to ns-3 in form of two separate classes representing the path loss and fast fading components
of the ns-2 model. All ported features were verified using experiments in ns-2 and ns-3 and produce equal
results. Both the new SINR reception criterion and the existing BER/PER criterion, as implemented in
ns-3, were explained with great detail and their different approaches discussed.
Moreover, EDCA was implemented in ns-3 with special focus on ad-hoc networks. By applying out-of-band
access category identifiers to packets relative QoS, as defined by 802.11e, can be simulated. Multiple queues
and parallel medium access coordination with different priorities enables interesting new research with ns-3.
The speed test between ns-2 and ns-3, comparing identical experiment setups on both platforms, showed a
simulation run time reduction of up to 59% by employing ns-3 with full optimization and static linking.

2

Part I

Related Work

3

Chapter 2

IEEE 802.11

Wireless computer communication has become a nearly ubiquitous technology. Low cost hardware and high
data rates have popularized wireless data networks in the recent years. Information processing is not longer
bound to stationary computer systems and many new and interesting applications have been enabled by
mobile data processing.
Basis for this success is the IEEE 802.11 standard for wireless LAN (WLAN). It is unquestionably today’s
most successful standard for networking computers wirelessly. This standard first enabled the wireless
connectivity we often take for granted. Its popularity is based on simplicity and robustness against failures,
both comparable to wired networks. Operation in unlicensed radio bands allows wide-spread public use and
easy adoption, while at the same time requires data transmission to be resilient against interference and
thus provide robust connectivity. Distributed medium access control allows uncomplicated deployment and
smooth operation of multiple networks in the same area.
The initial 802.11 standard was approved and published by the Institute of Electrical and Electronics
Engineers (IEEE) in 1997. Much of the fundamental service definition including the basic MAC functions,
like DCF and AP association rules, was already part of the initial standard, is still valid and in general use
today. Other parts were subsequently extended in different supplements and amendments. These provide, for
example, faster data transmission, QoS extensions and adaptation to specific locations and environments.
Table 2.1 shows a selection of currently approved or proposed 802.11 amendments and includes a short
description of their individual aims.
Until 802.11 was completed in 1997, there was no common standard for wireless networking devices. Each
vendor had his own set of protocols, transmission modes and parameters. Some examples of pre-802.11
wireless technology are NCR’s WaveLAN, Proxim’s RangeLAN and Aironet/Cisco’s ARLAN [4]. Incom-
patibility between these solutions prohibited wide-spread adoption and lead to definition of 802.11, which
is the prevalent standard for medium range packet radio networking today.

2.1 802: The Big Picture

The IEEE 802.11 standard is part of the IEEE 802 standards family, which deals with local and metropolitan
area networks. The 802 standards define services and protocols for the lower two layers of the ISO/OSI
layer reference model, the data link and physical layer. The number 802 was simply the next available IEEE
standard number at that time.
Among the members of this standard family are 802.3 for Ethernet, 802.5 for Token Ring, 802.11 for Wireless
LAN and the upcoming 802.16 for WiMAX. There are also some less successful or retired standards like
802.4 for Token Bus and 802.8 for Fiber Optic networks.
The 802 family also includes a set of base standards like 802.1 for network bridging and management, 802.2
for logical link control (LLC) and 802.10 for interoperable LAN security mechanisms.
The 802.11 wireless standard defines a service point compatibly with 802 medium access control (MAC)
requirements, the same as 802.3 wired Ethernet fulfills. It therefore provides an interface to the upper layers

5

2 IEEE 802.11

Standard Year Description
802.11-1997 1997 Initial standard. 1 or 2Mb/s using FHSS or DSSS in

2.45GHz band.
802.11a 1999 Up to 54Mb/s using OFDM in 5GHz band.
802.11b 1999 Up to 11Mb/s using HR/DSSS with CCK in 2.45GHz

band.
802.11h 2003 TPC and DFS for 5GHz band in Europe.
802.11g 2003 ERP using OFDM, CCK, DSSS and others for up to

54Mb/s in 2.45GHz band.
802.11i 2004 Security mechanisms WPA and WPA2 replacing broken

WEP encryption.
802.11e 2005 QoS extensions: HCF with EDCA and HCCA.
802.11-2007 2007 Revised standard incorporating all preceding amend-

ments.
802.11k 2008 Radio quality measurement and network information.
802.11r 2008 Fast handoff for transition between BSS.
802.11p in work for 2009 WAVE – Wireless Access in Vehicular Environments.
802.11n in work for 2009 MIMO, channel bonding and frame aggregation for higher

throughput.
802.11s in work Mesh networking for infrastructure and ad-hoc, multi-hop

connectivity.

Table 2.1: Selection of 802.11 standards and amendments

that is equivalent to that of other network technologies and ultimately yields a user experience very similar
to wired networks.

2.2 Outline of 802 and 802.11 Layers

This section gives a very broad overview of the components defined in the 802.11 standard. Figure 2.1
illustrates these sublayers and how they build up the 802.11 architecture.
The medium access control (MAC) layer provides a service entry point for higher entities to exchange mes-
sage packets between addressable wireless stations. To support this service the MAC utilizes the underlying
physical layer (PHY) services provided by the pair of PLCP and PMD. The MAC layer defines a trans-
mission frame format and different data, control and management frames for exchange between wireless
stations (STAs) and access points (APs). To manage frame exchanges on the shared medium, the MAC
defines the coordination functions DCF, PCF and HCF, which regulate how stations may access the shared
wireless medium. Conceptually the MAC layer contains a sublayer called MAC sublayer management en-
tity (MLME), which provides operational features like AP scanning and association, encryption set up and
configuration.
The PHY layer is split up into two sublayers. The physical medium dependent (PMD) layer defines how
a specific medium is accessed by the transceiver, while the physical layer convergence procedure (PLCP)
provides adaptation to a common PHY interface. The 802.11 standard defines different PMD/PLCP pairs
for communication in the 2.45GHz ISM radio band, the 5GHz U-NII radio band and using infrared light.
Integrated into the PHY layer is another management layer, the physical layer management entity (PLME),
which exports configurable aspects of the used transmission modes and other information.
Both management layers are accessed by the station management entity (SME) cross layer, which is not
explicitly defined by the 802.11 standard. Its purpose is to provide an interface for higher level system
management. Possible services of the SME are configuration of 802.11 components by the user, gathering
of statistics or forwarding of user requests.

6

2.3 PHY Layers

Data Link
Layer

Physical
Layer

MAC MLME

PLCP

PMD
PLME

SM
E

Medium

Figure 2.1: General 802.11 architecture as ISO/OSI layer diagram (adapted from [12, figure 5-10])

2.3 PHY Layers

The 802.11 standard specifies different PHY layers for transmitting data over different media. All PHYs have
a common interface to the higher MAC layer, which coordinates packet transfer on the medium. Each PHY
layer definition contains all details of the low-level aspects of wireless data transfer: how bits are encoded,
modulated and how the wireless medium is multiplexed. Regulatory aspects of the 2.45GHz, 5GHz and
5.9GHz radio bands used by the different PHY layers are discussed in the following section 2.3.1.
The original standard from 1997 defines two PHYs for the 2.45GHz ISM radio band. Both PHYs operate
at two data rates: 1Mb/s or 2Mb/s. Two different spread spectrum techniques are used to encounter
the challenge of transmitting in unlicensed bands: frequency hopping spread spectrum (FHSS) and direct
sequence spread spectrum (DSSS). The original standard also contained a PHY for infrared light, which
was not as successful as the radio PHYs.
In 1999, the 802.11a amendment was approved by the IEEE and it introduced new specifications for up to
54Mb/s in the 5GHz U-NII bands. These high data rates were possible by employing orthogonal frequency
division multiplexing (OFDM).
Later in the same year, the 802.11b amendment added higher data rates of up to 11Mb/s in the 2.54GHz
band. These extend the original spread spectrum technique by using complementary code keying (CCK)
for high rate DSSS (HR/DSSS).
The speed increase of 802.11a and 802.11b was a major break-through at that time and made wireless LAN
a serious contender to wired connections for many scenarios.
By adapting the 802.11a PHY, operating with OFDM, for the 2.54GHz radio band, the higher transmission
rates of up to 54Mb/s were made possible in all of Europe. This adaption, called extended rate PHYs
(ERP), is focus of the 802.11g amendment.
With the future 802.11p, the same OFDM transmission schemes are being made available in the 5.9GHz
band.

2.3.1 The ISM and U-NII Bands

Wireless devices use parts of the radio spectrum as communication medium by sending electromagnetic
signals. The used radio frequency band is the key resource to wireless communication. However, since the
radio spectrum is a limited resource, most governments regulate its use by mandating frequency allocation
and requiring operational limits of equipment. Different national regulatory bodies are commissioned for
individual jurisdictions, like the Federal Communications Commission (FCC) for the United State, the Con-
ference of Postal and Telecommunication Administrations (CEPT) for Europe and the Bundesnetzagentur
for Germany. For purposes of harmonization and common equipment almost all countries follow the radio
regulations issued by the International Telecommunication Union (ITU), nevertheless regional difference
exist and must be dealt with.

7

2 IEEE 802.11

Allocation No. 5.138 Allocation No. 5.150
6.765 – 6.795MHz 13.553 – 13.567MHz
433.05 – 434.79MHz 26.957 – 27.283MHz
61.0 – 61.5GHz 40.66 – 40.70MHz
122 – 123GHz 902 – 928MHz
244 – 246GHz 2.400 – 2.500GHz

5.725 – 5.875GHz
24.00 – 24.25GHz

(a) ISM bands defined by the ITU [36]

Frequency Range U-NII
5.15 – 5.25GHz low band
5.25 – 5.35GHz middle band
5.470 – 5.725GHz world-wide band
5.725 – 5.825GHz high band

(b) U-NII bands defined by the FCC

Table 2.2: ISM and U-NII bands

Use of most portions of the regulated radio spectrum requires a broadcast license from the national regulatory
body. Licenses are granted often for only a specific geographical area and usually contain restraints on
broadcast power, modulation and antennas. Sales of these licenses are increasingly offered via public auctions
and achieve high prices due to their economic value.
The industrial, scientific and medical (ISM) bands (see table 2.2(a)) are parts of the electromagnetic spec-
trum designated by the ITU for “industrial, scientific and medical applications”, meaning non-communi-
cation applications. The maybe (still) most common ISM-band device is a microwave oven operating at
2.45GHz, because radiation at that frequency is particularly well absorbed by water. The ISM is an unli-
censed band and therefore operating radio devices (like microwave ovens) in those bands does not requires
an expensive license. For communication applications this advantage, however, is a double-edged sword
since unlicensed, secondary users must cope with interference from primary users. The whole idea behind
regulation is to keep interference from other equipment at a minimum, like traditional AM/FM-radio broad-
casting stations. To mitigate the interference problem, devices that use the 2.45GHz ISM-band are required
by regulation to limit power to 30 dBm (before the antenna) in the USA and to 20 dBm (at the antenna) in
most of Europe.
Major drawback of the 2.45GHz ISM band is that there are already many applications using this range.
Bluetooth, various cordless mice and other devices also operate in these bands.
The second set of radio bands used by 802.11 are the four unlicensed national information infrastructure
(U-NII) bands listed in table 2.2(b). These FCC band allocations were originally only usable within the
US. Equipment operating in the U-NII bands is subject to specific power limitations of 40mW, 200mW
and 800mW respectively. In 2005, use for these blocks has been re-regulated for Europe and operation of
802.11 devices in the bands 5.15 – 5.35GHz and 5.470 – 5.725GHz is now allowed in all European countries.
In 1999, the FCC allocated the 5.850 – 5.925GHz frequency range, in short called the 5.9GHz band, for a
variety of Dedicated Short Range Communication (DSRC) uses in the transportation system. Envisioned
applications include increased traffic safety, traffic monitoring with congestion detection and avoidance, and
traffic light control and possible preemption by emergency vehicles. An example for a system operating in
the 5.9GHz band, that is already in wide use, is the drive-by truck toll collection system in large parts of
Europe. The upcoming 802.11p amendment adapts the 802.11 standard for the 5.9GHz band.

2.3.2 802.11a – OFDM

Since the 802.11a communication specifications are of special interest in this thesis, they are reviewed and
explained in great detail in the following subsections. In section 6.6 error rate calculations for the following
coding techniques are discussed.
802.11a supports eight different transmission modes. The different schemes’ data rates depend on how the
used 5GHz band is partitioned into channels. Table 2.3 shows the data rates in Mb/s for 20, 10 and 5MHz
channels. Obviously the data rates for 20MHz channels is twice as large as for 10MHz channels, but then
e.g. the U-NII low range 5.15 – 5.25GHz can be partitioned into only five channels.
To cope with interference in the unlicensed bands, 802.11a employs OFDM. For OFDM the used frequency
range is split up into 48 subcarriers and each subcarrier transmits 1, 2, 4 or 6 coded bits, depending on the

8

2.3 PHY Layers

Modulation Coding
rate
(R)

Coded
bits per

subcarrier
NBPSC

Coded
bits per
OFDM
symbol
NCBPS

Data
bits per
OFDM
symbol
NDBPS

Data rate
(Mb/s)
for

20MHz
channels

Data rate
(Mb/s)
for

10MHz
channels

Data rate
(Mb/s)
for
5MHz
channels

BPSK 1/2 1 48 24 6 3 1.5
BPSK 3/4 1 48 36 9 4.5 2.25
QPSK 1/2 2 96 48 12 6 3
QPSK 3/4 2 96 72 18 9 4.5
16-QAM 1/2 4 192 96 24 12 6
16-QAM 3/4 4 192 144 36 18 9
64-QAM 2/3 6 288 192 48 24 12
64-QAM 3/4 6 288 216 54 27 13.5

Table 2.3: Data rates and modulation parameters for 802.11a (from [12])

keying modulation used (see table 2.3). Furthermore, convolutional encoding is used to make transmission
more robust against bit errors by adding redundancy. And finally, because data bits tend to contain long
sequences of zeros or ones, the data bits must be scrambled prior to encoding.
This series of transformations is detailed step by step in the following sections. At the beginning there is a
sequence of plain data bits waiting for transfer. Furthermore, the selected transfer scheme from table 2.3 is
known.

Payload Whitening

From viewpoint of the PHY the sequence of data bits is the payload of the frame. Since this payload is
bound to contain long sequences of ones and zeros, it must be whitened to eliminate an unwanted direct
current.
Before scrambling the data bits, they are wrapped into the PLCP data frame portion illustrated in figure 2.2.
The payload is prefixed with a 16 bits service field and suffixed with 6 tail bits, all initialized with zeros.
Furthermore the whole byte sequence is padded with zeros to the length of a full OFDM symbol at the
desired data rate, i.e. NDBPS in table 2.3.
Then the complete data part of the frame is whitened by running the bit sequence through the linear
feedback shift register generated by x7 +x4 + 1. The shift register is shown in figure 2.3 and is used for both
scrambling and descrambling. For scrambling the sender initializes the registers with pseudo-random bits.

Rate
4 bits

Reserved
1 bit

Length
12 bits

Parity
1 bit

Tail
6 bits

Tail
6 bits

Service
16 bits

t1 t2 GI2 T1 T2 . . . GIGIGI Signal Data1t10

8 µs 8 µs 4 µs 4 µs 4 µs

Datan

Padding
Variable

Coded with Rate indicated in SignalCoded with BPSK at R=1/2

Signal

16 µs Preamble

Payload Data
Data

t3 t4 t5 t9t6 t8t7

Figure 2.2: 802.11a frame with OFDM preamble and PLCP header using 20MHz channels (based on [12])

9

2 IEEE 802.11

x1x2x3x4x5x6x7

In

Out

Figure 2.3: 802.11a scrambler as linear feedback shift register (adapted from [12, figure 17-7])

The receiver can derive the initial state from the first seven bits of the service field, because they were set
to zero prior to scrambling.

Convolutional Encoding

The whitened data portion of the frame is then prefixed with the signal header. This frame header, shown
in figure 2.2, contains the length of the payload data and the transfer rate employed.
To allow fast data transfer rates, the data portion may be modulated at any transmission mode from table 2.3
that is supported by both sender and receiver. The signal header, however, is always modulated separately
with the lowest data rate, BPSK and R = 1/2, because it contains the rate field specifying the payload
mode and must be readable at a common rate. The complete signal header fits into one OFDM symbol at
the fixed data rate.
The two parts of a frame, header and whitened data portions, are encoded separately using a convolutional
encoder with coding rate R = 1/2. Purpose of the convolutional encoding is to add redundancy, which is
used for forward error correction during decoding.
The convolutional encoder uses the function generators gA = [133]8 = [1011011]2 and gB = [171]8 =
[1111001]2 where []8 is the octal and []2 the binary representation. Figure 2.4 shows the encoder as a linear
feedback shift register.
There are other possible representations of the convolutional encoder like a trellis diagram or a state machine.
However, due to the 26 = 64 possible register states, both representations are large, complex and not very
useful. A state diagram of the encoder is shown in figure B.1 in the appendix.
For each input bit two output bits are calculated, yielding a coding rate of R = 1/2. The higher coding
rates 3/4 and 2/3 are derived from the lower rate 1/2 by puncturing, that is exchanging and omitting some
of the generated bits. For R = 3/4, 6 out of 18 encoded bits are removed and for R = 2/3 only 3 out of 12
are removed from the bit sequence.
The decoding process is efficiently done at the receiver with the Viterbi algorithm, which is described in
section 6.6.2. For correct decoding, the six tail bits in both header and data parts of the PLCP frame are
required to be zero prior to encoding. These must be reset to zero after the previous whitening phase.
So the output at this stage is a bit sequence inflated by the convolutional encoder to 2, 4/3 or 3/2 times
the original size.

Bit Interleaving - Mapping to Subcarriers

Next step is to determine how the bit sequence is mapped to OFDM subcarriers.
802.11a always uses 48 data OFDM subcarriers, which are explained later. Each subcarrier transmits
NBPSC ∈ {1, 2, 4, 6} code bits, where NBPSC depends on the transmission mode employed. Multiplying
NBPSC · 48 = NCBPS directly yields the amount of code bits transmitted in one OFDM symbol. An OFDM
symbol is the transmission state of all subcarriers in one fixed time interval.
So the whitened, convoluted bit sequence is divided into blocks of NCBPS ∈ {48, 96, 192, 288} bits, which all
go into one OFDM symbol. These bits are then mapped onto the 48 subcarriers, with NBPSC code bits per

10

2.3 PHY Layers

Input s1 s2 s3 s4 s5 s6

Output A

Output B

Figure 2.4: 802.11a convolutional encoder as linear shift register (adapted from [12, figure 17-8])

subcarrier. This mapping is defined as a two-step permutation defined in the standard [12, section 17.3.5.6].
Goal of the mapping is to interleave the individual bits so error detection and correction can work efficiently.
For example when transfering with 24Mb/s in a 20MHz channel, the input bit sequence is divided into
blocks of 192 bits. These bits are already convolutional encoded and actually contain only 96 original data
bits. Each OFDM subcarrier transmits 4 bits using a modulation described in the next section. So the 192
code bits are mapped onto the 48 subcarriers creating groups of 4 bits.

Signals on Subcarriers

The previous block interleaving stage has mapped k := NBPSC ∈ {1, 2, 4, 6} bits into each of the 48 subcar-
riers. These k digit bits are represented as changes of a carrier signal, which is a sinoid function. The bit
keyings employed are BPSK, QPSK, 16-QAM or 64-QAM, depending on the transmission mode desired.
Binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) belong to the family of phase
shift keyings (PSKs). For PSK the bit value is encoded in the phase of the underlying carrier frequency. In
BPSK a zero bit is represented by sending the carrier signal with a −π

2 and a one bit by sending it with
+π

2 phase. For QPSK the two bits are encoded in four phase offsets of the carrier sinoid, for example with
phase shifts of 0, π2 , π and 3π2 .
For k > 2 the bits are encoded with quadrature amplitude modulation (QAM), which means that the
information is in both the phase and amplitude of the data signal. These two orthogonal elements conveyed
in the signal function are conveniently expressed as a complex number (I + jQ) with j the imaginary unit.
Figure 2.5 shows how each of the 2k possible k-tuples of input bits are mapped onto a single complex number

I

Q
1

-1

1-1

10

(a) BPSK

I

Q
1

-1

1-1

1101

1000

(b) QPSK

I

Q

3

1

-1

-3

31-1-3

00 10 01 10 11 10 10 10

00 11 01 11 11 11 10 11

00 01 01 01 11 01 10 01

00 00 01 00 11 00 10 00

(c) 16-QAM

I

Q
7

5

3

1

-1

-3

-5

-7

7531-1-3-5-7

000 100 001 100 011 100 010 100 110 100 111 100 101 100 100 100

000 101 001 101 011 101 010 101 110 101 111 101 101 101 100 101

000 111 001 111 011 111 010 111 110 111 111 111 101 111 100 111

000 110 001 110 011 110 010 110 110 110 111 110 101 110 100 110

000 010 001 010 011 010 010 010 110 010 111 010 101 010 100 010

000 011 001 011 011 011 010 011 110 011 111 011 101 011 100 011

000 001 001 001 011 001 010 001 110 001 111 001 101 001 100 001

000 000 001 000 011 000 010 000 110 000 111 000 101 000 100 000

(d) 64-QAM

Figure 2.5: Keying constellation bit encoding (from [12, figure 17-10])

11

2 IEEE 802.11

-325190M
H
z

-26 -21Pilot

-7Pilot

05200M
H
z

7Pilot

21Pilot

-26 325210M
H
z

Figure 2.6: OFDM subcarrier layout

z. The norm |z| corresponds to the amplitude, real and imaginary parts are sine/cosine components of the
signal (without a normalizing factor).
As suggested by figures 2.5(a) and 2.5(b) BPSK and QPSK can also be represented by the QAM complex
numbers. QPSK is equivalent to one variant of 4-QAM.

OFDM Subcarriers

To achieve high data rates, 802.11a uses orthogonal frequency division multiplexing (OFDM) in the used
frequency range. OFDM is very popular for broadband communication and also used in ADSL for wired
Internet access, DVB-T for digital television and 802.16 WiMAX.
The used frequency range is divided into 64 subcarriers. Figure 2.6 shows this partitioning for an example
20MHz channel centered at 5.2GHz. Of the 64 subcarriers only 48 are used for data transmission. To allow
a receiver to correctly tune to the OFDM signal, 4 pilot carriers are added at fixed positions.
Each of the 64 subcarriers is modulated using BPSK, QPSK, 16-QAM or 64-QAM and carries 1, 2, 4 or
6 bits.
OFDM is a complex technique [35] and can cope with severe channel conditions like those expected in
unlicensed bands. Insertion of a guard interval between symbols makes it possible to reduce inter-symbol
interference. The guard interval contains a copy of the last portion of the symbol and this information can
be used to reduce multi-path interference.
To allow a receiver to detect and tune to the OFDM signal, 802.11a defines a PLCP preamble used for
synchronization [12, section 17.3.3]. It contains a fixed sequence of training symbols and has a duration of
16µs as shown in figure 2.2.
802.11a enables very high data rates by employing the combination of convolutional encoding to protect
data and OFDM for robust, highly efficient signal modulation.

2.3.3 802.11p – WAVE

The 802.11p amendment [14] is currently still a draft and aims to extend 802.11 to vehicular ad-hoc networks
(VANETs). VANETs are different from the traditional applications of 802.11, because they are highly mobile
and devices should operate in a dedicated, licensed frequency band to enable dependable services. 802.11p’s
goal is to provide wireless access in vehicular environments (WAVE).
To cope with highly mobile nodes, 802.11p contains extensions for communication between STA without
establishing a basic service set (BSS), i.e. ad-hoc network set up or even AP association. This is called
communication outside the context of a BSS (see section 2.4.1).
Beyond these communication context definitions, the 802.11p also amends the PHY defined in 802.11a for
communication in the 5.850 – 5.925GHz band. This requires only few changes to allowed frequency bands,
because the base modulations scheme stays the same. See section 2.3.2 for details on 802.11a OFDM-based
communication.
For the focus of this thesis, the most important specifications contained in the 802.11p amendment are the
default EDCA parameters for use outside the context of a BSS. These parameters are specially geared for

12

2.4 MAC Layer

vehicular communication and allow many interesting new applications. See section 2.4.7 for figures and a
discussion of the parameter set in 802.11p.

2.4 MAC Layer

The purpose of the MAC layer is, as its name suggests, to coordinate access to the medium. However, the
MAC layer in a single wireless device can, in effect, only control packets sent by itself. To prohibit another
device from sending packets is not in its direct control.
Therefore, a group of independent wireless stations must collaboratively coordinate packet transfer by fol-
lowing a set of rules. This set of distributed rules is put down in the 802.11 standard and all equipment
must follow them for smooth operation. At the core, wireless packet-based medium access is about agreeing
on distributed algorithms or protocols that determine when and which station may send a packet.
How the packets themselves are actually sent on the medium is determined by the PHY layer below. The
packet sending interface of the PHY has only broadcasting semantics: a transmitted packet is heard by all
receivers within range.
The MAC layer, however, attempts to provide an interface to higher layers that is indistinguishable from
other wired 802 layers like Ethernet or Token Ring. Due to the differences of wireless communication this
aim can not (and should not) be completely fulfilled, but a common interface that enables wireless devices
to be used side-by-side with other network devices on a system is possible.
This network interface has many attributes commonly known from Ethernet devices. For example, each
wireless devices has a 48 bit MAC address, which is globally unique and allocated from the same pool as
Ethernet devices. Using the MAC addressing schema, unicast packet delivery semantics are defined within
a BSS just like with Ethernet.
However, the medium used by the PHY layers of wireless devices has characteristics fundamentally different
from traditional wired media. The MAC layer must incorporate advanced functionality to deal with these
differences. Some of the differences and mechanisms to overcome them are listed below.

• Communication using a wireless medium is significantly less reliable than wired communication. There-
fore, the MAC uses positive acknowledgement for most packet transfers.

• Full connectivity between all stations cannot be assumed, e.g. due to obstacles. Packets are therefore
relayed through a central access point.

• Radio propagation between two stations is generally asymmetric.

• Communication is unprotected from other signals on the medium. Particularly in unlicensed bands,
the grade of quality of service (QoS) guarantees that can be provided are severely limited.

2.4.1 Communication Context

Wireless stations are grouped together to form a communication context called a basic service set (BSS).
All data transfer between stations takes place within a BSS, except if the new upcoming 802.11p standard
is used.
There are two kinds of BSS: independent BSS (IBSS) and infrastructure BSS with an AP.
Independent BSS are more commonly referred to as ad-hoc networks and communication within an IBSS is
limited to direct passing of packets between stations.
An infrastructure BSS on the other hand contains an AP, which is connected to further networks usually
via a wired network interface. The AP operates as a bridge between wired and wireless communication by
forwarding packets as necessary. Even packets sent between wireless stations are relayed via the AP.

13

2 IEEE 802.11

Control
Frame Address

1

2 2 6 6 6 2 6 2 0-2304 4

2 2 4 1 1 1 1 1 1

Protocol
Version

To
DS

From
DS

More
Data
MorePwr

Mgt
Protected
Frame

1 1Bits

Bytes

Frag

Address
2

Sequence/
Control

Address
3

Address
4 Control

QoSDuration CRCFrame Payload

OrderSubtypeType Retry

Figure 2.7: 802.11 MAC header (adapted from [12])

2.4.2 CSMA/CA using CS and NAV

802.11 uses a carrier sense multiple access with collision avoidance (CSMA/CA) scheme to coordinate access
to the wireless medium. This mechanism is similar to carrier sense multiple access with collision detection
(CSMA/CD), which is used by Ethernet. Both employ carrier (medium) sensing to detect multiple access
to the medium.
However, since it is difficult and thus expensive to built radio transceivers that can both listen and send
simultaneously, 802.11 devices are not required to be full-duplex. With half-duplex transceivers, however,
collision detection as employed by Ethernet while sending is not possible. Instead, collision avoidance is
attempted through distributed coordination protocols.
There are two different carrier sensing mechanisms used by 802.11: physical carrier sense and virtual carrier
sense.
A physical carrier sense indication is raised when another signal is detected on the medium. However,
this signal detection is rather difficult because most wireless modulation schemes are only distinguishable
from noise if the receiver is properly synchronized and has the capabilities required to decode the signal.
The different PHYs in 802.11 require individual carrier sensing mechanisms and the standard leaves device
manufacturers great flexibility in designing these mechanisms.
Virtual carrier sense is defined by the duration field in the MAC header, which is attached to every packet
sent (see figure 2.7). The duration field contain a time value (in microseconds) for which the medium is
reserved after the current packet. This medium reservation is called the network allocation vector (NAV).
As a first basic coordination rule, a station may not send a packet if either physical or virtual carrier sense
indicates that the medium is busy. Using this rule, collisions are already avoided in most cases. However,

B

A

C

(a) Geometric layout

A

B

C
Time

(b) Interference sequence

Figure 2.8: Hidden terminal scenario

14

2.4 MAC Layer

DATARTS

ACKCTS
SIFS SIFS

SIFS

Sender

Receiver

Other Stations NAV (RTS)
NAV(CTS) Time

Figure 2.9: RTS/CTS/ACK frame protection sequence with NAV (adapted from [12, figure 9-7])

two important collision scenarios remain:
The first one occurs when two stations wish to send a packet and both detect the medium as idle. The
issue is to determine when a station is allowed to start sending. 802.11 uses this to prioritize access to the
medium for different transmission methods. Section 2.4.3 discusses these access priorities in detail.
And the second collision scenario, which is a special case of the first, is called the “hidden terminal” constel-
lation. This happens when two stations are too far away from each other to sense their transmission and
thus both detect the medium as idle. If both attempt to send to a third station located in between, their
transmissions interfere and packets will be lost.
Figure 2.8 shows the hidden terminal scenario. If A and B attempt to send a packet to C at nearly the same
time, both packets are superimposed at the receiver. Under most circumstances both packets are decoded
incorrectly and are dropped. If however the receive power of one signal is small relative to the other, the
stronger signal can still be correctly decoded. In section 6.4 these effects are discussed in more detail.

RTS/CTS Exchange

To avoid interference in the hidden terminal scenario, 802.11 uses a protection scheme. First a RTS control
frame is sent, which must be answered by the destination station with a CTS frame. By setting the duration
fields in both control frames, the two stations set up a NAV that prohibits other stations to send for a time
interval that is used to transmit the data frame and return its acknowledgement. Figure 2.9 illustrates the
frame exchange sequence.
Important in this scenario is that all other stations within range receive the RTS, the CTS or both frames.
Thus all interferers in range of both stations are prohibited from sending during the data frame.
However, the RTS/CTS protection sequence comes at the cost of two additional frames. These introduce
delay and reduce the maximum throughput by adding overhead. Hence the RTS/CTS sequence should only
be used to large data frames. For large data frames the cost of collision is reduced, because the RTS frame
is much shorter and thus medium recovery time is shorter. RTS/CTS does not reduce the probability of
collision.

2.4.3 Interframe Space

The time a station has to wait after it detects the medium to be idle is used by 802.11 to prioritize
access. These time intervals following the last detected frame are called interframe space (IFS). Figure 2.10
illustrates the IFS by showing the waiting intervals as required by different priority mechanisms.
In the original standard there are three different priority classes and three corresponding interframe spaces:
SIFS, PIFS and DIFS.
The shortest interval is the short interframe space (SIFS). It is used in direct frame sequences like RTS/CTS
shown in figure 2.9. The length of SIFS is determined by PHY characteristics: it is the maximum time
allotted to the electronics of a station for decoding the incoming signal, processing the request and issuing
an answer. Table 2.4 shows the actual values for all PHY.

15

2 IEEE 802.11

BUSY
SIFS

DIFS

PIFS

AIFS2

AIFS4

Time

Figure 2.10: Interframe space (IFS)

The second longest interval is PCF interframe space (PIFS) used, as its name says, by the point coordination
function (PCF) operation mode. PCF is described in section 2.4.5.
The longest of the original three intervals is DCF interframe space (DIFS), used by the distributed coordi-
nation function (DCF) mode. DCF is the most commonly used operation mode today and is described in
section 2.4.4.
For IFS calculations the smallest amount that can be added to a shorter IFS is called SlotTime. This time
interval depends on the used PHY and is defined by the time required by another station to hear a packet
sent by another. It includes required hardware processing time but also propagation time of a packet on the
medium.
The values for PIFS and DIFS are derived from SIFS and SlotTime by setting

PIFS := SIFS + 1 · SlotTime
DIFS := SIFS + 2 · SlotTime

By specifying SIFS < PIFS < DIFS, the MAC rules grant priority access to answers in direct sequences. If
no station needs to answer directly, a station (actually only an AP) operating in PCF mode may seize the
medium after PIFS. And then if after DIFS still no station has sent a packet, stations operating in DCF
may send.
For enhanced distributed channel access (EDCA) mode, a new set of interframe spaces called arbitration
interframe space (AIFS) is introduced in 802.11e. For each QoS class n the corresponding time interval is
denoted by AIFS[n]. The actual interval lengths are defined by the EDCA parameter set using an integer
called arbitration interframe space number (AIFSN). From this integer the time interval AIFS is calculated
as follows:

AIFS[n] := SIFS + AIFSN[n] · SlotTime (2.1)

Since the standard requires AIFSN[n] ≥ 2 for stations and AIFSN[n] ≥ 1, the values of AIFS[n] are always
greater than SIFS and may be equal to PIFS, DIFS or larger. More about the AIFS is found in section 2.4.7
on EDCA.

2.4.4 DCF

The most commonly used coordination mode today is distributed coordination function (DCF). As explained
in the previous section, a station operating in DCF must always wait DIFS time after a frame. However,
multiple stations might have been waiting, so further rules are needed to decided which of the stations gets
to send first. This must be done using a distributed algorithm that provides fairness between all stations.
So the time a station must wait after DIFS is uniformly randomized. The range from which the random
waiting time is chosen is called the contention window (CW).

16

2.4 MAC Layer

Time

56789 4

backoff=8

backoff=5

DIFSDIFS

backoff=9

backoff=4

A

B

C

t1 t2 t3 t4 t5 t6 t7 t8t9

DIFS

5 4 3 2 1

8 7 6 5 4

3 2

4 3 2

3 2 1

1

1

Figure 2.11: Backoff coordination example in DCF

The rules of DCF are following: if a station is newly initialized then it may send the first frame immediately
after DIFS if the medium is free. If the medium is not idle, then a backoff time is uniform randomly chosen
from the interval [0 . . .CW], where CW := CWmin. Once the medium is idle and DIFS elapsed, the station
must still wait further and decrement the backoff counter for each SlotTime interval. If the medium is seized
by a different station in that time, the backoff counter decrementing is stopped. Decrementing proceeds
once the medium is idle again for DIFS. When the backoff counter reaches zero, the station may send the
waiting frame.
If sending of the frame does not succeed, then a further backoff is started. The station can only determine
whether a frame was correctly received if the frame required an ACK answer. If the corresponding ACK
answer does not arrived after a specific timeout, the frame must be retransmitted. For this retransmission
the backoff is randomly selected from an enlarged interval [0 . . .CW]. The initial CW is CWmin, which is
determined by PHY specifics (see table 2.4). For subsequent retransmissions, the new CW is calculated by

CWnew := min
{
2 · (CWold + 1)− 1, CWmax

}
(2.2)

If the frame transmission was successful or no ACK was required, then the station must always start a new
backoff procedure, regardless if it has another packet waiting or not.
Figure 2.11 shows an example time line of DCF’s packet coordination. The example contains three stations
all within range of each other and initially station A is sending a packet. While A is sending, the higher
layers in both B and C queue a packet for transmission. B and C determine that the medium is busy and
must pick a random backoff. In the example, B picks 5 and C’s backoff is randomized to 8. When A finishes
its broadcast frame at t1, it too must start a backoff timer in this case with initial value 9.
After DIFS all stations start decrementing their backoff counters. The small rectangles each depict an
interval of SlotTime. After 5 SlotTimes, station B wins the distributed competition and is allowed to send
its frame at t3. Because all other stations sense that the medium is busy, they stop their backoff counters.
Once B has finished its frame, it starts a new backoff to transmit an additional frame and this time must
wait 4 slots.
At t5 all station again start decrementing and this time C’s counter, which still contained 3, first reaches
zero. The frame transmitted by C finishes at t7 and a new backoff is started for C. After DIFS all stations
again start decrementing. Because both A’s and B’s counters contain a remaining backoff of 1 slot, both
transmit their packets after 1 SlotTime at t9. Due to the interference of both packets, they will probably
not be received correctly and a retransmission might be necessary.
As the example shows, DCF does not prohibit collisions, it only avoids them using random backoffs. By
increasing the CW interval, DCF automatically adapts to higher network load.

17

2 IEEE 802.11

Delay due to busy medium

Busy

CFP repetition interval

Shortened CF Period Period
Contention

DCF

B
eacon

PCF

B
eacon

PCF

Contention PeriodContention-Free Period

DCF

T
B

T
T

T
B

T
T

T
B

T
T

Figure 2.12: CFP/CP alteration (adapted from [12, figure 9-13])

DCF is statistically fair to all stations with respect to the time they have to wait before sending. However,
it is not fair with respect to the amount of bytes transmitted by each station; packet payload size or
transmission time is not taken into account by DCF. Thus byte throughput is not fairly coordinated by
DCF. Obviously DCF is not designed to provide QoS: all traffic is delivered with best effort semantics.

2.4.5 PCF

The second of the original operation algorithms of 802.11 is the point coordination function (PCF). It
provides an enforced “fair” access mode during a contention-free period (CFP). The CFP is initiated and
coordinated by a so called point coordinator (PC), which is a subfunction of an AP.
Contention-free period (CFP) and contention periods (CPs) alternate, with PCF controlling transmission
in the CFP and DCF in the CP (see figure 2.12). A CFP is started by the PC with a beacon frame. In this
beacon frame the NAV duration is set to the maximum value and thus stations operating in DCF are not
allow to send.
The PC uses the shorter interval PIFS to send the beacon frame with higher priority than usual DCF traffic.
Having seized the medium, the PC keeps control until the end of the CFP.
Frame transmission is coordinated by the PC in the CFP with an algorithm similar to token-passing: a
station may only send a frame if polled by the PC. A typical PCF frame sequence is shown in figure 2.13.
The frames used in PCF can have two different flags: CF-Poll, CF-ACK. Both flags can be set independently
and the frame may or may not contain payload data. All eight combinations are possible.
The PC polls each station from its polling list with a CF-Poll. The polled station must answer with one CF-
ACK. If the PC/AP has data queued for the polled stations, a data frame with CF-Poll flag is transmitted,
otherwise an empty frame with the flag is sent. Likewise the station, which must answer with CF-ACK,
transmits a data or empty frame. The PC receiving a frame from a station also must answer with a CF-
ACK. This CF-ACK can be combined with a new CF-Poll to a different station and may also contain data
for that station.

PHY SlotTime SIFS DIFS CWmin CWmax
HR/DSSS 20 µs 10 µs 30 µs 31 1 023

OFDM 5GHz
with 20MHz channels 9 µs 16 µs 34 µs 15 1 023
with 10MHz channels 13 µs 32 µs 58 µs 15 1 023
with 5MHz channels 21 µs 64 µs 106 µs 15 1023

ERP-OFDM 2.45GHz
with short preamble 9 µs 10 µs 28 µs 31 / 151 1 023
with long preamble 20 µs 10 µs 50 µs 31 / 151 1 023

1 Value depends on data rate set used.

Table 2.4: Timing and DCF parameters for different PHYs

18

2.4 MAC Layer

Time

CF-Poll
to A

CF-Poll to A
+CF-ACK to B

+CF-ACK
Data

A

PCF DCF

Beacon

from B
No answer

PC
+CF-Poll to C

Data to C CF-End

PIFSSIFS SIFS SIFSSIFSSIFS

C
CF-ACK

(AP)

Figure 2.13: Example PCF contention-free period

If a polled station does not answer, then the PC continues its polling list after PIFS. If it would wait longer,
then a station that operates in DCF and overheard the NAV could seize the medium. Therefore, during the
CFP no idle period longer than PIFS occurs.
The CFP is terminated by the PC using a packet flagged with CF-End. With the CF-End packet, the NAV
is reset and usual DCF traffic operation commences. The duration of the following CP must allow at least
one complete frame transmission by a station operating in DCF.
Beacons are transmitted in periodic intervals. The interval is announced by the AP in a parameter set
attached to previous beacons. From this interval the next target beacon transmission time (TBTT) can be
determined. However, because traffic operating in DCF may be holding the medium at the TBTT, a beacon
frame may be delayed. If it is delayed the maximum duration of the following CFP is shortened.

QoS using PCF

The PCF is a mechanism for the PC to manage frame transmission. However, the level of QoS that can be
provided using PCF is very limited. The two main problems with PCF are listed below, see [22] for details.
To send a beacon at the TBTT, the medium must be idle for PIFS. However, due to DCF traffic the beacon
can be delayed up to about 4.9ms [22]. The worst case is a DCF transmission using RTS/CTS, the longest
payload size, slowest modulation and coding scheme and high fragmentation.
Second major problem is that the PC cannot enforce frame sizes transmitted by polled stations. Stations
are free to send very long frame sequences, up to the maximum of 2 304 bytes payload with the slowest
transmission scheme. This makes any attempt to provide high grade QoS impossible.

2.4.6 HCF

The shortcomings of DCF and PCF motivated development of a new coordination function in 802.11e [13].
The enhanced function, named hybrid coordination function (HCF), includes provisioning of high QoS
guarantees. HCF manages both contention-free and contention-based access to the wireless medium, which
is why it is called hybrid.
Central to providing QoS support is the concept of a transmission opportunity (TXOP). A TXOP is an
allotment of access time to the medium, which can be used to transmit a single frame or multiple frames in
a sequence. TXOPs are defined by start time and duration. A station sending on a TXOP must complete
its frame transmission including acknowledgements within the defined time interval, it must not utilize the
medium for longer than the allocated duration. Due to this hard rule, QoS can be provided by assigning
TXOPs in a coordinated fashion.
The HCF defines two medium access mechanisms: enhanced distributed channel access (EDCA) and HCF
controlled channel access (HCCA). EDCA is used only in the contention-based periods, while HCCA used in

19

2 IEEE 802.11

AIFS[VO]
CW[VO]

AIFS[VI]
CW[VI]

AIFS[BE]
CW[BE]

AIFS[BK]
CW[BK]

Internal Collision Resolution

Select AC from UP

Transmit

AC_BKAC_BEAC_VIAC_VO

Data and UP

Figure 2.14: EDCA queues

both contention and contention-free periods. Both are enhancements of the original coordination functions
DCF and PCF and will be described in the next two sections.

2.4.7 EDCA

In contention periods (CPs) of HCF, TXOPs are allocated by EDCA using a set of distributed rules, which
are based on those defined in DCF. Similar to DCF, EDCA is very likely to become the most widely used
channel access mechanism, because it is simple, easy to implement and hassle-free to employ due to its
distributed nature.
EDCA defines four access categories (ACs) with different medium access priorities. The four AC are labeled
AC_VO for “voice” class traffic, AC_VI for “video” class traffic, AC_BE for best effort traffic and AC_BK
for background traffic. For packets received from higher layers that are tagged with user prioritys (UPs)
defined in 802.1D [15], a mapping to ACs is defined in the standard [12, table 9-1]. The four classes are
enumerated with an access category index (ACI): 3 for AC_VO, 2 for AC_VI, 0 for AC_BE and 1 for
AC_BK.
Each AC has a separate queue and enhanced distributed channel access function (EDCAF) managing backoff
(see figure 2.14). Note the difference between EDCA as a submechanism of HCF and an EDCAF, which
defines when packet transmission is allowed for each AC. Thus there are four EDCAF in a QoS station.
An EDCAF is very similar to the original DCF (review section 2.4.4). The differences can be summarize
with following modifications:
Like DCF, the medium must be idle for a specific time interval before the EDCAF is granted access or
starts decrementing the backoff counter. This interval, denoted as AIFS[AC], corresponds to DIFS in DCF.
It is defined by the integer AIFSN[AC] through the equation described in section 2.4.3. For backwards
compatibility with PCF, the value of AIFSN[AC] must be greater or equal to 2 for non-AP stations. See
figure 2.10 for an illustration of the interframe spaces. The figure shows two AIFS with AIFSN set to 2 and
4.
If a transmission needs to be delayed, a random backoff is chosen from [0 . . .CW]. As with DCF, the CW
value starts at CWmin[AC] and is increased for each retransmission, up until CWmax[AC] is reached. Each

20

2.4 MAC Layer

802.11e 802.11p/D4.02 DCFAC VO VI BE BK VO VI BE BK
AIFSN[AC] 2 2 3 7 2 3 6 9 2
CWmin[AC] 3 7 15 15 3 3 7 15 15
CWmax[AC] 7 15 1 023 1 023 7 7 15 1 023 1 023

TXOPLimit[AC] 1 504µs 3 008µs 0 0 0 0 0 0 0

Table 2.5: Default EDCA parameters using OFDM PHY in 5GHz bands

EDCAF has a separate CW variable. The backoff counter is decremented only after the medium is idle for
AIFS[AC].
The previous two modifications adapted variables of DCF to differentiate medium access for different ACs.
The following third change is very important to provide QoS, for reasons that first unfold in the next section
on HCCA.
When the backoff counter reaches zero, the AC is granted an EDCA-TXOP. This TXOP has a maximum
duration specified by the parameter TXOPLimit[AC]. A TXOPLimit = 0 allows a single frame at any data
rate and an addition RTS/CTS exchange if desired. Note that the TXOP is granted to the AC, not to the
station.
Last modification is the addition of a admission control mandatory (ACM) parameter, which specifies
whether a station needs permission from the AP to use the AC. This is important in HCCA controlled
BSSs.
A QoS-enabled station holds four EDCAFs, so it can occur that two or more backoff counters reach zero
simultaneously. This is called an internal collision and is resolved by granting access only to the EDCAF
with highest priority. The other EDCAF must initiate the usual backoff procedure just as if an “external”
collision on the medium is detected.

Default EDCA Parameters

EDCA can be used with or without an AP as central controller. If EDCA is used within a BSS controlled
by an AP supporting QoS, the EDCA parameters used by all associated stations are defined in the beacon.
This allows the AP to tune and limit the QoS provided by EDCA depending on administrative requirements
and other QoS constraints.
If EDCA is used in an ad-hoc BSS (IBSS) or outside the context of a BSS (802.11p), then a default pre-
defined parameter set is used. This default parameter set is different for each PHY layer and is defined in
the standard by calculations from other parameters. Table 2.5 shows the default parameters from 802.11e
and 802.11p for one specific PHY. See section B.2 in the appendix for default parameters of other PHYs.
The default parameters may be changed by the SME to adapt the prioritization required.
A better understanding of the parameter values can be gained from figure 2.15. These two diagrams visualize
the default EDCA parameters of 802.11e [13] and 802.11p/D4.02 [14]. Each tick on the x-axis represents
one backoff slot. The colored rectangles mark the time a frame must wait for the first transmission attempt:
each rectangle’s left border is at AIFS[AC] and the right border at AIFS[AC]+CWmin[AC]. All rectangles
have the same area. For each AC, the CWmax[AC] is displayed as a single vertical line in the corresponding
color.
Because all rectangles have equal areas, the rectangle’s height symbolizes the probability of transmission at
the slot boundary. Summing up all rectangle heights at a slot boundary yields the probability of collision
at that point in time.
Note that the illustration only shows waiting time for the first transmission attempt, in absence of other
contenting stations. Other stations may seize the medium and thus delay backoff or even cause a collision.
Subsequent attempts due to transmission errors have different waiting times. However, it is only possible
to detect a transmission error if positive ACK is used for the packet. This is not the case for broadcast,
multicast and frames marked with NoACK.

21

2 IEEE 802.11

BUSY

5 10 15 20SIFS
PIFS D

IFS

VO VI
BE BK
DCF

(a) in 802.11e [13]

BUSY

5 10 15 20SIFS
PIFS D

IFS

VO VI
BE BK
DCF

(b) in 802.11p/D4.02 [14]

Figure 2.15: First transmission attempt with default EDCA parameter

22

2.4 MAC Layer

The parameters of 802.11p [14], illustrated in figure 2.15(b), show two very interesting and useful properties:

• The first observation that can be made is that packets from AC_VO and AC_VI are always trans-
mitted before frames from AC_BE and AC_BK in the first transmission attempt. This is due to

AIFSN[AC_VO] + CWmin[AC_VO] ≤ AIFSN[AC_BE] ≤ AIFSN[AC_BK]
AIFSN[AC_VI] + CWmin[AC_VI] ≤ AIFSN[AC_BE] ≤ AIFSN[AC_BK]

This holds even at the slot time boundary 6, where an internal collision occurs if the packet from
AC_VI starts with a maximum backoff of CWmin[AC_VI] and the packet from AC_BE chooses
backoff 0. The internal collision is resolved by granting access to AC_VI.

• The second observation is that AC_VO frames are always transmitted before frames from AC_BK at
any retransmission attempt. The follows from the equation

AIFSN[AC_VO] + CWmax[AC_VO] ≤ AIFSN[AC_BK]
Again this also holds at the time boundary, due to internal collision resolution.

In many scenarios legacy DCF stations will coexist with EDCA QoS-enabled stations. DCF allows transmis-
sion after DIFS, which is equal to an AC with AIFSN = 2. This severely intervenes with the prioritization
provided by EDCA and therefore the relative QoS guarantees are only valid in pure EDCA setups.

2.4.8 HCCA

The second new medium access mechanism defined in 802.11e is HCF controlled channel access (HCCA).
It is derived from PCF (review section 2.4.5) and keeps its fundamental polling nature. However, many
modifications are made which enable HCF to provide true QoS in wireless LANs. Review of HCCA is
included in this thesis because it is the sibling medium access mechanism of EDCA in HCF; it is not
discussed beyond this section.
A BSS operating in HCF with HCCA is managed by the hybrid coordinator (HC). Similar to the PC in
PCF, the HC may access the medium after only PIFS idle time and thus can seize the medium before
stations operating in DCF or EDCA. Using this priority access, the HC can send beacons, poll stations or
transmit data frames.
Unlike PCF the periods in which the medium is controlled by the HC using HCCA need not strictly follow
beacon frames. Instead, periods controlled using distributed EDCA and central controlled HCCA can be
intermixed as shown in the example figure 2.16. After each beacon there may still be a longer sequence of
HCCA, which is called a contention-free period (CFP) like in PCF.
The arbitrary mixing of HCCA and EDCA periods is the first important change required for high grade
QoS: the HC may seize the medium during the contention period to enforce QoS guarantees.
Stations may request a QoS reservation through a management frame holding a traffic specification (TSPEC).
The major TSPEC parameters are stream direction, mean data rate, delay bound, maximum service interval,
nominal MAC service data unit (MSDU) size and minimum PHY rate. If the HC determines that the
reservation can be granted, a traffic stream (TS) is created with unique traffic stream identifier (TSID). Up
to eight upstream and eight downstream TS are supported simultaneously.
In HCCA phases, the HC then sends special QoS-CF-Poll management frames to stations holding a QoS
reservation. This QoS-CF-Poll grants the station a polled HCCA-TXOP for the allocated TS that is used
for upstream traffic. For downstream traffic in direction of the STA, the HC can gain access directly after
PIFS.
The HC must determine if the QoS parameters given in a TSPEC can be assured. By changing the EDCA
parameters broadcasted in each beacon, the HC can limit medium access of other stations operating outside
the TS allocations. By setting the ACM[AC] it may even deny stations access to high priority ACs.
Beyond requesting TSs, all stations can use a new field in each QoS-data frame to request a further TXOP.
Depending on current network load, the HC can grant this piggy-backed request or not.

23

2 IEEE 802.11

Beacon

Beacon

Beacon

Beacon

CFP

CFP Repetition

CFP

Controlled Access Phase (CAP)
EDCA TXOPs and DCF traffic

Figure 2.16: HCCA CAP/CF/CP periods (adapted from [12, figure 9-10])

Coordination and guarantee of QoS is burdened on the HC as controlling instance in the BSS. Admission
control of new TS, adaptation of EDCA parameters and HCCA coordination is a challenging problem and
many algorithms and protocols have been developed [8].
Using HCCA, QoS can be guaranteed within the inherit limits of wireless communications. In unlicensed
bands these guarantees are severely limited due to unpredictable interference. However, in licensed bands
and controlled environments high grade QoS guarantees can be given.

24

Chapter 3

The ns-2 Network Simulator

ns-2 is a discrete event network simulator specially geared for scientific research in packet-switched computer
networks. It is doubtlessly the most popular open-source network simulator today.
Work on ns-2’s ancestor, the LBL Network Simulator (sometimes called ns-1), began in May 1990 at
Lawrence Berkeley Nation Laboratory as a variant of the REAL network simulator. S. Keshav’s REAL
network simulator was originally designed for research on dynamic behavior of flow and congestion control
schemes [19]. In 1994, the original ns changed its simulation description language to Tcl [24].
The first version of ns-2 was released in 1995. At that time ns had gained support from DARPA (Defense
Advanced Research Projects Agency) and the VINT (Virtual Inter Network Testbed) project at LBL. Fur-
ther backing was given by Xerox PARC, UCB (University of California, Berkeley) and USC/ISI (Universitry
of Southern California, Information Sciences Institute) [17]. Important contributions have come from Sun
Microsystems, the UCB Daedelus and Carnegie Mellon Monarch projects. Until 2004 the NSF (National Sci-
ence Foundation) CONSER (Collaborative Simulation for Education and Research) and DARPA SAMAN
(Simulation Augmented by Measurement and Analysis for Networks) projects funded development. Cur-
rently another NSF funded project is maintaining ns-2 in collaboration with the University of Washington,
Georgia Institute of Technology, ICSI and the Planete group at INRIA.
Today ns-2 is developed in an open-source manner by a number of different researchers and institutions
with individual focuses. The code base is maintained by a NSF funded collaboration and periodically new
versions are released.

3.1 Overview

This section gives a very short overview of ns-2’s basic architecture and properties. More instructive tutorials
are best found on ns-2’s official web site [25].
ns-2 is a discrete event simulator and as such simulated time in ns-2 does not progress continuously. In-
stead, the simulated world changes state at specific points in time called events. These changes are made
instantaneously with respect to simulated time by event handlers, which may schedule further events at any
later point in time. The simulation stops when no more events are to be processed or by user intervention.
To simulate computer networks, ns-2 is designed to imitate the flow of packets on a network. The simulated
world contains a set of communication nodes and each node contains a collection of network objects, which
can represent applications, ISO/OSI network layers and more. These network objects interact with each
other by passing packets around. Just like in real networks, packets are first augmented with header and
trailer, when traveling down a stack of network layers. And then, after traveling through an emulated
medium, the information from header and trailer is used to disassemble and process the packet as it travels
up the stack.
Two programming languages are used in ns-2: OTcl (MIT Object Tcl) and C++ (see figure 3.1). The
rationale behind this dual language approach is to make writing simulation scripts easy and flexible in
Tcl, while implementing the performance critical code in C++. Because Tcl is an interpreted language,
changes to a simulation script do not require lengthy compilations. However, this flexibility comes at the

25

3 The ns-2 Network Simulator

Plotting
xgraph

Analysis
Custom

nam
Animation

Simulation
Trace
FileScript

Tcl
Simulation

C++ OTcl

TclCLSimulation
Objects

Simulation
Objects

ns-2 Tcl Interpreter Shell (ns)

Figure 3.1: Basic ns-2 simulation architecture (based on [17, figure 2.1])

cost of slower execution speed. The heavy simulation core and simulation models close to the hardware are
implemented in C++ classes.
However, due to this dual language design, all objects which need to be available in both programming
domains must provide dual interfaces in both C++ and OTcl. These dual interfaces are maintained by
TclCL bindings and shadow objects in C++.
Through the years ns-2 has grown very large, currently amounting to about 300 000 lines of code, and many
models at different network layers were implemented. Among the highlights are many variants of TCP,
special queues and classifiers, the SCTP and XCP protocols, configurable traffic generators with different
behaviors and HTTP, FTP, UDP, PLM, SRM and RTP application simulators. Support for research in
mobile wireless networks, satellite networks and differentiated services (DiffServ) is also included in the base
release. Beyond the official code many special patches are available from groups doing research on specific
topics.

3.2 Problems with 802.11 and Overhaul by DSN

IEEE 802.11 wireless and mobile node source code was first added in 1997. It was contributed by Sun
Microsystems, the UCB Daedelus and Carnegie Mellon Monarch projects. Many research papers have been
published with simulation results using these 802.11 modules in ns-2.
The 802.11 implementation has had some major shortcomings, oversimplifications and even errors in the
past. These shortcomings and their duration in the main code base are surprising given the amount of
research papers based on ns-2 wireless simulations.
Only the basic DCF operation mode is implemented in the mainstream code. Many patches to the wireless
code were developed by different research groups. Among them are EDCA support by the Telecommu-
nication Networks Group at the Technical University of Berlin [37] and HCCA support by the Computer
Networking Group of the University of Pisa [3].
Infrastructure mode with AP beacons and station association has only recently been added in ns-2.33, which
was released in March 2008.
On a whole the 802.11 implementation in ns-2 is not well designed and poorly documented. This has been
known for a long time and ns-2 lacked behind other network simulators, which are more specifically geared
towards wireless networks.
To reliably simulate large, highly mobile VANETs, the 802.11 implementation has been minutely studied
by the DSN research group at the University of Karlsruhe and Daimler Research California. In 2006, many
bugs in the 802.11 modules were identified and a patch for these was published by the DSN [34]. Some of
the bugs and improvements are listed below.

• Incorrect simulation of the extended interframe space (EIFS) by setting the NAV instead of actual
backoff. Correction of this bug required large structural changes in the NAV and backoff implementa-
tion.

26

3.2 Problems with 802.11 and Overhaul by DSN

MobileNode
Upper Layers

RF Model

WirelessChannel

MAC 802.11

WirelessPhy

(a) Old architecture

Transmission

Transmission
Coordination

Reception
Coordination

Reception

PHY State Manager

Upper Layers

PowerMonitor

WirelessChannel

R
F
M
odel

BackoffManager

ChannelStateMgr

PHY

M
obileN

ode

MAC

(b) Overhauled architecture

Figure 3.2: 802.11 simulation modules and architecture in ns-2 (adapted from [2, figures 2 and 3])

• Sensing of incoming frames while transmitting, a feature not available to 802.11 hardware.

• Extended frame capture as supported by newer wireless chipsets. Frame capture is described in
section 6.4.

Not fully satisfied with patching up existing code, the DSN group and Daimler Research published an
overhauled implementation of 802.11 MAC and PHY for ns-2 in 2007 [2]. Main goal of this revised imple-
mentation was to improve overall code structure and design. Key features of the redesigned architecture
(figure 3.2) are

• a much more accurate modeling of the PHY layers, including signal to interference and noise ratio
(SINR) computation with cumulative noise and correct distinction between PLCP preamble, header
and payload,

• optional, extended frame capture as described in section 6.4 and

• the probabilistic Nakagami propagation loss model, which includes Rayleigh fast fading and enables
realistic simulations of radio propagation in urban environments (see section 5.4).

• Moreover the MAC layer was remade and modularized into transmission and reception coordination
classes, DCF backoff management and a channel monitor.

This completely revised architecture was included in the newest ns-2.33 mainstream code. The two base
classes modeling MAC and PHY are called Mac802_11Ext and WirelessPhyExt.
In this thesis the revised 802.11 architecture is compared with the new ns-3 simulator, described in the
following section. The improvements listed above, that were not contained in ns-3 were ported and verified
extensively.

27

3 The ns-2 Network Simulator

28

Chapter 4

The ns-3 Network Simulator

The new ns-3 network simulator is, as its name suggests, the designated successor of the popular ns-2
simulator described in section 3. Its development initially began in 2006, the first public pre-alpha version
was released in March 2007 and the first stable milestone was reached in June 2008. Maintenance and initial
development are funded by a four-year NSF grant.
The goals of ns-3 [11] are set very high: to create a new network simulator aligned with modern research
needs and develop it in an open-source community. This section describes both plans for the project and
its current development state as of ns-3.4, released in April 2009.
In the initial project goals, it was decided that the new ns-3 simulation architecture was to be redesigned
from scratch. In this design, historic experiences gained from ns-2 should be blended with advances in
programming languages and software engineering. Strict backwards compatibility to ns-2 was explicitly
declared to not be a project goal. This frees ns-3 from historic burdens and enables construction of a
simulator that is “correctly designed” from the beginning.
There apparently was unanimous consent that OTcl should be replaced by a modern scripting language.
OTcl was cited as one of the great obstacles in using and teaching ns-2. The dual language approach of ns-2
was also abandoned, for multiple reasons. It makes model development and debugging more difficult due to
two programming language domains. Furthermore the C++/OTcl binding code is not well documented and
introduces some subtle and unsolvable difficulties in connecting models written in the disparate languages.
The core of ns-3 and all models are written in C++. Front-ends to the C++ code should be created for
various scripting languages like Python, Perl and also Tcl using specialized binding generators. Similar
to ns-2’s approach, these front-ends allow a user to create simulation objects in a flexible script language
without compilation, and at the same time have the performance critical code in C++. Currently a Python
front-end is automatically generated from C++ class files and is already used by example simulation scripts.
Support for a wider variety of script languages through SWIG is planned.
Due to its age, C++ code in ns-2 was limited in its use of the language. At the time ns-2’s foundation
code was created, the standard template library (STL) was not wide-spread yet and compiler support for
complex templates still poor. Consequently these modern C++ features and the STL were not allowed to
be used in ns-2 for a long time. Because of these limitations, large parts of ns-2’s code appear to today’s
developers ancient, overly complex and “hacky”.
The core of ns-3 heavily utilizes advances in C++ compiler technology and software engineering. The
fundamental scaffolding done in ns-3’s core is described in the following section 4.1. The core framework
contains a hierarchical object system with attributes, callbacks and integrated tracing. Built upon these
foundations is a memory-efficient packet handling system and discrete event simulation algorithms, which
drive progress in each simulation program.
One major project goal is to allow simulation of “large” networks with a reasonable level of detail. By
heavily optimizing the simulator core code, scalability on a single computer can be improved to a limited
degree. However, ns-3’s goals go beyond simulations with a single, sequential event processing loop. Using
parallel and distributed simulation technology, simulations should scale further, utilizing the memory and
processing resources of a whole computation cluster. Experience gained from implementing the Georgia Tech

29

4 The ns-3 Network Simulator

Network Simulator (GTNetS) [30], which uses “ghost nodes” [31], and conservative look-ahead techniques
from Parallel/Distributed NS (PDNS) [27] should flow into ns-3’s design. This goal has not yet been achieved.
Some advances using a node federate-based approach with MPI were developed in a project in 2008.
To enable easy integration of new models into ns-3, its networking architecture is based on real world
hardware and software. The interfaces in this architecture closely resemble those found in real operating
systems and hardware: for example the BSD sockets application programming interface (API) and Linux
network devices interfaces are emulated. The packets passed around in the simulation are required to be
exactly like real network packets, down to the last bit.
By use of these well-known interfaces, ns-3 aims at leveraging existing model or real implementations. Three
different binding techniques are devised to integrate existing models or code into ns-3:
First is to integrate models from ns-2 or other network simulators by adapting the code directly to ns-3
interfaces. This is the traditional approach used in most simulators and requires manual coding work by
experts.
A second method aims at integrating existing open-source libraries implementing network protocols. For
example the quagga routing protocol suite can be integrated by attaching it to the generic, well-known APIs
provided by ns-3. This method envisions easy reuse of the large amount of open-source networking software,
an opportunity missed by most other simulators.
Using the third set up, real operating system code can be integrated into ns-3. Such integration has already
been done with the Network Simulation Cradle (NSC), which has successfully been ported to ns-3. Further
work is planned to interface real applications with a slim emulation layer, e.g. using the sockets or libc API,
and run them completely within ns-3.
Stepping outside the reuse of existing software, ns-3 also integrates real hardware into simulations. Because
packets created and used by the simulation are indistinguishable from real packets, they can be exchanged
with real networks. ns-3 already provides an implementation to do this on Linux.
One further goal of the ns-3 project is to maintain tools for educational use, a field in which ns-2 has not
had much impact. The vision includes animations and educational courseware for undergraduate networking
classes. By providing these example scripts, classes on networking can be enhanced with live simulations
and evaluation.
As progress continues, further goals of ns-3 are to be added and existing ones revised. Until the first
stable release in June 2008, main focus of development was on the core architecture. Current work is more
wide-spread and includes enhancing the simulator with more models and interfaces to external software.

4.1 Design Overview

In this section an overview of the principle components of ns-3 is given. Each component’s role in the ns-3
simulation architecture and main classes are reviewed. Most classes described in the following overview are
documented more extensively using doxygen comments in the source code.
The components in figure 4.1 form a layered software architecture with the most basic concepts provided by
the core, common and simulator components. The helper component contains cross-layer API enhancements
and thus cuts through the usual stacking. Classes completely outside of the layer architecture are grouped
in the contrib component.
All components rely only on lower software layers. Thus, for example, the simulator and core components
could be used independently for a discrete-event simulator not focused on packet networks. All C++ classes
in ns-3 are enclosed in the namespace ns3, which is usually omitted in this thesis for legibility.

Core This module forms the basis of every ns-3 program by creating a hierarchical C++ class structure
deriving from the base Object. Almost all objects in ns-3 are derived from Object, with some notable
exceptions. This object hierarchy has many features specially geared for simulation purposes. Among
these are smart Ptrs, object aggregation, TypeIds with Attributes, Callbacks and TracedCallbacks.
These concepts are explained in section C.2.

30

4.1 Design Overview

Applications
OnOff PacketSink UdpEcho V4Ping

InternetStack
Routing
GlobalRouting OLSR

Devices
CSMA TapBridge Emu
Bridge PointToPoint Wifi

Node Mobility

Common Simulator
Core

H
elper

C
ontrib

Figure 4.1: ns-3 main components

Furthermore the core also contains a RngStream “combined multiple-recursive” random generator
called “MRG32k3a”, upon which a number of RandomVariables like UniformVariable, Exponen-
tialVariable and NormalVariable are based.
Assertion (NS_ASSERT() and NS_ASSERT_MSG()) and complex logging macros (NS_LOG_ERROR(), NS_-
LOG_WARN() etc) are also defined in this component.

Common Most of this component is centered on the Packet class used for packet-level network simulation.
The current Packet implementation employs a copy-on-write technique: copying packet objects is
cheap because the packet data is not duplicated. Only on the first modification the complete packet is
deeply copied. Another optimization is included for packets in which only the size but not the payload
is important to the simulation, e.g. like packets from traffic generators. These unused bytes are not
allocated in memory; the Packet class pretends to contain a zero-filled buffer, until it is really needed.
Packets are manipulated using classes derived from Header and Trailer. When adding a specific
Header to a packet, the header fields are serialized and prepended to the packet byte buffer. Later
in the simulation, the Header can be removed again and automatically deserialized into the specific
header’s fields.
Aside from augmenting packets with Headers and Trailers, layers in ns-3 can also attach Tags to
packets. Each Tag stores an arbitrary amount of bytes with a packet, but does not add to the packet’s
actual byte buffer. This implies that, if the packet is sent over a real network, any attached Tags are
lost. There are many uses for Tags; the most common ones are cross-layer signaling like QoS tags and
end-to-end application measurements.
Two more network-related classes in this component are DataRate and ErrorModel. DataRate allows
easy specification of byte or bit rates as strings like “54MB/s” or “400kbps”. And the ErrorModel
class can be used to simulate random packet corruption.

Simulator This module enables discrete event simulation. A very important part of the simulation founda-
tion is laid by the Time class. It represents high-precision simulated time points with a 128-bit integer
value. The default smallest non-empty time interval in ns-3 is one nanosecond. Note that in contrast
to using double variables, time computations using integers are exact. Particularly this means that
all time values are equally spaced, all nanosecond values exist and are pairwise different. This is very
unlike time represented with a double variable, because its values are not spaced equally and resolution
depends on the absolute value represented. Fast computation of 128-bit time values requires 64-bit
CPUs, as investigated in section 8.
Using this representation of simulated time, a Simulator coordinating scheduling of Events is built.

31

4 The ns-3 Network Simulator

Application

NetDevice
Channel

Application

NetDevice

Application

NetDevice

Protocol
Stack

Channel

Application

NetDevice

Protocol
Stack

NodeNode

Figure 4.2: ns-3 node architecture (adapted from [10])

There are currently five actual implementations of the scheduling data structure: MapScheduler
(current default), HeapScheduler, ListScheduler, CalendarScheduler and Ns2CalendarScheduler.
There are also two Simulator implementations: standard virtual time progression (DefaultSimula-
torImpl) and time progression synchronized to real system clock time (RealtimeSimulatorImpl).
The function of Simulator most often referenced by other modules is Schedule(), which inserts a new
Event in the queue. Different from ns-2, the called event handler need not be an object derived from
a class Event, which doesn’t exist in ns-3. By using callback facilities provided by the core module,
any class or basic function can be called directly with a list of provided parameters. An example on
using callbacks can be found in section C.1.

Node The node module layouts the simulated network objects into network nodes containing protocols
stacks. This layout closely resembles that of real operating systems.
It defines a Node class which can contain multiple NetDevices. Each NetDevice is attached to a
Channel, via which it sends and receives packets. Figure 4.2 illustrates this architecture for two nodes.
Both NetDevice and Channel remain abstract classes in the node module; specific implementations
are found in the devices component. One basic implementation, however, is included and described
below.
A node may contain multiple protocol handlers, which accept packets received by the NetDevices.
Real Ethernet protocol identifiers (EtherType) are used to switch between handlers.
To initiate packet transmission, each node can also contain a list of Applications. Again Application
remains an abstract class at this level.
In the node component, the binding interfaces between Applications, protocols and NetDevices is
defined. These interfaces are designed to be similar to those in real operating systems. Some Queues
are also defined between the layers.
The interface between Applications and protocols is based on the BSD sockets API. However, instead
of C-style sockaddr structs, ns-3 uses a polymorphic Address class. Only non-blocking calls are
supported by the API. Three Sockets are currently implemented in ns-3: PacketSocket, TcpSocket
and UdpSocket. The simplest is PacketSocket, which sends packet data without extra headers to a
destination via the underlying NetDevice.
And the second interface, between protocols and NetDevices, resembles the basic 802.2 LLC interface.
Packets may be sent to other stations identified by a MAC address and decoded there using an attached
EtherType identifier. The LlcSnapHeader, containing LLC and SNAP encapsulation headers, is added
by the NetDevice.
One actual NetDevice implementation called SimpleNetDevice is included in this module. Together

32

4.1 Design Overview

with SimpleChannel the SimpleNetDevice form a basic packet duplication and distribution with no
particular properties modeled.

Mobility To enable position-aware nodes, this component defines a world geometry. To each node in
the simulation a MobilityModel is aggregated, which maintains world position and velocity of the
node. Currently ns-3 contains seven mobility models: ConstantPositionMobilityModel, Random-
Walk2dMobilityModel, RandomWaypointMobilityModel and more. Only ConstantPositionMobil-
ityModel, which defines fixed positions, is used in this thesis.

Devices Each device defined by these modules must fulfill the NetDevice interface and can be attached to
a node. Most network devices transmit packets via a virtual Channel to other instances of the same
NetDevice class. Five NetDevices are implemented in ns-3.4:

CSMA The CsmaNetDevice class implements a CSMA bus resembling IEEE 802.3 Ethernet. Packets
are transmitted via a CsmaChannel to which other CsmaNetDevices are attached. However, no
specific PHY implementation of 802.3 is used, the supported data rate is defined by setting
a channel attribute. No Ethernet-like collision detection is used or implemented: all devices
instantaneously sense when transmission on the channels starts. If the channel is detected to
be busy upon transmission attempt, an exponentially increasing random backoff algorithm is
invoked.

PointToPoint A simple point-to-point link is implemented using exactly two PointToPointNetDe-
vice, which are connected via a PointToPointChannel. This link is a PPP-like direct link on
which packets are encapsulated with PppHeader.

Emu Using an EmuNetDevice, a ns-3 simulation can communicate with the real outside world via
a network device in the simulation computer. The emulated device fakes MAC addresses using
raw sockets and sets the device to promiscuous mode. Thus the network node simulated in
ns-3 appears to other real network members just like another attached device, different from the
simulation host. Because EmuNetDevice uses raw sockets, simulations using them require root
rights.

TapBridge Similar to EmuNetDevice the TapBridge allows ns-3 to communicate with a real network.
For this the Linux “tap” device is used, which allows an application to drive a virtual network
device in the operating system. Contrary to raw sockets, this does not require root rights.
However, because a “tap” device is an internal network device, communication with the real
world network is only possible via a bridge in the simulation host.

Bridge This component implements a 802.1D BridgeNetDevice to which multiple NetDevice can
be attached. These are grouped and can be used by upper layers like a normal NetDevice.
A learning bridge algorithm forwards incoming packets to the destination host via one of the
outgoing net devices.
Similarly a BridgeChannel class is available, which aggregates multiple Channels and forwards
packets sent on them.

Wifi The wifi module is currently by far the largest network device component. It implements IEEE
802.11 wireless LAN and is the focus of this thesis. Section 4.2 contains a detailed discussion of
the architecture of this model.
In short a WifiNetDevice is defined with resembles a wireless card. Different 802.11 MAC
and PHY layers can be used to simulate the properties of wireless communication protocol and
hardware.

InternetStack Classes in this module define ISO/OSI stack layer three and four protocols. Currently only
IPv4 is supported, an IPv6 implementation is currently in progress.
Main class for IPv4 is Ipv4L3Protocol, performing protocol demultiplexing and packet forwarding
between devices. A high level, Linux-like network device interface is provided by Ipv4Interface.
Routing protocols are plugged in via the abstract class Ipv4RoutingProtocol. Layer 4 transport

33

4 The ns-3 Network Simulator

protocols are attached via the interface Ipv4L4Protocol, which then receive packets tagged with their
IANA-assigned protocol number.
Simplest Ipv4L4Protocol is Icmpv4L4Protocol for ICMPv4 signaling using packets constructed with
Icmpv4Header, Icmpv4Echo, Icmpv4DestinationUnreachable etc.
The TCP implementation in ns-3 is ported from GTNetS [30] and implements the Tahoe TCP variant.
Main class is TcpSocketImpl, which contains TCP handshaking, fragmentation, reordering, retrans-
mission, acknowledgements and all other aspects. Packets are received from the IPv4 layer via the
protocol handler TcpL4Protocol, which uses Ipv4EndPointDemux to demultiplex by IP port numbers.
Similarly the UDP implementation has a IPv4 protocol handler UdpL4Protocol and a socket commu-
nication context UdpSocketImpl.
Both TcpSocketImpl and UdpSocketImpl have abstract super classes TcpSocket and UdpSocket,
which can be used to add other variants. These super classes are themselves descendants of Socket,
which should be regarded as the object-oriented equivalent to the file descriptor in the sockets API.
ARP resolution is managed by the ArpL3Protocol with ArpCache and ArpHeader.

Routing Two routing algorithms are available in ns-3. The first, called GlobalRouter, uses static routes
precomputed using Dijkstra SPF calculations from globally collected link information. The second
implements the Optimized Link State Routing (OLSR) protocol for dynamic ad-hoc networks.

Applications Four Applications are available in ns-3.4. These are installed in Nodes and started/stopped
at specific times in the simulation. An application can create one or more Sockets of different protocol
types. Using these sockets, packets can be sent to other destination sockets, at which the packet
reception is delivered to an application via attached socket callbacks.
The OnOffApplication generates constant bit rate (CBR) traffic to a single destination according
to an alternating on/off pattern. On/Off state durations are determined by two RandomVariables.
During on state, packets of one configured size are generated at a defined data rate. The packets are
sent after a delay of packet-size divided by data-rate. The duration of off state has no effect on the
packet rate in the on state.
At the destination of an OnOffApplication’s packet stream, a PacketSink application is commonly
used to receive packets. Incoming packets can be processed by a trace callback and are subsequently
discarded. Requested TCP connection are accepted and all received data handled like incoming pack-
ets.
The two classes UdpEchoClient and UdpEchoServer form a pair of applications, which send UDP
packets back and forth. The UdpEchoClient generates UDP packets at a configured rate and sends
them to a destination. At that destination a UdpEchoServer can be used to echo the packet back to
the sender.
V4Ping is both a ping program and a ping reflector. It constructs ICMPv4 ping-request packets and
sends them to a destination host. If it receives a ping-request, it will answer with a ping-echo ICMP
packet. Using this exchange, the ping round trip time (RTT) between hosts can be calculated.

Helper Purpose of classes from the helper module is to make building complex simulation scenarios easier.
As it does not define a specific networking layer it stands aside of the previous components, but
contains utilities referencing each of them.
An example use case of the helper API is to create 20 nodes, add a TCP/IP stack and a wifi net device
to each of them. This can be done in about ten lines of code, without losing the option to modify
individual simulation attributes.
Starting point of the helper setup is the NodeContainer class, which keeps track of a list of Nodes.
Each of the network devices listed in the devices module has an associated helper class, which can be
used to create objects in batch mode. For example applying CsmaHelper::Install() to a NodeCon-
tainer creates a CsmaNetDevice on each node. The created NetDevices can in turn be grouped into
a NetDeviceContainer for further batch management.

34

4.2 Architecture of 802.11 Implementation

By using the InternetStackHelper, a complete TCP/IP protocol stack can be added to a set of nodes
with one line of code. Set up of IPv4 addresses can be automated using Ipv4AddressHelper, which
will allocate addresses from configured subnets.
Similarly, routing protocols and mobility models can easily be aggregated to nodes using appropriate
helpers.
Creating Applications is also simplified by different helpers like OnOffHelper, PacketSinkHelper and
PacketSocketHelper. These helpers create an ApplicationContainer set, which can be configured
to start and stop in batch.

Contrib All contributed code not yet incorporated into the main tree is collected in the contrib modules.
It contains code that possibly will become a part of the main tree, if it proves useful enough. In ns-3.4
the contrib model contains following utilities.
The author of this thesis contributed a greatly enhanced collection of Gnuplot classes, which make
generation of gnuplot scripts and datasets from within simulations very easy. Both 2d and 3d plots
are supported. Most plots in this thesis were created using these classes.
A larger framework for collecting and processing statistics from simulation runs is currently in con-
trib/stats. Its goals is to flexibly set up simulation control mechanisms, while simultaneously record-
ing and evaluating statistics from ns-3 simulations. Collecting of events is closely integrated into the
ns-3 tracing system. This enables online calculation of statistical values and makes memory intensive
writing of trace logs needless.
A class called ConfigStore can, in conjunction with FileConfig, be used to conveniently configure
attributes of simulated objects. Configuration values can be loaded from plain text files or special XML
documents. There is also a simple, preliminary gtk+ interface available to browse and set configuration
values with a graphical user interface.

4.2 Architecture of 802.11 Implementation

In this section an overview of the WifiNetDevice architecture is given. It implements 802.11 wireless LAN
and is currently the most complex network device in ns-3.
The implementation of 802.11 was ported to ns-3 from yans [20]. Yans (Yet Another Network Simulator)
was a prototype project by Mathieu Lacage and Tom Henderson. It was developed in conjunction with the
802.11 PHY/MAC model, which was originally destined for ns-2. Many features and design issues were
tested in yans and resulted in ns-3’s architecture.
The wifi component of ns-3 contains a lot of modules and subclasses, in ns-3.4 their total count is 75. A
very condensed summary of the wifi architecture of ns-3 is shown in figure 4.3. The WifiNetDevice is built
up of a number of classes coordinating packet transmission and reception.
In the figure the path a packet takes when traveling through 802.11 device and channel is marked by the solid
lines with arrows. Other dashed lines indicate functional class relationships, however, many dependencies
and class associations are omitted. The following discussion will focus primarily on a single packet’s journey
through the architecture. To decrease complexity, many intermediate class bindings have been omitted from
the discussion.
A new packet enters the wifi layers from upper layers via WifiNetDevice’s generic interface. The packet is
augmented with a standard LLC and SNAP header and sent to MacHigh.
The abstract class MacHigh (actually named WifiMac) is responsible for high level MAC management func-
tions like probing and AP association. There are currently three classes derived from MacHigh, AdhocWifi-
Mac, NqstaWifiMac and NqapWifiMac, each providing different management capabilities. AdhocWifiMac
has no management coordination for ad-hoc networks. NqstaWifiMac represents non-QoS wireless STAs,
which send probes and attempt to associate with an AP. APs are simulated by NqapWifiMac and control
a set of associated stations. When attached to another network, the AP can forward packets to and from
the distribution system (DS). In section 7.2, a new QoS-enabled implementation called QosAdhocWifiMac
is added to support EDCA.

35

4 The ns-3 Network Simulator

W
ifiN

etD
evice

Medium
WifiChannel

PropagationDelayModel

PropagationLossModel

PHY
WifiPhy

InterferenceHelper

ErrorRateModel

MAC MacHigh

DcaTxop

DcfManager

WifiMacQueue
StationManager

MacRxMiddle

MacLow

Figure 4.3: ns-3 802.11 wifi module architecture

All three currently implemented MacHighs forward incoming data packets to a single DcaTxop. Together
with DcfManager, the DcaTxop implements 802.11 DCF, as the names suggest. DcaTxop contains the backoff
counter and requests access to the medium from DcfManager. When granted, it transmits the packet via
MacLow. Prior to transmission, the packet is tagged with a sequence number generated by MacTxMiddle (not
shown in the figure) and possibly fragmented. Transmission parameters as fragmentation and RTS/CTS
exchange threshold are determined by the associated StationManager.
DcaTxop holds one “current” packet until it is acknowledged. If further packets are received from MacHigh,
they are stored in a WifiMacQueue.
All transmission parameters like payload data rate, RTS/CTS exchange, short and long retransmission
counters are controlled by StationManager. Each WifiNetDevice contains only one StationManager in-
stance, which gets signaled about each correct and incorrect packet transmission or reception. Based on this
information, payload data rate is determined according to different rate control algorithms. In ns-3.4 the
rate control algorithms ARF, AARF, AMRR, Onoe and RRAA are implemented together with a constant
and an “ideal” rate manager. Transmission parameters are requested by DcaTxop and MacLow when needed.
DcfManager controls multiple DcaTxops and grants access to the medium according to DCF rules (see
section 2.4.4). The manager processes both physical carrier sense from WifiPhy and virtual carrier sense
indications from MacLow. Accordingly backoff is started and postponed in the associated DcaTxops.
Data packets are pushed to MacLow for transmission. Depending on transmission parameters, MacLow initi-
ates a RTS/CTS exchange prior to sending data and waits for an ACK if required. It signals completion to
both DcaTxop and StationManager. Retransmission is not handled by MacLow due to the backoff required.
The class WifiPhy models the wireless transceiver. In ns-3.4 there is one implementation of WifiPhy:
YansWifiPhy, which models an additive white Gaussian noise (AWGN) channel with cumulative noise using
InterferenceHelper. In InterferenceHelper all incoming packets are recorded, whether they can be
correctly received or not.
Radio signal transmission is modeled by sending a packet onto a WifiChannel, to which multiple other
WifiPhy are connected. WifiChannel delays the incoming packet according to PropagationDelayModel
and then calls all attached WifiPhys. Reception power is modeled by PropagationLossModel and the
calculated value is handed up to WifiPhy.
Depending on the indicated reception power, WifiPhy determines whether it can correctly receive the packet.
This decision is based on ErrorRateModel’s emulation of channel characteristics. These are discussed in
detail in section 6.6.

36

4.2 Architecture of 802.11 Implementation

Correctly received control packets are handled by MacLow. If the packet is a RTS, then MacLow will automati-
cally send a CTS after SIFS. Data packets and management frames are forwarded upwards to MacRxMiddle.
At MacRxMiddle the frame sequence number is checked and duplicate packets are eliminated. Furthermore
MacRxMiddle reassembles fragmented packets and pushes complete ones upwards to MacHigh.
MacHigh handles management frames like probes or association requests according to provided services. All
data packets are forwarded up to higher protocol layers.
In this thesis the PHY layer of ns-3 is enhanced and compared to the corresponding implementation in ns-2.
Furthermore EDCA is implemented and validated by extending DcaTxop and DcfManager.

37

4 The ns-3 Network Simulator

38

Part II

Enhancements

39

Chapter 5

Propagation Model Enhancements

In wireless network simulations maybe the most complex subproblem is emulating the propagation of radio
waves. Much work has been done to grasp the characteristics of antennas, radio wave propagation and
transceivers. Both analytical and empirical approaches are common and lead to different models.
The problem is a very basic one: how does a receiver experience the signal transmitted by a sender. In this
chapter, only aspects of wave propagation are discussed, signal and packet reception criteria are the topic
of following chapters.
Radio signal propagation determines when and with what reception power a signal arrives at a receiver.
For this purpose a wireless simulator requires a model emulating physical effects. This medium model can
become very complex depending on the level of detail targeted. Due to the irregular, chaotic nature of signal
propagation, the level of realism can be varied greatly. Ultimately the employed model granularity must be
adapted to an experiment’s needs.
However, selection of an appropriate propagation model is challenging due to the many factors which influ-
ence signal propagation. Moreover, the model’s properties has decisive impact on a simulation’s outcome
and may mean the difference between success and failure.
Depending on a model’s granularity different effects are taken into account. Signal propagation is highly
dependent on the environment, which may change constantly. To make experimental results comparable,
reference scenarios must be designed carefully. Again, the scenario or environment modeling can be done
with different levels of detail. Simple models may completely ignore mobility and simulate a static or
momentary static world. Other more elaborate models can take sender and receiver motion into account
and emulate effects of their movement.
A high level of detail can be achieved with ray tracing of the signal, its diffraction and reflexions. This implies
a highly detailed model of the environment and may also take motion into account. However, bit- and even
packet-level signal ray tracing are both computationally expensive and only usable for small experiment
setups.
Greater abstraction is gained by using probabilistic models, which are based on empirical measurements
or analytic considerations. Environmental influences and mobility are approximated in simulation using
pseudo-random values generated with specially crafted probability distributions. Depending on the desired
environment characteristics, different probability distributions and parameters can be used to estimate re-
ception signal strength. Computationally this is much less intensive than ray tracing, but makes experiments
depend on random values.
Simpler than probabilistic models are deterministic propagation formulas. The reception power is derived
by an equation based on an analytic environment model. This model can range from an empty free-space
world to include multi-ray effects with directional motion.
In ns-3, three deterministic propagation loss models and one with random start values were available. For
this thesis a true probabilistic model was ported from ns-2. All these models are discussed and compared in
the following two sections. Per packet only one reception power is calculated for the whole signal duration.
Section 6.8 discusses the consequences of this approach and how packet reception is determined.

41

5 Propagation Model Enhancements

-100

-80

-60

-40

-20

0

0 500 1000 1500 2000

A
tt

en
ua

tio
n

(d
B

)

Distance (m)

Path Loss

-40

-20

0

20

40

0 500 1000 1500 2000

A
tt

en
ua

tio
n

(d
B

)
Distance (m)

Shadowing

-40

-30

-20

-10

0

10

0 500 1000 1500 2000

A
tt

en
ua

tio
n

(d
B

)

Distance (m)

Fast Fading

-160

-120

-80

-40

0

0 500 1000 1500 2000

A
tt

en
ua

tio
n

(d
B

)

Distance (m)

Total

Figure 5.1: Composition of different scale propagation loss effects

5.1 Propagation in ns-3

Propagation in ns-3 is computed within the WifiChannel class. Packets are pushed to the WifiChannel from
connected WifiPhy objects as shown in figure 5.2. In ns-3.4 there is only one implementation of both classes:
YansWifiChannel and YansWifiPhy. In this thesis a second pair is added, called Ns2ExtWifiChannel and
Ns2ExtWifiPhy, which provide equal characteristics as ns-2’s extended implementation. Both channel im-
plementations, YansWifiChannel and Ns2ExtWifiChannel, are identical and are only distinguished because
of C++ type checking.

Packets are pushed to WifiChannel together with their transmission power (txPower). For each attached,
receiving WifiPhy, signal delay and attenuation is calculated in associated classes PropagationDelay-
Model and PropagationLossModel. Most experiments will used a propagation delay model called Con-
stantSpeedPropagationDelayModel, which calculates the delay proportional to distance d: tdelay = d

c
where c = 300× 106 m

s .

The distance of sender and receiver is represented in ns-3 using MobilityModel. As the name suggests,
this class describes mobility of a Node and different motion patterns are provided by derived subclasses.
For signal propagation modeling, the current position and velocity can be requested as three dimensional
vectors.

The deterministic and probabilistic propagation loss models in ns-3 can be classified by the environmental
effects they capture (see figure 5.1). The most basic signal attenuation, caused by the distance between
sender and receiver, is called path loss. Second largest effect in scale is called shadowing, which arises
from superposition of reflections from obstacles and other large-scale objects. Typically signal variation
due to shadowing occurs in ranges of ten to hundred meters. However, also small distance changes on the
scale of wavelengths can have great influences on signal reception. These are represented using fast fading
probabilistic propagation loss models, which are generally distance-invariant but time-variant.

42

5.2 Basic Propagation Loss Models

WifiChannel

txPower

PropagationDelayModel PropagationLossModel

rxPower

WifiPhy

rxPower

WifiPhy

rxPower

WifiPhyWifiPhy

Figure 5.2: Propagation modeling with WifiChannel

5.2 Basic Propagation Loss Models

In ns-3.4 five propagation loss models are available. These models can be chained to form a composite
model emulating multiple effects. Because currently no shadowing model exists in ns-3, the most common
composition is a path loss model followed by a fast fading model.
Three different path loss models are available. The simplest, FriisPropagationLossModel, computes the
free-space attenuation after Friis [7] using a modernized equation [29, p. 107]:

Pr
Pt

= GtGrλ
2

(4πd)2L
(5.1)

where Pr is reception and Pt transmission power in watt, Gt and Gr dimensionless transmission and reception
antenna factors, L a general dimensionless system loss coefficient, λ the wavelength and d the distance in
meters.
This equation can be solved by d to calculate distance depending on all other parameters.

d = λ

4π

√
PtGtGr
PrL

(5.2)

Some values of d are calculated for common WLAN frequencies, transmission and reception powers in
table 5.1. The coefficients L, Gt, Gr are all set to 1. λ is determined by c

f with f being different WLAN
frequencies and c = 300× 106 m

s the speed of light.
The second propagation loss model available in ns-3 is called LogDistancePropagationLossModel and
implements path loss using the following equation 5.3 [29, p. 138]. The log-distance path loss model is
usually expressed in dB or dBm (see section A.1 for a note on decibel) and depends on an exponent
parameter. This parameter can be determined for different environments by empirical measurements. The
equation also requires a reference distance and path loss at that position; in ns-3 the free-space path loss at
1m with 5.15GHz (equaling −46.67dB) is used by default. With this reference loss model and exponent 2
the log-distance model is equivalent to the free-space model.

L = L0 + 10 · n · log10

(
d

d0

)
(5.3)

where L is the resulting path loss in decibel, n the distance exponent, d the transmission and d0 the reference
distance in meters and L0 the loss at d0 in decibel.
Similarly the log-distance equation can be solved by d to calculate ranges for specific reception power
thresholds. Log-distance ranges are tabulated together with free-space ranges for the same parameters in
table 5.1.
For this thesis a third path loss model was added to ns-3, named ThreeLogDistancePropagationLossModel,
and is already available in the official ns-3.4 release. It is a variant of the log-distance path loss model with
three distance fields. In each field a different path loss exponent is used.

43

5 Propagation Model Enhancements

Pt Pr

Free-space range Log-distance range with
with λ = c

f at 2.54GHz 5.15GHz
2.54GHz 5.15GHz 5.9GHz n = 2 n = 2.5 n = 2 n = 2.5 n = 3

5 dBm -82 dBm 210m 104m 91m 210m 72m 104m 41m 22m
10 dBm -82 dBm 374m 185m 161m 374m 114m 185m 65m 32m
20 dBm -82 dBm 1183m 584m 509m 1183m 287m 584m 163m 70m
5dBm -94 dBm 838m 413m 361m 838m 218m 413m 124m 55m
10 dBm -94 dBm 1490m 735m 641m 1490m 346m 735m 196m 81m
20 dBm -94 dBm 4711m 2323m 2028m 4711m 868m 2323m 493m 175m

Table 5.1: Free-space and log-distance reception range for common parameters

This model is based on the code contributed to ns-2 by the DSN: the contributed Nakagami propagation
model contains this three-field as path loss model, to which a Nakagami-shaped fast fading loss is added.
For ns-3 these two combined models were separated and can be used and configured individually. Nakagami
propagation loss modeling is discussed in the next section.
The three-log-distance model has three distance fields: near, middle and far. Actually a fourth interval is
also defined from 0 to the first reference distance. In this invalid field the attenuation is set to 0. The
distance boundaries are named as described in following sequence.

0 · · · · · ·︸ ︷︷ ︸
=0

d0 · · · · · ·︸ ︷︷ ︸
n0

d1 · · · · · ·︸ ︷︷ ︸
n1

d2 · · · · · ·︸ ︷︷ ︸
n2

∞

In each field, the log-distance equation 5.3 is used with a different exponent ni. Each field’s reference loss
distance (d0 in equation 5.3) is set to the end of the previous field and reference loss calculated accordingly.
Through this composition method, the complete equation 5.4 forms a continuous function of d.

L =

0 d < d0

L0 + 10 · n0 log10(dd0
) d0 ≤ d < d1

L0 + 10 · n0 log10(d1
d0

) + 10 · n1 log10(dd1
) d1 ≤ d < d2

L0 + 10 · n0 log10(d1
d0

) + 10 · n1 log10(d2
d1

) + 10 · n2 log10(dd2
) d2 ≤ d

(5.4)

with d propagation distance in meters, d0, d1, d2 the three distance field boundaries in meters, n0, n1, n2
the dimensionless path loss exponents of the three valid fields and L0 the propagation loss in decibel of the
reference model at d0.
For ns-3.4 the default values of ns-2 were adopted: d0 = 1m, d1 = 200m, d2 = 500m, n0 = 1.9, n1 = 3.8,
n2 = 3.8 and reference loss L0 = 46.67 dB, which is the free-space path loss at 1m with 5.15GHz. All
parameters are exported by the class as attributes and are easily changed using ns-3 configuration tools.
In figure 5.3 the reception power of the three deterministic path loss models are plotted for 20 dBm transmis-
sion power. Each model is plotted with default parameters as defined by the model’s implementation. For
LogDistancePropagationLossModel a second plot with exponent 2.5 is included. And for ThreeLogDis-
tancePropagationLossModel a second data line with exponents 1.0, 3.0 and 10.0 was added to highlight
the three distance fields 1m · · · 200m · · · 500m · · ·∞.

5.3 Further Models in ns-3.4

Two further propagation loss models are included in ns-3.4: RandomPropagationLossModel and Jakes-
PropagationLossModel.
Propagation loss in RandomPropagationLossModel is determined by a random number generator following a
specific random distribution. In conjunction with one of ns-3’s random distribution ExponentialVariable,
NormalVariable or WeibullVariable this model can be used to add probabilistic attenuation. However,

44

5.4 Nakagami-m Fast Fading

-140

-120

-100

-80

-60

-40

-20

0

20

0 500 1000 1500 2000 2500

R
ec
ep

tio
n
po

we
r
(d
Bm

)

Distance (m)

Friis
LogDistance (defaults)

LogDistance (exponent 2.5)
ThreeLogDistance (defaults)

ThreeLogDistance (exponents 1.0, 3.0 and 10.0)
-94 dBm Carrier Sense Threshold

Figure 5.3: Three deterministic propagation loss models in ns-3 (transmission power 20 dBm)

Rayleigh and Nakagami fast fading cannot be represented with this class; the new NakagamiPropagation-
LossModel should be used.
JakesPropagationLossModel is named after William Jakes, who described it in a textbook on mobile
communications [18]. It approximates a Rayleigh fading channel by summing sinoids representing multiple
rays arriving at the receiver. The sinoids’ initial phase is randomly distributed and advances with simulated
time. When calculating the superposition of all sinoids, a predefined Doppler shift is added to the phases
to simulate node movement.
These two models are not in the scope of this thesis and only mentioned for the sake of completeness.

5.4 Nakagami-m Fast Fading

To lay an equal basis for later work, the propagation loss models of ns-2 and ns-3 were compared. In this
context the Nakagami propagation model, contributed to ns-2 by the DSN, was ported to ns-3 and verified.
Nakagami fast fading is a modification of the standard Rayleigh fast fading model, described in many
standard textbooks on wireless communication [9, 29, 33]. Both are statistical models of time-variant, multi-
path signal fading, which describes the superposition effect of multiple radio propagation rays reaching a
receiver by different paths. Rayleigh fast fading describes a model in which an infinitely large number of
independent rays reach the receiver. Due to the central limit theorem their amplitude and phase can be
regarded as normally distributed. The signal envelope is then the norm of a complex Gaussian random
variable (both components independent normal variables). This envelope follows the Rayleigh probability
distribution, which can be defined as

pRay(x;ω) = 2x
ω
e−

x2
ω (5.5)

where ω > 0 is a spread parameter. For signal strength calculations, the spread parameter is set to the
average receive power in watt before fast fading.
Nakagami fading is a more general fast fading model, which includes Rayleigh fast fading as a special
case. It can be tuned with a shape parameter m to better approximate propagation properties of different
environments. In a channel with Nakagami fading properties, the signal envelope follows the Nakagami-m

45

5 Propagation Model Enhancements

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

α = 1.0, β = 1.0
α = 1.5, β = 1.0
α = 2.0, β = 1.0
α = 4.0, β = 1.0
α = 2.0, β = 2.0
α = 2.5, β = 3.0
α = 2.5, β = 4.5

(a) GammaVariable

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

k = 1, λ = 1.0
k = 2, λ = 1.0
k = 3, λ = 1.0
k = 5, λ = 1.0
k = 2, λ = 2.0
k = 2, λ = 3.0
k = 2, λ = 5.0

(b) ErlangVariable

Figure 5.4: Histograms of new ns-3 random distributions

distribution, which has the following probability density function.

pNak(x;m,ω) = 2x2m−1m
me−

m
ω
x2

ωmΓ(m) (5.6)

where m ≥ 0.5 is the shape, ω > 0 a spread parameter, and Γ(x) =
∫∞

0 tx−1e−t dt the gamma function. For
m = 1 the Nakagami distribution is equal to the Rayleigh probability distribution.
The Nakagami distribution is closely related to the gamma distribution, which is typically defined with the
following probability density function. Other definitions with different parameter names are also common
and equivalent.

pGamma(x;α, β) = xα−1e−
x
β

βαΓ(α) (5.7)

with α > 0 a shape, β > 0 a scale parameter and Γ(·) the gamma function. For integer values of α the
Γ(n) function is equal to the factorial (n− 1)! and in this special case the gamma distribution is also called
Erlang distribution. This random distribution is equal to the sum of k independent exponentially distributed
random variables and has the probability density function

pErlang(x; k, λ) = xk−1e−
x
λ

λk(k − 1)! (5.8)

with k > 0 an integer shape parameter and λ > 0 a rate parameter. Obviously equation 5.8 is equal to
equation 5.7 for k = α and λ = β. Both gamma and Erlang distributions are plotted in figure 5.4 for some
example parameters.
Simulation of Nakagami fast fading focuses on generating random samples depending on the average recep-
tion power before fading. Reception power after fast fading is derived from equation 5.6 by substituting
variables x → x2 and thus the square root of a Nakagami random variable has following density function,
which can be represented using the gamma distribution:

pNak(x2;m,ω) = xm−1
(
m

ω

)m e−
m
ω
x

Γ(m) = pGamma

(
x;m, ω

m

)
(5.9)

Note that during the variable substitution, dx2 = 2x is divided from the probability density function, to
keep the function’s area normalized to 1. So it is possible to simulate Nakagami-m fast fading channel
properties using gamma variates generated with the parameters above.
For this purpose both gamma and Erlang distribution generators were ported from ns-2 to ns-3 and are
available as GammaVariable and ErlangVariable. The core code of the gamma variate generator in ns-2

46

5.5 Implementation and Verification

Object WifiChannel

PropagationLossModel
CalcRxPower(txPowerDbm: double, a: Ptr<MobilityModel>, b: Ptr<MobilityModel>): double
SetNext(next: Ptr<PropagationLossModel>): void
DoCalcRxPower(txPowerDbm: double, a: Ptr<MobilityModel>, b: Ptr<MobilityModel>): double

FriisPropagationLossModel
m_lambda: double
m_systemLoss: double
DoCalcRxPower(txPowerDbm: double,
 a: Ptr<MobilityModel>,
 b: Ptr<MobilityModel>): double

RandomPropagationLossModel
m_variable: RandomVariable
DoCalcRxPower(txPowerDbm: double,
 a: Ptr<MobilityModel>,
 b: Ptr<MobilityModel>): double

ThreeLogDistancePropagationLossModel
m_distance0: double
m_distance1: double
m_distance2: double
m_exponent0: double
m_exponent1: double
m_exponent2: double
m_referenceLoss: double
DoCalcRxPower(txPowerDbm: double,
 a: Ptr<MobilityModel>,
 b: Ptr<MobilityModel>): double

NakagamiPropagationLossModel
m_distance1: double
m_distance2: double
m_m0: double
m_m1: double
m_m2: double
m_erlangRandomVariable: ErlangVariable
m_gammaRandomVariable: GammaVariable
DoCalcRxPower(txPowerDbm: double,
 a: Ptr<MobilityModel>,
 b: Ptr<MobilityModel>): double

m_next

Figure 5.5: UML diagram of propagation loss mode classes

and ns-3 is based on a fast algorithm devised by Marsaglia and Tsang [23], which is based on only normal
and uniform random variates. Because the Erlang distribution is a special case of the gamma distribution,
GammaVariable can be used instead of ErlangVariable. However, a variate of an Erlang distribution can
be generated much faster using k exponential variates than using the more general gamma algorithm.
The histogram plots in figure 5.4 were generating using ns-3’s implementation of both random distribution
generators. Their shape match the theoretical curves exactly.

5.5 Implementation and Verification

As described in the last section, two new random distributions were added to ns-3 to simulate Nakagami
fast fading. A new propagation loss model class, called NakagamiPropagationLossModel, was added and
implemented using the two new RandomVariables. The Unified Modeling Language (UML) diagram in
figure 5.5 shows the new propagation loss model in context with some of the others previously mentioned.
For compatibility with the ns-2 implementation, NakagamiPropagationLossModel also supports different
m parameters depending on distance. To match ns-2, three distance fields are used with three m parameters
as follows

0 · · · · · ·︸ ︷︷ ︸
m0

d1 · · · · · ·︸ ︷︷ ︸
m1

d2 · · · · · ·︸ ︷︷ ︸
m2

∞

The default values of range boundaries and m parameters were retained from ns-2. They are d1 = 80m,
d2 = 200m, m0 = 1.5 and m1 = m2 = 0.7.
Within these fields, fast fading is calculated using GammaVariable or ErlangVariable according to equa-
tion 5.9 with ω the original reception power in watt.
The UML diagram in figure 5.5 shows how PropagationLossModel classes work together. The wifi channel
object contains an association to only one propagation loss object and calls CalcRxPower() with the original

47

5 Propagation Model Enhancements

transmission power and two node mobility models. Within CalcRxPower() the virtual function DoCalcRx-
Power() is called to perform the first model’s calculations. Afterwards, if m_next is defined, the chained
propagation loss model is invoked with the current model’s results. This way each propagation loss model
can add any kind of propagation loss (not only additive loss) as done by the Nakagami model.
By chaining ThreeLogDistancePropagationLossModel and NakagamiPropagationLossModel a propaga-
tion loss model can be created which is equivalent to Nakagami propagation in ns-2.
To verify the implementations of ThreeLogDistancePropagationLossModel, GammaVariable, ErlangVari-
able and NakagamiPropagationLossModel in ns-3, a simulation scenario was created with ns-2.33 and all
Nakagami propagation loss values saved directly from the function Nakagami::Pr() in ns2/mobile/naka-
gami.cc. The simulation scenario was a simple two nodes experiment and is described in section 6.7.1. The
taken Nakagami probes are plotted as a histogram in figure 5.7, which will be explained together with a
corresponding one from ns-3.
In ns-3 direct access to the propagation loss models is easier than in ns-2, because no complete simulation
needs to be built. A sample program (main-propagation-loss.cc) was contributed to ns-3, which plots
all propagation loss models with default and modified parameters. It is meant to be a reference for wireless
simulation users. In all plots a transmission power of 20dBm =̂ 0.1mW is used.
Figure 5.6(a) shows a first histogram of the reception power returned by an instance of NakagamiPropa-
gationLossModel with default parameters as tested by the sampling program. In the second figure 5.6(b)
ThreeLogDistancePropagationLossModel is chained with NakagamiPropagationLossModel.
All three figures 5.6(a), 5.6(b) and 5.7 show probability histograms as a 3D plot with distance and power
as x and y axis. For each node distance 100 – 2 500m with 100m steps the reception power distribution is
plotted as a curve slice. Thus the area below each distance slice is 1.
Note that in the plain NakagamiPropagationLossModel diagram in figure 5.6(a), all curve slices are equal,
because Nakagami fast fading does not vary with distance. When path loss is added in figure 5.6(b)
the skewed bell curves move to smaller reception power values. The probability bell curves follow the
deterministic three-field log-distance path loss curve shown at the plot’s base. This three-field log-distance
curve is identical to the corresponding one in figure 5.3.
Comparison of figure 5.7 and figure 5.6(b) and further verifications during implementation yield conclusive
evidence that the Nakagami propagation model in ns-3 gives results equal to ns-2.
All 3D plots show only the Nakagami curves for the default m = 0.75 parameter. The power probability
curves of some further, common m parameters are plotted in figure 5.8. For m = 1.0 the curve represents
Rayleigh fast fading power probability. Higher m parameters allow less power spread and thus will decrease
outlier packet reception probability.

48

5.5 Implementation and Verification

Nakagami (default m = 0.75)

500

1000

1500

2000

2500

Distance (m)

-60 -50 -40 -30 -20 -10 0 10 20 30 40
rxPower (dBm)

0
0.01
0.02
0.03

0.04
0.05
0.06

0.07
0.08

Probability

(a) Only NakagamiPropagationLossModel with 20 dBm transmission power

ThreeLogDistance + Nakagami (default m = 0.75)
ThreeLogDistance

500

1000

1500

2000

2500

Distance (m)

-200 -180 -160 -140 -120 -100 -80 -60 -40
rxPower (dBm)

0
0.01
0.02
0.03

0.04
0.05
0.06

0.07
0.08

Probability

(b) ThreeLogDistancePropagationLossModel and NakagamiPropagationLossModel
chained with 20 dBm transmission power.

Figure 5.6: Nakagami propagation loss model in ns-3

49

5 Propagation Model Enhancements

ns-2 Nakagami (defaults)

500
1000

1500
2000

2500

Distance (m)

-200 -180 -160 -140 -120 -100 -80 -60 -40rxPower (dBm)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Probability

Figure 5.7: Reception power histogramm from ns-2 Nakagami propagation model

0

0.005

0.01

0.015

0.02

0.025

-5 0 5 10 15 20 25 30 35

Pr
ob

ab
ili
ty

rxPower (dBm)

m=0.75
m=1.0
m=2.0
m=3.0
m=5.0

Figure 5.8: Nakagami-m reception power distribution for different m parameters

50

Chapter 6

PHY Layer Enhancements

In the last chapter propagation loss models in ns-2 and ns-3 were compared. They are the basis for modeling
a radio channel, which is used as transmission medium in wireless networks. This chapter discusses how
this radio channel is modeled in ns-2 and ns-3. Finally, enhancements made to ns-3’s model are described
and verified against simulations in ns-2.
Medium layer (radio channel) and physical layer (802.11 PHY) are very challenging to model in a discrete
event packet simulator. Radio channel and transceiver module are part of the physical world and thus do
not follow a set of strict logic rules like a protocol or network application. Behavior of the radio channel is
generally grasped using a simplified mathematical model and statistical methods are employing to simulate
different propagation effects. Likewise, the radio chipset’s signal reception and decoding mechanisms are
captured by models with different degrees of detail. For purposes of packet simulation, the employed models
are sufficiently simplified to allow viable implementations and fast simulations.
Radio propagation is modeled by the medium layer, which describes a radio communication channel. This
channel can have different properties depending on surrounding environment. Channel properties are repre-
sented in ns-2 and ns-3 using propagation delay and loss models as described in section 5. Unlike reality, the
channel model in ns-2/3 currently does not exhibit interference or other multi-packet effects, instead it boils
down to a packet distribution class, which calculates reception power for each wireless receiver independent
from other packets.
Emulation of interference is left to PHY layer models, which represent the radio transceiver in a wireless
LAN card. The 802.11 wireless LAN defines multiple PHY layers (see section 2.3), which all have different
transmission methods and even different media. Different from a real 802.11 chip set, in ns-2/3 the PHY layer
model ultimately determines whether a packet was received correctly. In modeling this reception decision,
the range of transceiver characteristics that can be taken into account is very large. These characteristics
are not part of the 802.11 standard, but differ between wireless chipsets and determine their quality.
The PHY layer implementation of ns-2.33 (WirelessPhyExt) and ns-3.4 both currently contain cumulative
noise and interference modeling. ns-2 contains a SINR-based reception criterion and supports the frame
capture effect. In this chapter these ns-2 implementations are compared to ns-3’s 802.11 code, which
simulates reception using a BER/PER criterion and lacks frame capture. For this thesis, the SINR reception
criterion and frame capture effect were ported to ns-3.

6.1 Modeling the Transceiver

As mentioned in this chapter’s introduction, packet interference modeling is not handled by the channel
implementation, but left to the PHY layer code.
The foundation of all interference calculations is the additive white Gaussian noise (AWGN) channel. It
adds a Gaussian distributed noise level to all signals. By augmenting this very basic channel model with
the propagation loss models from section 5, different environments can be simulated. When multiple signals
are transmitted simultaneously, their interference must be calculated for correct reception modeling.

51

6 PHY Layer Enhancements

In the discrete event simulators ns-2/3, the continuous statistical noise level of a AWGN channel is modeled
using a constant noise floor level. In ns-3 this noise floor is calculated from thermal noise at 290K depending
on channel bandwidth. For comparison with ns-2, code was added to set the noise floor to a configurable
constant value. In all following experiments a constant noise floor of -99 dBm is used.
For each packet sent on the channel, the propagation loss model calculates one reception signal strength
from the original transmission power. Without interference the reception power remains constant for the
complete duration of the packet. This is a great simplification compared to real radio channels, which will
vary constantly under influence of noise and fluctuation of transmission or reception quality. In discrete-event
simulations these effects must be emulated using statistical propagation loss models.
When two packets are transmitted simultaneously, they will interfere at a common receiver. See figure 6.1
for a quantitative diagram of two packets as received at one listening node. Diagram (a) shows the constant
noise floor, in diagrams (b) and (c) two packet signals are illustrated as experienced individually at the
receiver. The total power on the channel received by the listener is shown in diagram (d): the power of both
signals and noise are added up as superposition of all radio waves.
If the destination wants to receive signal A, other signals must be considered as interfering noise. This
cumulative noise, relative to signal A, consists of the noise floor and signal B as shown in figure 6.1(e). Vice
versa for signal B, the cumulative noise is the sum of noise floor and signal A.
From noise, interference and signal power the signal to interference and noise ratio (SINR), sometimes also
called SNIR, can be calculated. It is an important quantity describing signal strength and used in reception
criteria. The SINR for signal i is defined as

SINRi = Pi
Nf +∑

j 6=i Pj
(6.1)

for Nf the noise floor in watt and Pi the power of each simultaneously received signal in watt. Note that
SINR is a dimensionless ratio of two power quantities. Usually the SINR is given in dB (see section A.1).
Even though the quotient in equation 6.1 can never become negative, its value in dB is negative for ratios
below 1.
In figure 6.1(g) the SINR values of both signals are plotted in dB. During interference of both signals, the
SINR values drop below 0 dB and transmitted bits will probably be received incorrectly.

6.2 Implementation of Cumulative Noise

Cumulative noise and SINR calculations, as explained in the previous section, are implemented in both ns-2
by the DSN and in ns-3. Both implementations were analyzed carefully and despite using different methods
were determined to deliver equivalent results.
To implement cumulative noise in discrete-event simulators, the power determined at each packet’s arrival
event must be simulated to extend for the signal’s complete duration. From these packet indication events
the instantaneous total power on the channel must be calculated.
In ns-2.33 the component named PowerMonitor is used to keep track of all packet signals currently received.
This is done using a single powerLevel variable, which is initialized with the noise floor. At each packet’s
arrival time the reception power is added to powerLevel. The corresponding subtraction is done by an event
scheduled to occur at the packet signal’s end time. Thus powerLevel contains the instantaneous power on
the channel.
In ns-3 cumulative noise is handled by the InterferenceHelper class. For each received packet signal an
entry in a list is created. The entry contains arrival time tstart,i, end time tend,i, reception power Pi, packet
size and more parameters. The list is sorted by start time. See figure 6.2 for an illustration of the list, with
each rectangle representing a packet entry.
From this list the instantaneous interference can be calculated by summing all entries overlapping the current
time. However, for the bit error rate (BER)/packet error rate (PER) reception criterion used in ns-3, the list
structure can also be queried for all interference changes during a packet’s transmission interval. Between

52

6.2 Implementation of Cumulative Noise

Time

(a) Noise

(d) Total
Time

Po
w

er
(W

)
Po

w
er

(W
)

Po
w

er
(W

)

Time
Interference for A

(e) Signal and

Time

Po
w

er
(W

)

Interference for B
(f) Signal and

Time
(g) SINR for Signal A and B

SI
N

R
(d

B
)

Time

Po
w

er
(W

)

(b) Signal A

(c) Signal B
Time

Po
w

er
(W

)

Figure 6.1: Noise, signal, interference and SINR

53

6 PHY Layer Enhancements

Pi

tend,itstart,i

Time

Figure 6.2: ns-3 InterferenceHelper event list

H
Time

PAYLOAD

Threshold

SI
N
R

(d
B)

Figure 6.3: SINR threshold reception criterion

each change, the interfering power level remains constant. How BER/PER values are calculated for these
intervals is explained in section 6.6. As simulated time progresses, entries no longer necessary are removed
from the list.

6.3 SINR Reception Criterion

The WirelessPhyExt implemented in ns-2 by the DSN uses a SINR threshold criterion to determine packet
reception. This criterion emulates verification of the CRC32 checksum in the trailer of each 802.11 frame.
Only by computing this checksum can a wireless receiver determine whether the packet was correctly re-
ceived.
The SINR reception criterion states that a packet is correctly received if its SINR value remains above a
configured threshold for the complete packet duration (see figure 6.3). This threshold depends on the wireless
modulation mode employed, faster modulations require higher SINRs for correct reception. Since header
and payload of a 802.11 frame are encoded using different modulation schemes, different SINR thresholds
apply to header and payload. The thresholds used in ns-2.33 for four basic 802.11a modulation schemes (see
section 2.3.2) are shown in table 6.1.
During reception of a frame, the SINR value may change due to interference. In ns-2/3 discrete-event

Keying Defaults in ns-2.33 Updated in ns-3
BPSK 4dB 5dB
QPSK 7dB 8dB

16-QAM 12dB 15 dB
64-QAM 20dB 25 dB

Table 6.1: ns-2 SINR thresholds and new ns-3 values

54

6.4 Frame Capture Effect

Receiver
without frame capture

Receiver
with frame capture

Time

-90

-100

Time

-80

-100

Time

-80

-90

-100

20

10

0

-10

Time

IDLE RX BUSY IDLE

IDLE RX IDLERX

RxError

RxError

RxOk

+

T
hr
es
ho

ld

Po
we

r
(d
Bm

)
SI
N
R

(d
B)

P
ow

er
(d
B
m
)

P
ow

er
(d
B
m
)

Figure 6.4: Capture effect with two packets

simulations these changes are always marked by the beginning or ending of a simultaneously transmitted
signal. At each such time point the SINR must be recalculated and compared to the current threshold.

6.4 Frame Capture Effect

The so called capture effect is a feature of modern wireless chipsets to “switch” to a stronger signal during
the reception phase of a weaker frame [32].
This situation occurs when the transceiver is receiving a relatively weak signal, which is subsequently jammed
by a stronger frame’s signal as illustrated in figure 6.4. Due to the additional interference, the SINR of the
first packet drops and correct reception will fail.
If the receiver does not support frame capture, it will stay tuned to the weak signal and determines at the
frame’s end that the received data is corrupt. Since only one signal can be received simultaneously, the
stronger frame is lost.
A more intelligent receiver supporting frame capture determines that reception is impossible and indicates
an error immediately. Instead of continuing to listen to the weak signal, it will tune to the stronger frame
and correctly receive it.
The decision whether to switch signals is determined by a frame capture policy. In the ns-2 implementation,
two conditions must hold for frame capture to be triggered. First the SINR of the weaker frame must drop
below the specific reception thresholds (table 6.1). Secondly the stronger signal must reach a configurable

55

6 PHY Layer Enhancements

TX

IDLE PreRX

RX

Preamble
detected

strength for preamble detection
Frame arrives with insufficient signal PreRX failure due to

subsequent interference Preamble capture for
a new incoming frame

TX command
from MAC

RX finished

Frame body capture for
a new incoming frameTX finished PreRX success

Figure 6.5: ns-2 WirelessPhyExt state diagram (adapted from [2])

SINR capture threshold. During preamble reception of the weaker frame, this SINR threshold is by default
5 dB and during payload reception 10 dB. The first case is also called “preamble capture” and the second
case “data capture”, thereby describing during which phase the weaker packet was discarded. Note that
interference in the SINR value of the stronger signal contains the power of the weaker packet.
For ns-2, the name “preamble” capture is not correct, because the default duration value in ns-2.33 also
includes the PLCP header (see figure 2.2). Strictly speaking this is not part of the OFDM preamble, and
thus the case should be called “header” capture. For sake of recognition, the ns-2 nomenclature was retained.

6.5 Implementation Issues

Implementation of the SINR reception criterion is based on cumulative noise calculation as described in
section 6.2. From cumulative noise and the synchronized signal power level, the SINR can be calculated.
For successful reception, the SINR must remain above a rate-dependent threshold for the whole packet’s
duration.
In discrete event simulation as ns-2/3, SINR of a received packet only changes at interfering packets’ begin-
ning or end time points. Because the received packet’s SINR can only become lower at interfering packet
arrival times, packet end time points need not be considered.

6.5.1 ns-2 Implementation

In ns-2, the WirelessPhyExt class function sendUp() is called for each packet arrival event. At these time
points, the simulated PHY state may change according to the state machine in figure 6.5.
When the PHY is idle, reception of a new incoming packet may commence if the calculated SINR is above
the configured header reception threshold. In this case, the PreRX state is entered and an event is scheduled
to occur after the frame header’s duration. This event handler checks that the SINR of the frame payload is
above the payload reception threshold, which is possibly higher due to a faster modulation rate. If successful,
the RX state is entered and a finishing event is scheduled. This finishing event checks whether the packet
was flagged as faulty and either discards or passes the packet up to higher layers.
As required by 802.11 half-duplex transceivers, during packet transmission in the TX state no packet may
be received.
To correctly implement the SINR reception criterion, changes in SINR levels must be checked. Because
changes can only occur when an additional signal is detected, SINR checks can be done in the sendUp()
function. These additional events occur during the waiting intervals between the transition events of the
usual IDLE→PreRX, PreRX→RX, RX→ IDLE sequence. If the PHY’s state is PreRX or RX, the current
packet’s SINR level must be rechecked to exceed the corresponding threshold in presence of the additional
interfering signal. If the threshold is not reached, the incoming packet is marked with an error flag.
Frame capture is implemented in the state machine as changes to the usual event sequence. If an additional
frame is received during the PreRX state, preamble frame capture may be triggered if the incoming frame’s
SINR reaches the required value. However, switching to the new packet can only occur if the currently
received frame’s SINR drops below the required reception threshold. Similarly, in RX state a new signal
may trigger data capture if its SINR reaches the required level and the currently received packet drops below

56

6.5 Implementation Issues

IDLE RX

TXCCA_BUSY

SwitchMaybeTo-
CcaBusy()
updates m_cca-
Busy and expires
automatically via
LogPreviousI-
dleAndCcaBusyS-
tates().

Sam
e a

s ID
LE

wit
h

cc
aB
us
y >

No
w.

Begin transmission.

Not explicitly disallowed.

If m_ccaBusy > Now.

If m_ccaBusy ≤ Now().

SwitchToRx()
upon packet reception.

Via SwitchFromRxEndOk() or
SwitchFromRxEndError().

Assumes implicit
reception cancel-
lation by caller.

Figure 6.6: State transitions of WifiStateHelper

the acceptable reception threshold. If packet capture is triggered, the state switches back to PreRX with a
new current packet.
The ns-2 implementation uses a strict state machine implementation following the corresponding diagram
(figure 6.5) and each event transition is described in detailed Specification and Description Language (SDL)
diagrams [2].

6.5.2 Porting to ns-3

For this thesis the SINR reception criterion, as implemented in ns-2, was ported to ns-3. Instead of a
complete code port, the modules already available in ns-3 were reused to implement a PHY model matching
the ns-2 model. Verification of the implementation is documented in section 6.7.
In the following paragraphs, the different submodules of the wifi implementation in ns-3.4 are discussed
and how they are used to create a new ns-2 compatible PHY model. The classes of these submodules are
illustrated in the UML diagram in figure 6.8. This diagram also contains classes implemented for this thesis
that are not included in ns-3.4.
In ns-3.4 only one PHY implementation is available: YansWifiPhy. It uses a BER/PER reception criterion,
which is described in section 6.6. The main class YansWifiPhy is closely dependent on two helper classes
for individual emulation aspects: InterferenceHelper and YansWifiStateHelper.
As described in section 6.2, cumulative noise is managed in InterferenceHelper by inserting all received
packets as InterferenceHelper::Events into a list. From the list all SINR changes over a packet’s re-
ception duration can be calculated. This set of changes is represented as a vector of Interference-
Helper::NiChanges, which are used to derive BER/PER values in the calculation functions in YansEr-
rorRateModel. The final reception decision is then made by YansWifiPhy::EndReceivePacket() based
upon the determined PER value.
The state of YansWifiPhy is managed by the YansWifiStateHelper class. It contains a state machine-like
implementation with four states: IDLE, CCA_BUSY, RX and TX. In ns-3.4 the reception state was named
SYNC, which was changed to RX. Obviously this would be the place to add a PreRX state to imitate the
state machine from ns-2. However, the class does not contain a simple enum state variable, instead the state
is encoded in two Time values m_endTx, m_endCcaBusy and one boolean m_rxing. The current PHY state
is determined by checking the time values against current simulation time: if m_endTx is in the future, then
the state is TX. If it is not in TX and m_rxing is true, then the state is RX. If it is not RX or TX, it is
either CCA_BUSY or IDLE depending on m_endCcaBusy.

57

6 PHY Layer Enhancements

H
Time

PAYLOAD

Threshold

SI
N
R

(d
B)

t0 t1 t2 t3 t4

A

B

Figure 6.7: SINR check time points

Transitions between these states are done by the various SwitchTo...() functions in the YansWifiState-
Helper class. State switching is done by updating one of the m_end... Time variables and m_rxing.
However, because simulator time progresses outside the scope of the state machine, state changes can hap-
pen without an explicit method call simply due to elapsing simulated time. This makes comparison with
a traditional enum state machine difficult. Nevertheless, creation of a state diagram was attempted in fig-
ure 6.6. It shows a diagram of all possible state transitions in YansWifiStateHelper. Note that all but one
are possible: no direct transition from TX to RX is possible. Transitions to IDLE or CCA_BUSY depend
only on the value of m_ccaBusy, otherwise they are equal. Due to the implicit state machine, a state tran-
sition requires complex maintenance work on the variables to backlog elapsed state switches. Furthermore
external trace functions are called to correctly export state switch events.
When comparing the two state diagrams 6.5 and 6.6, the first observation is that there are different state
identifiers: ns-2 has the extra PreRX state for preamble and payload distinction. On the other hand ns-3
has an extra CCA_BUSY state. In ns-2 the CCA_BUSY medium indication is not handled as an extra
state, because the indication is orthogonal to reception or transmission handling. Instead, the indication is
signaled directly by PowerMonitor when the channel energy reaches a configured threshold called carrier
sense threshold.
Due to the complex integration of the implicit state machine with tracing and higher layer signaling, adding
of a new PreRX state was avoided. It is also not necessary as will be shown later.
The new PHY model added to ns-3 is called Ns2ExtWifiPhy and aims at providing equal behavior as the ns-2
WirelessPhyExt class. For this the YansWifiPhy was cloned together with the associated YansWifiChannel.
The new class Ns2ExtWifiChannel is identical to the yans version, except that it operates with a list of
Ns2ExtWifiPhys.
The SINR reception criterion was implemented in Ns2ExtWifiPhy by disabling BER/PER calculations.
For this purpose, the function InterferenceHelper::CalculateSnr() was added to return the SINR at
the current simulated time. To match the yans design, the SINR reception thresholds were implemented
by adding a new ErrorRateModel class called Ns2ExtErrorRateModel, even though no real error rate
computation is done. The class contains one function GetSuccessRate(), which returns 1 or 0 depending
on SINR and wifi mode threshold as defined in the table 6.1. The newer values in this table were taken
from an updated patch to ns-2.33 by the DSN.
Frame capture was also implemented in Ns2ExtWifiPhy. To the original YansWifiStateHelper implicit
state machine only one function was added: SwitchFromRxAbort() required to abort a packet’s reception
when required for frame capture.
No extra PreRX state is required to implement SINR reception or frame capture correctly. In ns-2 the only
action taken when changing from PreRX to RX is a check, whether the current SINR allows correct packet
reception according to the payload data rate threshold. However, this SINR threshold verification can also
be done at the end of the packet’s duration.

58

6.5
Im

plem
entation

Issues

WifiPhy
SendPacket(packet: Ptr<const Packet>,
 mode: WifiMode, txPowerLevel: int): void
SetReceiveOkCallback(cb: RxOkCallback): void
SetReceiveErrorCallback(cb: RxErrorCallback): void

WifiChannel

YansWifiChannel

Send(sender: Ptr<YansWifiPhy>, packet: Ptr<const Packet>,
 tag: Ptr<const WifiPhyTag>): void
Receive(i: int, packet: Ptr<Packet>,
 tag: Ptr<WifiPhyTag>, rxPowerDbm: double): void

YansWifiPhy
m_ccaMode1ThresholdW: double
SendPacket(packet: Ptr<const Packet>,
 mode: WifiMode, txPowerLevel: int): void
EndReceivePacket(packet: Ptr<Packet>,
 tag: Ptr<WifiPhyTag>,
 event: Ptr<InterferenceHelper::Event>): void

Ns2ExtWifiPhy
m_carrierSenseThresholdW: double
m_preambleCaptureThresholdDb: double
m_dataCaptureThresholdDb: double
m_rxPacket: Ptr<Packet>
SendPacket(packet: Ptr<const Packet>,
 mode: WifiMode, txPowerLevel: int): void
EndReceivePacket(packet: Ptr<Packet>,
 tag: Ptr<WifiPhyTag>,
 event: Ptr<InterferenceHelper::Event>): void

Ns2ExtWifiChannel

Send(sender: Ptr<Ns2ExtWifiPhy>, packet: Ptr<const Packet>,
 tag: Ptr<const WifiPhyTag>): void
Receive(i: int, packet: Ptr<Packet>,
 tag: Ptr<WifiPhyTag>, rxPowerDbm: double): void

ChannelPropagationLossModel

ErrorRateModel
GetSuccessRate(mode: WifiMode,
 snr: double): double
GetChunkSuccessRate(mode: WifiMode,
 snr: double, nbits: int): double

YansErrorRateModel

GetChunkSuccessRate(mode: WifiMode,
 snr: double, nbits: int): double
GetFecBpskBer(snr: double, nbits: double,
 signalSpread: int, phyRate: int,
 dFree: int, adFree: int): double
GetFecQamBer(snr: double, nbits: int,
 signalSpread: int, phyRate: int,
 m: int, dFree: int,
 adFree: int, adFreePlusOne: int): double

Ns2ExtErrorRateModel

GetSuccessRate(mode: WifiMode,
 snr: double): double

InterferenceHelper
m_constantNoiseFloorW: double
m_longPlcpHeaderMode: WifiMode
Add(size: int, payloadMode: WifiMode,
 duration: Time, rxPower: double): Ptr<InterferenceHelper::Event>
CalculateSnrPer(event: Ptr<InterferenceHelper::Event>): SnrPer
CalculateSnr(event: Ptr<InterferenceHelper::Event>): double
CalculateSnr(signal: double, noiseInterference: double, mode: WifiMode): double
CalculateNoiseInterferenceW(event: Ptr<Event>, ni: List<NiChanges>): double
CalculateChunkSuccessRate(snir: double, delay: Time, mode: WifiMode): double
CalculatePer(event: Ptr<const Event>, ni: NiChangesi): double

YansWifiPhyStateHelper
m_rxing: bool
m_endTx: Time
m_endRx: Time
m_endCcaBusy: Time
GetState(): State
SwitchToTx(txDuration: Time, packet: Ptr<const Packet>,
 tag: Ptr<const WifiPhyTag>): void
SwitchToRx(rxDuration: Time): void
SwitchFromRxEndOk(packet: Ptr<Packet>,
 tag: Ptr<const WifiPhyTag>): void
SwitchFromRxEndError(packet: Ptr<const Packet>,
 tag: Ptr<const WifiPhyTag>): void
SwitchFromRxAbort(): void
SwitchMaybeToCcaBusy(duration: Time): void
LogPreviousIdleAndCcaBusyStates(): void

InterferenceHelper::NiChanges
m_time: Time
m_delta: double

InterferenceHelper::Event
m_startTime: Time
m_endTime: Time
m_rxPowerW: double

Figure 6.8: UML diagram of WifiPhy classes59

6 PHY Layer Enhancements

Transmit
signal

Modulate bits
on subcarriers

Map bits onto
subcarriers

Convolutional
encoder

Channel

Receive
signal

Demodulate bits
from subcarriers

Reverse map
subcarriers to bits

header
Add PLCP

Viterbi
decoder

Adapt decoding
from header

MAC

MAC

Bits from

Bits to

Whiten

Dewhiten

Figure 6.9: Modulation sequence modeled by BER/PER

This is illustrated in figure 6.7: consider packet A received with constant threshold. In ns-2 the extra PreRX
verifies the threshold at t1, whereas in Ns2ExtWifiPhy the threshold is checked at t4. If the SINR threshold
fluctuates during reception, as for packet B, then at each time point a new frame starts or ends. For each
time point, however, only the new SINR value needs to be checked, because for frame starts, as at t2, this
is always the lower one. For frame ends, as at t3, the previous lower value was already checked. Thus
SINR-based reception can be implemented without PreRX state.
Another distinction is made in ns-2 between RX and PreRX for frame capture: depending on whether the
current packet’s preamble or payload is being received, two different capture thresholds apply. For this too
no extra state is needed, a simple comparison of the packet start time and current time suffices.
The frame capture effect is checked for each new packet arriving from the channel at Ns2ExtWifiPhy::Send-
Packet(). If the currently synchronized packet, stored in m_rxPacket, cannot be correctly received due
to the reduced SINR level, then the new packet may be switched to. This decision is done as in ns-2 by
comparing the new packet SINR with either m_preambleCaptureThreshold or m_dataCaptureThreshold
depending on the discarded packet’s reception phase. If capture is triggered, reception of the synchronized
packet is immediately aborted and appropriate error trace events are indicated. The state machine is
momentarily switched to IDLE using SwitchFromRxAbort(). At the same time reception of the new packet
is started as usual and the state switched back to RX.
Both SINR threshold and the frame capture effect implemented in Ns2ExtWifiPhy are verified in section 6.7.
The additional code is being proposed for merge into the next major release of ns-3.

6.6 BER/PER Reception Criterion

To determine whether a packet could be received correctly, YansWifiPhy, the default wifi model for 802.11a
in ns-3, uses a packet error rate (PER) criterion. This PER attempts to grasp the signal decoding process
in a wireless receiver chip using statistical analysis. The PER is built up of more basic modulation specific
bit error rate (BER) formulas. Most of this statistical processing is implemented in YansErrorRateModel,
which was ported to ns-3 from yans (see section 4.2). Currently only 802.11a OFDM wireless modes are
supported, work on other modes like DSSS or 802.11b CCK is in progress.
The BER/PER model is described in the corresponding yans paper [20], but also by others authors [21, 38].
The statistical analysis used for 802.11 transmission modes can be found in standard textbooks on wireless
communications [9, 28]. This section gives a detailed explanation on the foundations of the BER/PER
equations, however, it does not attempt to fully derive each statistical formula, instead textbooks are cited
for more detailed review.
The sequence of encoding operations done by the 802.11a PHY layer is illustrated as a block diagram in
figure 6.9. To model reception, the BER/PER criterion focuses only on the decoding steps and attempts to
model each step separately. Demodulation of OFDM subcarriers, which are each keyed using BPSK, QPSK
or M -QAM, yields a bit error rate depending on average received SINR. Once the bits are decoded, the bit
interleaving permutation done during decoding must be reversed. The resulting code bits sequence uses a
convolutional coding, which is undone, usually using a Viterbi decoder. Convolutional encoding is used by
802.11a to decrease bit error rate by adding redundancy. Finally the data bits must be dewhitened. All the
corresponding encoding steps are described in greater detail in section 2.3.2. The focus of this section is on
discussing analytic bit error rates and computing a whole packet error rate.

60

6.6 BER/PER Reception Criterion

6.6.1 Digital Modulation

Error Functions

In conjunction with error rates, three special error functions are often used for convenience: the Q(·), the
erf(·) “error rate” function and its complement erfc(·). The Q(x) function is defined as the area right of
x below a standard normal (Gaussian) distribution. The erf(·) and erfc(·) are closely related to Q(·) and
only differ in scale and translation. Both erf(·) and erfc(·) are defined by a math.h compatible with C99 or
POSIX.1-2001 and is available in standard libc libraries.
The following equation table gives a definition of all three functions and shows two relationships.

Q(x) = 1√
2π

∫ ∞
x

e−
t2
2 dt Q(x) = 1

2 erfc
(
x√
2

)
erf(x) = 2√

π

∫ x

0
e−t

2
dt erfc(x) = 1− erf(x) = 2√

π

∫ ∞
x

e−t
2
dt

Energy Per Bit or Symbol

To describe reception probability, some measure of signal quality is required. This section introduces the
quantities Eb, Es, γb and γ̄s needed to describe error rates.
In digital modulation schemes, a bit can be encoded by phase shifts or amplitude of the signals. BPSK,
QPSK and M -QAM are described in section 2.3.2. The bit error rate for each modulation depends directly
on the signal strength, which, in this context, is expressed in energy per bit Eb or energy per symbol Es. A
symbol in 802.11a contains 1, 2, 4 or 6 bits.
Energy per bit Eb and energy per symbol Es, both measured in Joule, are easily derived from the reception
power by

Eb = Pr · tb Es = Pr · ts (6.2)

where Pr is the reception power of the complete signal in watt, tb duration of one bit and ts duration of one
symbol. For 802.11a modulation schemes from table 2.3, the bit and symbol durations can be calculated
with

tb = R

DataRate ts = tb
NBPSC

(6.3)

As SINR is more expressive for signal quality of Pr, the so called SINR per bit γb and average SINR per
symbol γ̄s are more useful for bit error calculations. SINR per bit and symbol are defined as

γb = Eb
N0

γ̄s = Es
N0

(6.4)

where N0 is the noise and interference spectral density in watt per hertz.
This can also be expressed using the SINR (equation 6.1) as calculated from Pr by

γb = SINR ·B · tb γ̄s = SINR ·B · ts (6.5)

where B is the channel bandwidth in hertz (20MHz, 10MHz or 5MHz in 802.11a).

Bit Error Rate of BPSK, QPSK and M-QAM

Using the quantities for bits and symbols defined in the last section, the bit error rate can be given exactly
for BPSK and QPSK. This is done using two conditional Gaussian probability densities over the signal
phase shifts and is described in standard textbooks [9, p. 174] [28, p. 255]. The probability of bit error Pb,
when receiving a signal modulated with BPSK or QPSK, is

Pb,BPSK(γb) = Q
(√

2γb
)

= 1
2 erfc (√γb) (6.6)

61

6 PHY Layer Enhancements

10−6

10−5

10−4

10−3

10−2

10−1

100

0 2 4 6 8 10 12 14 16 18 20

Pr
ob

ab
ili
ty

of
bi
t
er
ro
r
P
b

SINR per bit γb (dB)

BPSK/QPSK
4-QAM

16-QAM
64-QAM

Figure 6.10: BER plot of BPSK, QPSK and M -QAM

Similarly can be done for M -QAM. In M -QAM, k := log2M bits are represented in one symbol by using
M = 2k different phase and amplitude constellations (see figure 2.5). The error probability is derived by
regarding each of the M constellation points as independently distributed normal random variables, with
special consideration for the outer points [9, p. 177] [28, p. 259]. The probability of an error in a received
symbol Ps is exactly

Ps,M -QAM(γ̄s) = 1−
[
1− 2

(
1− 1√

M

)
·Q

(√
3 γ̄s
M − 1

)]2

(6.7)

Using the equation γ̄s = k ·γb and dividing by k, the corresponding the bit error probability Pb of aM -QAM
encoded bit can be given as

Pb,M -QAM ≈
1

log2M

1−

1− 2
(

1− 1√
M

)
·Q

√3 · γb · log2M

M − 1

2
 (6.8)

This equation is not exact due to possible bit errors which occur at non-neighboring constellation points.
However, this omitted probability is negligible small.
The bit error rate curves of BPSK, QPSK and some M -QAM binary digit modulations are shown in
figure 6.10. Note that BPSK, QPSK and 4-QAM have equal BER.

6.6.2 Convolutional Decoding

In the 802.11a decoding sequence, the coded bits are detected from symbol signals keyed using BPSK, QPSK
or M -QAM. After detecting the bit sequence, the interleaving permutation map applied during encoding
must be reversed. This has no effect on the bit error rate, because each bit only changes place in the
sequence. However, since signal detection errors are not uniformly distributed but occur in close proximity,
this bit swapping may have an effect on the total PER. Currently this effect is not modeled in ns-3.
The bit sequence is encoded using the convolutional coding defined in section 2.3.2 and must be decoding
accordingly. Most wireless chips will use a Viterbi decoder for this purpose. For the purpose of error rate
calculations, convolutional decoding is now described short.

62

6.6 BER/PER Reception Criterion

Input s1 s2

Output A
Output B

Output C
(a) Linear feedback shift register

00

01 10

11

1/111

0/000

1/
11
0

0/001

0/010

1/101

0/
01
1

1/100

(b) State machine

Figure 6.11: Diagrams of a simple convolution code

t0

00

01

10

11

t1

00

01

10

11

000

111

t2

00

01

10

11

000

111
001

110

t3

00

01

10

11

000
111

011

100
001

110

01
0

101

t4

00

01

10

11

000

111

011

100
001

110

01
0

101

t5

00

01

10

11

000

111

011

100
001

110

01
0

101

t6

00

01

10

11

000

011

001

01
0

t7

00

01

10

11

000

011

Figure 6.12: Trellis diagram of the simple convolution code

Each convolutional encoder has three basic parameters: k the number of input bits shifted at once, K the
number of shift stages and n the number of output bits per shift. For each output bit a function of current
register states must be given, often using binary or octal notation.
The 802.11 convolution encoder processes k = 1 input bits each shift, has K = 7 stages (of which only six are
shown in figure 2.4) and n = 2 output bit lines. The state machine of the encoder contains 2K−1 = 26 = 64
states and is shown in the appendix figure B.1.
For purpose of this quick review of convolutional error rates, a simpler encoder with k = 1, K = 3 and
n = 3 is shown as linear shift register and Mealy state machine in figure 6.11 and as a trellis diagram in
figure 6.12. The same example is used in many textbooks [9, 28]. The output generator functions are [100]2,
[101]2 and [111]2 in binary representation. In the state machine and trellis diagram the state nodes are each
labeled with the current contents of the two shift registers. A solid graph edge represents a state transition
caused by a zero input bit and a dotted line a one input bit.
To understand decoding of convolutional codes, the trellis diagram is the most useful representation. In
figure 6.12 all possible valid encodings of five input bits are shown with two tail bits. Initially the registers
are set to zero, and thus the encoder is in 00 state. The five input bits are read from t0 until t5 with 5 ·3 = 15
output bits. Convolutional code input sequences, as in 802.11a, are padded with zero tail bits, which are
used by the decoder to correctly return to the “all-zero” state. This is done by adding two zero tail bits,
which are encoded in t5 to t7. The 802.11a convolutional encoder requires six tail bits as shown in figure 2.2.

63

6 PHY Layer Enhancements

So the simple convolution code produces in total 21 output bits from 5 input bits and 2 tail bits. Thus there
are only 25 = 32 valid bit sequences out of the 221 possible output bit sequences. For convolutional decoding
the received bit sequence’s “closest” valid sequence is determined and thereby bit errors corrected. This
decoding strategy is called maximum likelihood detection and is optimal, because it views the complete bit
sequence and compares it to all possible valid original sequences. During comparison two distance metrics
are commonly used: the Hamming (bit-error) distance and Euclidean distance of two vectors. Depending on
the metric a convolutional decoder is called a hard-decision decoder for Hamming distances or soft-decision
decoder for Euclidean distances.
In 802.11a hardware, the Viterbi algorithm is most commonly used to accelerate decoding. This algorithm
also performs optimal decoding, but does not require a full comparison of the incoming bit sequence with
all possible valid sequences. Instead, it uses a dynamic programming technique, which requires only 2K−1

stored intermediate values, one for each level shown in the trellis or state in the finite automaton. For each
state the current minimum “cost” according to the metric and the corresponding input sequence is saved.
To process a coded n bit tuple, the new cost is calculated for each state from the two possible incoming
edges: the zero and the one edge. For both edges the new cost is calculated from previous cost and the
“cost” distance (usually Hamming or Euclidean) of that edge’s n-bit sequence and the input n-bit sequence.
Of both incoming paths only the one with smaller cost is saved; the other cannot possibly be the best path.
Are both path costs equal a random decision is made. At the code bit sequence’s end the best matching
input sequence is saved at the all-zero state.
Due to the extra bits in the convoluted bit sequence, decoding the input improves bit error rates. In the
following decoding error rate equations of a Viterbi or maximum likelihood estimator are described and
reviewed (see [9, p. 257] or [28, p. 485]).
As a first step the probability of at least i wrong bits in a d bit sequences are calculated. The number of d
bit sequences with i wrong bits is

(d
i

)
. If the probability of a one-bit error is p, the probability of exactly i

errors is (
d

i

)
pi(1− p)d−i (6.9)

By summing over this equation one can calculate the probability that more than half of the d bit sequence
is incorrect. For a d bit sequence of odd length more than d+1

2 bits must be incorrect. And for an even
length at least d

2 + 1 must be incorrect or d
2 with only half the probability, because of a random decoding

decision. Thus the probability that more than half the sequence of d incorrectly detected is

Pd(p) =

d∑
i= d+1

2

(
d

i

)
pi(1− p)d−i d odd

1
2

(
d
d
2

)
p
d
2 (1− p)

d
2 +

d∑
i= d

2 +1

(
d

i

)
pi(1− p)d−i d even

(6.10)

where p is the probability of each bit correctly detected.
For a decoding error to occur during convolutional decoding, a wrong path through the trellis or state
machine must be selected. This wrong path corresponds to an incorrectly detected bit sequence. However
due to bit error correcting through redundancy, more than one bit error is required for the decoder to
select the wrong path. For a hard-decision decoder using the Hamming metric, at least half the bits must
be incorrectly detected to choose a different path. Thus selecting an incorrect decoding path for a d bit
sequence corresponds to Pd(p), where in the even bit case with equal probability of two paths, a random
decision is made.
Selecting a wrong branch once, however, may still be corrected later during decoding because paths may be
joined again. This error correcting property of the convolutional code can be upper bounded by summing
over all paths longer than a specific length called dfree, which must be determined individually for each
convolutional code. For each path length d all ad paths of the same length must be considered. So the

64

6.6 BER/PER Reception Criterion

PAYLOAD

t0 t1 t2 t3 tn

H

20

10

0
TimeSI

N
R

pe
r
bi
t
γ
b
(d
B)

Figure 6.13: BER/PER segments with equal γb

decoding error probability Pdec(p) for a convolutional code is

Pdec(p) ≤
∞∑

d=dfree

adPd(p) (6.11)

where p is the probability of a single bit error. For p the equations 6.6 or 6.8 can inserted depending on
underlying modulation scheme, and lead to

Pb,dec,mod(γb) ≤
∞∑

d=dfree

adPd(Pb,mod(γb)) (6.12)

for bit error rate after convolutional decoding of a bit sequence transmitted using given modulation and
received with γb SINR per bit.

6.6.3 Packet Error Rate

To determine packet error rate of a whole packet, the decoding error rates of each segment with equal SINR
per bit γb must be calculated. See figure 6.13 for an example diagram of γb fluctuations during a packet’s
transmission duration. Because in 802.11a, header and payload may be encoded with different modulation
schemes, a further distinction may be necessary.
For a segment containing l bytes, assuming uniform and independent bit errors distribution, the probability
of error is

Pseg,mod(γb, l) ≤
(
1− Pb,dec,mod(γb)

)8·l (6.13)

and by combining all segments the complete PER is

Pper ≤ 1−
n∏
i=0

(
1− Pseg,modi(γb,i, li)

)
(6.14)

where n is the number of segments, li is the number of bytes, modi the modulation schema and γb,i the
SINR per bit in segment i.
In ns-3, the PER is calculated according to equation 6.14 and compared for the ultimate reception decision
to a random integer from [0 . . . 1]. A simplified version of equation 6.12 is used: for BPSK and QPSK only
the first length dfree and for M -QAM only the first two lengths dfree and dfree + 1 are added up.
Dewhitening of the deconvoluted bit sequence is currently not explicitly modeled in ns-3. This step has
no impact on received packet error rate, because even though a single bit error has large effect on the
dewhitening process, any bit error after dewhitening is detected by the CRC32 checksum (within reasonable
probability). Thus whitening only amplifies actual discrete bit errors, which would be detected anyway. The
transmission packet error rate is therefore not affected.

65

6 PHY Layer Enhancements

10−6

10−5

10−4

10−3

10−2

10−1

100

0 5 10 15 20 25

Pr
ob

ab
ili
ty

of
bi
t
er
ro
r
P
b

SINR per bit γb (dB)

6 Mb/s
9 Mb/s
12 Mb/s
18 Mb/s
24 Mb/s
36 Mb/s
48 Mb/s
54 Mb/s

Figure 6.14: PER plots for 802.11a rates with 200, 400 and 2 304 bytes frame size

Values for dfree and ad can be found, for example, in the tables calculated by Frenger et al. [6]. The values
relevant for 802.11a are shown in table 6.2.
The effective packet error rate as used by ns-3 is plotted in figure 6.14 for all 802.11a transmission modes
and three different frame sizes. The dotted line is for 200 byte, the dashed for 400 bytes and the solid line
for 2 304 bytes packet size.

6.7 Verification

To verify the implementation of the SINR reception criterion and frame capture effect in Ns2ExtWifiPhy,
two experiment scenarios were created. They are designed to specifically examine the two added features
and were implemented in both ns-2.33 and enhanced ns-3.

6.7.1 Two Nodes Distance Scenario

To examine the SINR reception criterion, a very simple scenario containing two nodes is used. The node
layout is illustrated in figure 6.15. One node sends packets at a constant rate to the other, which receives
and counts them. The distance between the two nodes is varied. By determining the packet reception
probability and comparing it to an equal experiment in ns-2, the reception criterion is validated. Neither
cumulative noise nor the capture effect have influence in this scenario, because only one packet is sent at a
specific time.

Coding rate dfree adfree adfree+1 adfree+2 adfree+3

R = 1/2 10 11 0 38 0
R = 3/4 5 8 31 160 892
R = 2/3 6 1 16 48 158

Table 6.2: Property values of (punctured) convolutional codes of 802.11a (from [6])

66

6.7 Verification

AB distance

Figure 6.15: Two nodes scenario for reception criteria

The sender node is located at a distance ranging from 0 – 2 500m with 10m steps. Test broadcast packets
containing 800 bytes are sent by one node every 5ms with 20 dBm transmit power. This corresponds to
a payload data rate of 160KB/s. No ACK packets are transmitted back by the receiver. For the initial
experiment run, both ns-2 and ns-3 were configured to use the 802.11a base transmission rate of 6Mb/s.
Each simulation run executes for 50 s simulated time and in this time 10 000 packets are sent in total.
Different propagation loss models were used in the experiments, and to get these to match in ns-2 and ns-3
turned out to be a great challenge. Even very small differences in propagation calculations lead to unequal
reception probability curves, because SINR reception depends directly on calculated propagation losses. The
noise floor was set to -99 dBm, as in all experiments in this thesis.
Figure 6.16 contains two result plots of the two nodes experiment, with each data point averaged over 100
independent replications. The 99% confidence interval is shown for each distance step.
Both plots show equal results for propagation loss models implemented in both of the two simulator. This
shows that for the two nodes, reception range test scenario both PHY implementations behave equally.
The plotted results can also be verified against equations in section 5.2. The easiest to check is free-space
propagation. Due to the constant noise floor of -99 dBm and the required 5 dB SINR for reception, an
incoming packet needs to be received with -94 dBm power to be accepted. Compare the reception range for
20 dBm Pt and -94 dBm Pr in table 5.1 with the plot for Friis propagation. The reception drop is exactly
between distance 2 320m and 2 330m.
Other 802.11a modes were also tested. Plots of these results (with free-space and Nakagami) are shown in
figures 6.20 and 6.21. These are discussed in the context of a reception criteria comparison.

6.7.2 Three Nodes Capture Scenario

The second simulation set up is crafted to highlight the capture effect. For this purpose at least three wireless
nodes are required: a listening “center” node C, one distant interferer B and one near, strong sender A. All
three nodes are placed on a straight line as shown in figure 6.17(a).
To provoke frame capture, the distant interferer B starts sending a frame, which is received at the listening
destination node C, but not at the other sender A. Within the duration of this frame, the near sender A
starts transmitting as well. This stronger signal will cause the currently received packet at C to be corrupt.
If C supports frame capture, it will drop the weak incoming frame from B and correctly switch to the new
stronger signal from A. This frame sequence is illustrated in figure 6.17(b). Depending on the time delta
∆t, after which station A starts sending, “preamble” or “data” capture may be triggered at the receiver C.
In the experiment both sender A and interferer B send packets every 5ms containing 200 payload bytes with
20 dBm transmit power. The receiving node C counts how many packets are received from A, frames from
B are not counted. The carrier sense threshold of all nodes is set to -82 dBm and the noise floor is again
-99 dBm.
For the first experiment free-space propagation loss is used. The nodes A and B must be far enough apart
so that a packet from B is not received at A. As listed in table 5.1, the reception range in this constellation

67

6 PHY Layer Enhancements

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

R
ec
ep

tio
n
Pr

ob
ab

ili
ty

Distance (m)

FreeSpace
TwoRayGround

Nakagami (Log Only)
Nakagami Defaults

Nakagami-1
Nakagami-3
Nakagami-5

(a) In ns-2 with WirelessPhyExt

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

R
ec
ep

tio
n
pr
ob

ab
ili
ty

Distance (m)

Friis
LogDistance (defaults)

LogDistance (exponent = 2.2)
ThreeLogDistance (defaults)

ThreeLogDistance + Nakagami (defaults)
ThreeLogDistance + Nakagami (m = 1.0)
ThreeLogDistance + Nakagami (m = 3.0)
ThreeLogDistance + Nakagami (m = 5.0)

(b) In ns-3 with Ns2ExtWifiPhy

Figure 6.16: Two nodes experiment at 6 Mb/s with different propagation loss models

68

6.7 Verification

AB C
fixed varying

(a) Node layout

Time

B

A
∆t

(b) Frame sequence

Figure 6.17: Three nodes scenario

is 2 323m. So for the first experiment the nodes B and C are set 2 000m apart. The distance between C
and A is varied and thus the reception power of packets from A changes.
Second varying quantity in the simulation is ∆t, the delay of the frame sent by A. Depending on the delay
and distance, different aspects of the capture effect are triggered.
This scenario was implement in both ns-2.33 and ns-3.4 with the new Ns2ExtWifiPhy. For each delay and
distance pair, the simulation is run only 0.1 s and so only 20 packets are processed. This is fully sufficient
due to the deterministic set up of this scenario. No random effects can occur, because free-space propagation
is fixed and long inter-packet time always allows the random DCF backoff to elapse.
The experimental results are plotted as area diagrams in figure 6.18. Note the x and y axis: x axis is
the distance between C and A, while the y axis signifies the time interval ∆t after which A starts to send
after B. For each 10m distance step and 1µs time step an experiment instance was run. The experiment
determines if A was allowed to send after ∆t and whether packets from A could be received at B. If A
was not allowed to send because of CSMA/CA rules, the data point in the plot is marked red. Any other
color represents valid reception of packets from A. Furthermore, in ns-3, the capture effects triggered during
packet reception were determined. Experiment configurations in which reception is always possible or when
only possible with preamble capture or data capture are marked with three different colors is figure 6.18(b).
In ns-2 the special coloring was not done, because the information necessary was not readily accessible for
analysis, thus the blue area in figure 6.18(a) represents reception with or without capture.
Many interesting effects can be seen in these constellation diagrams. First note the red area, in which A is
not allowed to send after ∆t due to CSMA/CA rules: this happens if A hears the interfering frame from B
and starts receiving it. Once B and A are further apart than 2 323m, reception power at A drops below the
required 5 dB threshold and A cannot receive packets from B. Thus node A is allowed to send an overriding
packet. This happens when C and A are further apart than 323m, because B is a fixed 2 000m away from
C.
However two more effects are seen below the 323m distance threshold: A can successfully send a packet
for very small ∆t and values larger than about 370 µs. Due to simulated signal propagation at the speed
of light, packets are first heard at 2 000m distance after 6.6 µs. This means that packets from B are first
heard at C after this time interval. If A is close enough to C and sends within 6µs, its packet will reach C
before those transmitted by B, and thus will always be correctly accepted. This effect can be seen as the
small unconditional reception area close to the x axis. It extends only to about 1 000m due to the plot’s
1 µs resolution.
The second effect with ∆t larger than about 370 µs is due to packet duration. Duration of a packet with 200
payload bytes sent using the 6Mb/s mode of 802.11a is 340µs. This includes LLC, SNAP, MAC and PLCP
headers, see section 7.4.1 on frame duration calculations. After further DIFS (= 34µs) time, CSMA/CA
rules allow a new frame to be sent. In the three nodes experiment, this means that if A’s send wish is
delayed for longer than 374 µs, then it will always be allowed to sent and received correctly at C. Note that
no random backoff is required, because sending of the previous packet is always sufficiently long ago and no

69

6 PHY Layer Enhancements

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500

Pa
ck
et

de
la
y

∆
t
(µ
s)

Distance between nodes C and A (m)

Impossible due to CSMA/CA
Received

(a) In ns-2 with WirelessPhyExt

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500

Pa
ck
et

de
la
y

∆
t
(µ
s)

Distance between nodes C and A (m)

Impossible due to CSMA/CA
Received always

Received with preamble capture
Received with data capture

(b) In ns-3 with Ns2ExtWifiPhy

Figure 6.18: Three nodes experiment with free-space propagation

70

6.7 Verification

collisions are detected.
Here a small difference between the ns-2 and ns-3 plots can be seen: packet duration in ns-2 is slightly
shorter than in ns-3. In the ns-2 plot the red area extends up to 362 µs, because frame duration is calculated
to be 328 µs. This difference is caused by ns-2 not adding an eight byte long LLC/SNAP header to the
payload. The different frame length, however, are not relevant for this verification of the capture effect and
only result in slightly shifted areas.
For distances larger than 323m, the main capture effects can be seen. If capture is disabled, reception in
the yellow and green areas is not allowed. However, even without capture, node A can correctly send to C,
if packet transmission is delayed for longer than the frame duration from B. As discussed in the previous
paragraphs, the packet duration is 340µs or 328 µs, to which the propagation delay of at least 6.6µs must
be added. After this time interval, station C is idle again and can correctly receive packets from A. This
is shown by the blue area in figure 6.18(b), which extends until 2 323m, after which reception power drops
below the SINR threshold.
For the range between 323m and about 1 000m, preamble capture is triggered at C, because the signal from
A is superimposed on that from B. However, preamble capture is only activated if the interfering stronger
signal is received within the PLCP header time, which is 20 µs in 802.11a. So the green area extends only
up to 20µs minus propagation delay.
Data capture is possible during the full duration of the weaker signal. However, only at a higher SINR
threshold, which is shown by the smaller range of the yellow area. In this scenario, data capture is only
activated within about 550m.
If station A is further away than about 1 000m or 500m, then frame capture at C is not triggered due to
the required threshold. Thus no reception is possible for the area right of the capture areas.
Comparison of these two plots shows that implementation of the capture effect in ns-3 is fully working and
shows equal behavior as in ns-2.

With Nakagami Propagation

The three nodes scenario was used for a third set of simulations. This time Nakagami and three-log-distance
propagation loss models were configured. Due to the probabilistic nature of these models, reception of A at
C becomes a statistical figure. Furthermore the discrete areas, in which the different effects are triggered,
become blurred and no clear line can be drawn between them. This experiment was only run in ns-3 with
the new capture implementation.
Scenario parameters were adapted to the lower reception range with log-distance and Nakagami propagation.
Node B is placed at a fixed 600m from C, while distance from A to C varies from 0 – 1 500m. For each pair
of distance and ∆t the simulation was run 100 s in which 20 000 packets are generated by each sender node.
The step resolution was decreased to 20m distance steps and 2 µs time steps.
Simulation results are shown as a color-coded 2D plot in figure 6.19. For each distance and ∆t pair, the
probability of reception of packets from node A by station C is shown with the corresponding color. The four
smaller plots show probability of the different effects separately. The top large plot shows only reception
probability, and so is a sum of only the last three smaller plots; CSMA/CA prohibits reception and is not
included in the sum.
All effects described in the last section are also visible in these plots, though less clearly due to probabilistic
reception. Note that statistical reception power only has great effect for the distance axis. Propagation
delay has no probabilistic component and thus effects based on ∆t intervals are more prominent.

71

6 PHY Layer Enhancements

0 400 800 1200 1600
Distance between nodes C and A (m)

0

100

200

300

400

500
Pa

ck
et

de
la
y

∆
t
(µ
s)

0

0.2

0.4

0.6

0.8

1

(a) Received

0 400 800 1200 1600
0

100

200

300

400

500

(b) Impossible due to CSMA/CA
0 400 800 1200 1600

0

100

200

300

400

500

(c) Received always

0 400 800 1200 1600
0

100

200

300

400

500

(d) Received with preamble capture
0 400 800 1200 1600

0

100

200

300

400

500

(e) Received with data capture

Figure 6.19: Three nodes scenario – Reception probability with Nakagami propagation

72

6.8 Discussion of Reception Criteria

6.8 Discussion of Reception Criteria

With the newly added Ns2ExtWifiPhy and existing YansWifiPhy there are two 802.11 PHY models available
in ns-3. They use two different reception criteria: SINR threshold, described in section 6.3, and BER/PER,
described in section 6.6.
Both models are based on two different approaches to simulating the wireless transceiver layer. It is not
possible to say that one is truly superior for all cases. Instead both have advantages and disadvantages that
must be taken into account when selecting a model for experimentation.
The SINR threshold model gives a very simple, deterministic model of the transceiver. Wireless reception
range with SINR is deterministic, if the propagation loss model is deterministic. This enables easy setting
of a fixed, exact reception range, which proves useful for many experiments. The reception criterion is
only based on channel effects as cumulative noise and reception loss, all specific transceiver properties are
represented by the SINR threshold value itself.
On the other hand, BER/PER tries to grasp the reception decoding process analytically. It is composed of
a highly detailed statistical analysis of theoretic digit bit keyings, signal modulation, convolutional decoding
and more aspects of the transceiver. The analytical approach requires simplifications to the process, that
may not be fully acceptable. For example, the analytical bit error rate assumes an independent, uniform
distribution of bit errors, which does not reflect reality. However, how this simplification affects reliability of
the reception criterion is not easily stated. Beyond that, it is clear that by focusing on the decoding process
alone, the full complexity of a wireless receiver chipset is not covered. Representing other components in
statistical equations is difficult if possible at all.
One of these is the implemented capture effect, as described in section 6.4. It is definitely an important
modern chipset property, particularly for simulations with high numbers of broadcasting nodes in a wide-
spread environment, which is modeled by probabilistic propagation models. In such setups, without capture,
weak signals from distance stations can prevent reception of strong from near senders. This can have
significant impact on experimental results and decisions based on these simulations.
Currently, the capture effect is implemented only in the Ns2ExtWifiPhy model, because its triggering pol-
icy is directly related to the SINR threshold criterion. The policy is not immediately compatible to the
BER/PER reception criterion, because prior to switching to the new signal, reception of the old packet
must be abandoned. However, in the BER/PER criterion this decision, whether a packet can be correctly
received, is made at the end of the packet and takes the complete reception period into consideration. An
instantaneous decision to abort a packet is not defined by the PER criterion. More work is needed on this
subject.
In figures 6.20 and 6.21 the reception probability of all 802.11a modes is plotted for both BER/PER and
SINR threshold models. The node scenario is the same two nodes constellation as discussed in section 6.7.1.
In figure 6.20, deterministic free-space propagation was selected, and the SINR threshold model yields
discrete reception ranges. On the contrary, BER/PER shows statistical behavior at the reception range
even for a deterministic propagation loss model. Figure 6.21 shows the same simulation with three-log-
distance and Nakagami fast fading, both with default parameters. The sharp drop in probability at 80m is
due to a new m value taking effect in the new distance field, whereas the second, continuous drop at 200m
is caused by a new log-distance exponent taking effect.
So which model should be picked? This depends on the requirements of the targeted experiment.
BER/PER is good if a solid mathematical foundation of the reception process is desired. However the
BER/PER approach consists of a fixed set of equations. No method is currently included to adapt the
criterion to special properties of a real wireless chipset.
SINR is suited for deterministic experiments. Furthermore, the SINR threshold is a single figure, that can
easily be adapted to empirically measured values of a specific chipset.

73

6 PHY Layer Enhancements

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

R
ec
ep

tio
n
pr
ob

ab
ili
ty

Distance (m)

Ns2Ext at 6 or 9 Mb/s
Yans at 6 Mb/s
Yans at 9 Mb/s

Ns2Ext at 12 or 18 Mb/s
Yans at 12 Mb/s
Yans at 18 Mb/s

Ns2Ext at 24 or 36 Mb/s
Yans at 24 Mb/s
Yans at 36 Mb/s

Ns2Ext at 48 or 54 Mb/s
Yans at 48 Mb/s
Yans at 54 Mb/s

Figure 6.20: Two nodes reception probability with Friis propagation loss models and Ns2ExtWifiPhy or
YansWifiPhy in ns-3

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

R
ec
ep

tio
n
pr
ob

ab
ili
ty

Distance (m)

Ns2Ext at 6 or 9 Mb/s
Yans at 6 Mb/s
Yans at 9 Mb/s

Ns2Ext at 12 or 18 Mb/s
Yans at 12 Mb/s
Yans at 18 Mb/s

Ns2Ext at 24 or 36 Mb/s
Yans at 24 Mb/s
Yans at 36 Mb/s

Ns2Ext at 48 or 54 Mb/s
Yans at 48 Mb/s
Yans at 54 Mb/s

Figure 6.21: Two nodes reception probability with ThreeLogDistance- and NakagamiPropagationLoss-
Models, and Ns2ExtWifiPhy or YansWifiPhy in ns-3

74

Chapter 7

EDCA QoS Extensions

The second objective of this thesis is to add EDCA extensions to ns-3. Main target of the EDCA imple-
mentation is to support relative QoS for communication in wireless ad-hoc networks. These encompasses
MANET and VANET simulations, which require no complex HCCA coordination or AP management.
The EDCA implementation was built on the existing DCF implementation in ns-3 and supports both the
802.11e and draft 802.11p default parameter sets. Custom parameters can also be applied to the four
EDCAFs.
Before reviewing the EDCA implementation, the existing DCF simulation design and interrelationship
between the frame transmission coordination classes in ns-3 is discussed.

7.1 Modeling DCF

The DCF implementation of ns-3 was ported from yans (see section 4.2) by Mathieu Lacage, original
implementor of the code in yans and core developer of ns-3. It is very well designed and already has
provisioning for multiple, competing channel access functions. The UML diagram in figure 7.1 shows an
overview of ns-3 classes related to DCF handling. In this section the processing of DCF backoff and
medium access granting is described. Because the existing DCF code is already structured for multiple
coordination functions, the corresponding components of EDCA are mentioned in this section. Original
DCF is implemented with one EDCAF.
Processing of DCF access is based on “signals” from the PHY and lower MAC layer. From the PHY, physical
carrier sense events as packet reception, transmission and CCA_BUSY indications must be signaled for
correct DCF management. Likewise, the lower MAC layer must pass NAV durations from each received
packet to the DCF manager.
These carrier sense events are sent to the main DCF coordinator class DcfManager via two signaling classes,
which follow the observer design pattern. The abstract classes are named WifiPhyListener and MacLowLis-
tener, of which objects can be registered with WifiPhy and MacLow instances to receive events. From each
abstract classes a specific observer class PhyListener and LowListener is derived to forward events to
DcfManager. No processing is done in these signal forwarders.
To coordinate DCF, the DcfManager receives these signals and saves time and duration for NAV, frame recep-
tion, transmission and channel busy events. From these Time values, the function GetAccessGrantStart()
calculates the earliest future time at which a frame may be sent or backoff is performed. This is the latest
end time of all carrier sensing mechanisms (which is the earliest medium idle time), plus one SIFS or EIFS
as appropriate.
Permission to send a packet is granted by the DcfManager to a DcfState, of which multiple can be registered.
Each DcfState represents a DCF or EDCAF, and contains the necessary parameters AIFSN, backoff counter,
CWmin, CWmax, current CW and TXOPLimit. A registered DcfState can request access to the medium
by calling RequestAccess() at DcfManager. When channel access is granted to a DcfState, the function
DoNotifyAccessGranted() is called and frame transmission is initiated. On collisions events, the functions
DoNotifyCollision() or DoNotifyInternalCollision() are invoked to restart backoff with an increased

75

7 EDCA QoS Extensions

contention window. These two classes follow a modified, “interactive” observer pattern, because DcfStates
need to request access.
In ns-3 there is only one “user” of the channel access manager: DcaTxop. It represents a complete channel
access category (AC) including packet queue, coordination function and retransmission handling. It is
plugged into DcfManager with an associated subclass of DcfState named DcaTxop::Dcf, which forwards
channel access events to the main class. Compare this separation of concerns with figure 2.14: the DcfState
corresponds to the box containing AIFS[AC] and CW[AC] values, while the whole column of queue and
coordination function is represented by DcaTxop.
Packets from higher layers that are send via the wireless device are first processed at the WifiMac (MacHigh
layer). This level will be discussed in more detail in section 7.2. Ad-hoc networks operating in DCF can be
simulated with the AdhocWifiMac implementation, which simply queues all packets in one DcaTxop.

7.1.1 Simulating Channel Access Rules

To illustrated the functioning of DCF in ns-3, processing of one queued packet is traced. The packet
arrives from a higher layer at DcaTxop via the Queue() function. In the original ns-3.4 code, the packet is
not processed but only stored in the associated WifiMacQueue. To eventually gain access to the channel,
DcfManager::RequestAccess() is called by DcaTxop for each newly arrived packet.
The principle idea of DcfManager is to calculate backoff countdown in the discrete event simulator with as
few scheduled events as needed. Instead of scheduling a simple decrementation event handler at each slot
time, the future backoff finishing time is predicted and appropriate measures are taken if the prediction is
invalidated.
In RequestAccess() the coordinator first checks if immediate access to the channel is allowed. The 802.11
standard allows immediate access if the last backoff fully elapsed. For this check, the function GetBack-
offEndFor() calculates the end of the previous backoff of the EDCAF from the last backoff start, AIFS
and the current backoff counter value. The last backoff start time directly depends on carrier sense times
m_last.... If the previous backoff end time lies in the past and the medium is idle, immediate access is
granted. If the medium is busy, a collision is signaled and the backoff procedure is started. Otherwise, an
unfinished backoff process continues.
The main function of DcfManager is DoGrantAccess(), which checks the backoff intervals for all registered
DcfStates. Again the end time point for each DCF object is calculated by GetBackoffEndFor(). If access
is requested and the backoff timeout lies in the past, medium access is granted to the coordination function
by calling DoNotifyAccessGranted(). If multiple coordination functions would simultaneously be granted
access, internal collision resolution is triggered. Only the DcfState with highest priority (registered first)
is granted access, all others are notified via DoNotifyInternalCollision() to restart backoff.
If no registered DcfState is granted access, an event is prepared to reprocess channel access later. This
event is scheduled at the earliest predicted next channel grant time, if no interfering carrier busy signals are
raised. At this predicted time, the function AccessTimeout() is called to reprocess DoGrantAccess() and
grant appropriate channel access.
However, a channel busy event can interrupt backoff countdown and invalidate the prediction. This is done in
a busy sense event handler by advancing one of the m_last... Time values. Because GetBackoffEndFor()
includes GetBackoffStartFor(), which in turn depends on GetAccessGrantStart(), advancing the carrier
sense Times automatically advances the backoff end times.
To correctly simulate backoff countdown, the backoff variable must be updated on each carrier busy event.
Only the number of complete SlotTimes elapsed may be deducted from the backoff counter in DcfState,
partially elapsed intervals must be ignored. By calling UpdateBackoffSlotsNow() the new backoff value is
set and the backoff start time updated.
The AccessTimeout() event is not rescheduled on a carrier busy event. It checks for access and reschedules
at the next predicted access time automatically.

76

7.1
M
odeling

D
C
F

DcaTxop::Dcf

DoNotifyAccessGranted(): void
DoNotifyCollision(): void
DoNotifyInternalCollision(): void

DcfState
m_aifsn: int
m_backoffSlots: int
m_backoffStart: Time
m_cwMin: int
m_cwMax: int
m_cw: int
m_txopLimit: Time
m_accessRequested: bool
m_accessGrantedStart: Time
StartBackoffNow(nSlots: int): void
UpdateFailedCw(): void
UpdateBackoffSlotsNow(nSlots: int,
 backoffUpdateBound: Time): void
DoNotifyAccessGranted(): void
DoNotifyCollision(): void
DoNotifyInternalCollision(): void

DcfManager
m_slotTime: Time
m_sifs: Time
m_lastNavStart: Time
m_lastNavDuration: Time
m_lastRxStart: Time
m_lastRxDuration: Time
m_lastRxReceivedOk: bool
m_lastRxEnd: Time
m_lastTxStart: Time
m_lastTxDuration: Time
m_lastBusyStart: Time
m_lastBusyDuration: Time
RequestAccess(state: DcfState): void
DoGrantAccess(): void
UpdateBackoff(): void
GetAccessGrantStart(): Time
GetBackoffEndFor(state: DcfState): Time
DoRestartAccessTimeoutIfNeeded(): void
AccessTimeout(): void

DcaTxop
m_currentPacket: Ptr<const Packet>
m_currentHdr: WifiMacHeader
m_fragmentNumber: int
m_rng: RandomStream
Queue(packet: Ptr<const Packet>,
 hdr: WifiMacHeader): bool
NotifyAccessGranted(): void
NotifyInternalCollision(): void
NotifyCollision(): void

PhyListener

NotifyRxStart(duration: Time): void
NotifyRxEndOk(): void
NotifyRxEndError(): void
NotifyTxStart(duration: Time): void
NotifyMaybeCcaBusyStart(duration: Time): void

WifiPhyListener

WifiPhy

LowNavListener

NavStart(duration: Time): void
NavReset(duration: Time): void

MacLowNavListener

DcaTxop::TransmissionListener

GotCts(snr: double, txMode: WifiMode): void
MissedCts(): void
GotAck(snr: double, txMode: WifiMode): void
MissedAck(): void
StartNext(): void
Cancel(): void

MacLowTransmissionListener

MacLow

AdhocWifiMac

Enqueue(packet: Ptr<const Packet>, to: Mac48Address): void

QosAdhocWifiMac
m_defaultQosTag: WifiQosTag
Enqueue(packet: Ptr<const Packet>, to: Mac48Address): void
SetDefaultEdcaParameters(paramSet: enum DefaultEdcaParameterSet): void

WifiMac

WifiQosTag
m_tid: int
m_ackPolicy: enum AckPolicy
SetTid(tid: int): void
SetAc(ac: enum AccessCategory): void
GetAc(): enum AccessCategory
SetAckPolicy(ackPolicy: enum AckPolicy);

MacTxMiddle
m_sequence: int
m_qosSequences: int[16]
GetNextSequenceNumberfor(hdr: WifiMacHeader): int

WifiRemoteStationManager

Lookup(address: Mac48Address): WifiRemoteStation
LookupNonUnicast(): WifiRemoteStation

WifiRemoteStation
GetDataMode(packet: Ptr<const Packet> packet,
 fullPacketSize: int): WifiMode
NeedRts(packet: Ptr<const Packet>): bool

WifiMacQueue
m_maxSize: int
m_queue: std::deque<Item>
IsEmpty(): bool
Enqueue(packet: Ptr<const Packet> packet, txDuration: Time,
 hdr: WifiMacHeader,
 txParams: MacLowTransmissionParameters): void
Dequeue(txDuration: Time, hdr: WifiMacHeader,
 txParams: MacLowTransmissionParameters): Ptr<const Packet>
PeekNextPacket(): Ptr<const Packet>
PeekNextDuration(): Time

MacLowTransmissionParameters
m_sendRts: bool
m_waitAck: enum
m_rtsMode: WifiMode
m_dataMode: WifiMode
m_nextSize: int
EnableRts(): void
EnableNextData(size: int): void
...

4

m_currentTxParams

Figure 7.1: UML diagram of EDCA related classes

77

7 EDCA QoS Extensions

7.1.2 Initiating Frame Transmission

Once DoNotifyAccessGranted() is signaled to DcaTxop by the coordination manager, a single frame may be
transmitted in DCF. Lower packet transmission aspects are handled by MacLow, which ultimately forwards
the packet to WifiPhy.
When receiving channel access permission, DcaTxop dequeues the next waiting frame. For this frame, trans-
mission parameters are requested from StationManager depending on frame type, size and destination. The
transmission parameters can include an optional RTS/CTS exchange and fragmentation for which Station-
Manager can apply a frame length threshold. In the 802.11 base standard, ACK packets are mandatory
for all unicast frames, while for broadcast or groupcast frames no ACKs are sent. All these parameters are
specified to MacLow in the MacLowTransmissionParameters.
MacLow handles transmission of a single frame, with an optional preceding RTS/CTS exchange, and waits
for a following ACK frame if indicated. No retransmission is handled by MacLow. Successful or failed
transmissions are signaled to DcaTxop by the abstract MacLowTransmissionListener, which is forwarded
using DcaTxop::TransmissionListener. Within DcaTxop, retransmission events for CTS or ACK timeouts
are handled if appropriate.
Fragmentation is handled in DcaTxop by sending only partial packets to MacLow. 802.11 allows fragmentation
“bursts”, in which a sequence of frames is transmitted with only SIFS waiting intervals. For each fragment
the NAV duration is set to include the next prospective packet as well. This is signaled to MacLow via the
EnableNextPacket() function and triggers a callback via MacLowTransmissionListener::StartNext()
after SIFS of the preceding transmission. This mechanisms was changed to allow TXOP bursts, as described
in the following section.

7.2 Extending Model with EDCA

In this section the modifications added to ns-3 to support EDCA are described.
DcfManager and DcaTxop already contain much of the functionality required. Multiple queues and EDCAF
can be registered with DcfManager and channel access fully follows the 802.11e standard. Instead of DIFS
the code in DcfState already works with AIFS and AIFSN, CWmin and CWmax can be set as required.
To provide relative QoS to upper layers, a QosAdhocWifiMac high MAC layer was implemented, which
contains four EDCAF by creating four associated DcaTxops. Two different default EDCA parameter sets
can be selected by setting the attribute EDCAParameterSet upon creation: 802.11e and 802.11p/D4.02. The
values are listed in section B.2 of the appendix.
Upper layers can select the AC or traffic identifier (TID) by applying a WifiQosTag to a packet. If a packet
is Enqueue()-d without an attached WifiQosTag, the function uses the m_defaultQosTag, which is initially
set to AC_BE.
The QoS field added to the MAC header for QoS-data frames allows specification of an ACK policy. Thus
unicast frames can also be sent without subsequent explicit acknowledgment. The relevant MacLow code of
ns-3 was adapted and the ACK policy may also be specified in the WifiQosTag.
The switching between the different DcaTxop access category (AC) is performed in QosAdhocWifiMac::En-
queue(). All other relative QoS features are implemented by DcfManager.

7.2.1 Implementing TXOPLimits

One crucial feature of EDCA was not present in the code of ns-3.4: TXOP limits. These prescribe a
maximum frame transmission duration for each EDCAF. Furthermore, when granted access to the channel
the EDCAF may send a “burst” sequences of smaller frames spaced only with SIFS.
For this thesis DcaTxop was extended to adhere to a TXOPLimit. Creation of a new class, e.g. called
EdcaTxop, was not done, because the old behavior of DcaTxop is retained for TXOPLimit = 0.
To correctly implement TXOP limits and burst sequences, the duration of each frame enqueued in DcaTxop
must be calculated and remain fixed. This requires that all MacLowTransmissionParameters are decided

78

7.3 Implementation Issues

upon at queue time and may not be changed later on. The old behavior of ns-3 was to allow StationManager
to determine RTS/CTS, fragmentation and wifi mode parameters at transmission time. To retain the old
behavior for DCF, only optional wifi mode overrides are declared via MacLowTransmissionParameters.
Once all transmission parameters are fixed in DcaTxop::Queue(), the transmission duration of the frame
can be determined. If the frame duration exceeds TXOPLimit, queuing is rejected.
The frame duration is saved together with transmission parameters and packet data in the WifiMacQueue.
TXOP bursts are implemented by modifying the fragmentation mechanism. When a TXOP is granted
with TXOPLimit > 0, the prospective frame transmission duration must be checked. Simultaneously the
duration of the following frame is checked: if transmission of both frames with a SIFS interval is possible
within the TXOP, the NAV duration of the first is set of encompass both frames. This is done by setting
EnableNextPacket(). Because of this flag, MacLow calls StartNext() after SIFS, upon which the following
frame of the burst sequence is transmitted. The same NAV extension decision is made again, and so the
burst sequence can extend to fill the whole TXOP.
The implementation of EDCA including TXOP limits and bursts is verified in section 7.4.

7.3 Implementation Issues

Before discussing the scenarios to check EDCA, some problems encountered during implementation and
verification are discussed. Multiple errors in the DCF code in ns-3 were found and corrections for these were
promptly included in the ns-3.4 release.
During the maximum throughput experiment, described in the following section 7.4.1, the following three
bugs were found. Their level of impact depends greatly on the scenario; in the verification tests they showed
a major change of results.

• The formula for contention window (CW) growth was incorrectly implemented. In ns-3.3 an incorrect
formula, CWnew := min

{
2 · CWold, CWmax

}
, was used instead of the correct equation 2.2.

• For backoff processing a uniformly distributed random value is chosen from [0 . . .CW]. However, the
value generated by the underlying UniformVariable was not correctly processed and not all possible
integers were equally probable. This resulted in a skew of random inter-packet waiting times.

• The old DcfManager code issued an invalid collision signal for two broadcast packets immediately
following each other with a backoff of zero. This was due to incorrect handling of immediately granted
medium access in DcfManager::RequestAccess().

Furthermore, ns-3.4 only contains the OnOffApplication for traffic generation experiments. This class is
designed to generate constant bit rate (CBR) in on state, where on and off states alternate with randomly
distributed periods. This application was not sufficiently flexible to generate the traffic streams envisioned
for the experiments of this thesis. Moreover, OnOffApplication first generates packets at the end of each
calculated interval.
So a new, highly flexible traffic generator called TrafficApplication was added to ns-3, which was based on
OnOffApplication. It sends packets generated by an abstract factory, TrafficPacketFactory, at intervals
defined solely by a RandomVariable. In the packet factory packets can be create with randomly distributed
sizes and necessary QoS tags attached. This enables simulation of both periodic broadcast beacons sent at
jittered intervals and Poisson-distributed packets streams. The periodic broadcast is used in the speed test
scenario to correctly compare ns-2 and ns-3, while Poission-distributed waiting times are employed in the
second of the EDCA experiments.

7.4 Verification

Two simulation experiments are used to check the EDCA implementation in ns-3. Both focus on two different
aspects of modeling coordinated medium access: the first verifies correct handling of different coordination

79

7 EDCA QoS Extensions

sequences from only one node. By saturating the medium, correct inter-packet backoff management is tested.
The second scenario shows how EDCA parameters effect four equal, simultaneous traffic streams. Relative
QoS as provided by EDCA is thereby verified.

7.4.1 Maximum Throughput

The first experiment used to verify EDCA is simulation of the maximum throughput achievable with different
parameter configurations. Initially this experiment does not sound very interesting; maximum throughput
of 802.11 is a well studied topic. However, the maximum throughput depends directly on the EDCA
parameters AIFSN and CWmin. Furthermore, the full, complex DCF/EDCAF and CSMA/CA scheme
including random backoff and DATA/ACK or TXOP burst sequences is verified with this experiment.
Most importantly, the maximum throughput values for each configuration can be determined analytically
from information in the 802.11 standard. Thus experimentally determined values can be compared to
independent, exact calculations.
The node layout is kept very simple: two nodes are created at exactly the same location. One node sends a
very high number of packets, saturating the channel as far as EDCA rules permit. The other node counts
the number of received packets and from simulated time and packet payload bytes, the maximum payload
throughput is determined. Because both nodes are at the same place, propagation loss and delay have no
influence.
Different parameters of the saturating packet stream are varied. Wireless transmission data rate is clear to
have impact. But also packet size has great impact due to the increased number of waiting intervals. These
waiting intervals depend on the AIFS and CWmin parameters of the EDCAF.
Moreover, most interesting for EDCA validation are the different transmission mechanisms for a packet.
Packets can be ACKed or sent as unacknowledged broadcast frames. Within a TXOP multiple frames
can be sent as a burst sequence, each with or without ACK following. All four combinations were tested.
RTS/CTS exchanges were not included in experiment, because they are not implemented in the scope of
the modified code.
The experimentally determined maximum throughput values were compared to analytical calculations. For
each frame sequence, unacknowledged broadcast, ACKed unicast, ACKed and unACKed TXOP bursts, the
maximum throughput can be calculated using elementary arithmetic, solely from information in the 802.11
standard. It thus is independent from possible bugs in ns-3.
This was done for the four frame sequences and all ACs defined by the default EDCA parameters of 802.11e
and 802.11p/D4.02. The analytic values were then compared to experimental results. For the experimental
runs and analytic calculations, the packet sizes 80, 200, 400 and 2 304 were chosen to represent small and
large payloads and the three 802.11a wireless modes 6Mb/s, 24Mb/s and 54Mb/s were selected for low,
medium and high data rates.

Analytic Maximum Throughput

Four different frame transmission options are tested: unACKed broadcast frames, ACKed unicast frames, a
burst of unACKed frames in a TXOP, and a burst of ACKed frames. All four frame sequences are illustrated
in figure 7.2.
Each option yields a different maximum throughput, that also depends on the average waiting time after a
frame. The waiting time consists of AIFS plus the random backoff selected from [0 . . .CW] · SlotTime.
Due to lack of collisions in the simple two nodes experiment, the contention window never changes from
CWmin. Furthermore, because the maximum throughput of an infinitely large number of packets is de-
termined, the expected mean value of all random backoffs can be used. As random backoff is uniformly
distributed between 0 and CWmin, the expected value is simply CWmin

2 .
The frame sequence of unACKed broadcast frames is shown in figure 7.2(a). To calculate maximum through-
put, the length of one data frame plus the average required inter-frame time must be analyzed.
The first necessary step is to calculate the duration of a data frame containing x payload bytes. These
payload bytes are wrapped with header and trailer of multiple intermediate layers before transmission.

80

7.4 Verification

DATA
AIFS CW

DATA
AIFS CW

Frame
Time

(a) No ACK

DATA
SIFS

ACK

AIFS CW

Frame

Time

(b) With ACK

DATA
SIFS

DATA
AIFS CW

Frame ≤ TXOPLimit
Superframe

DATA
SIFS

DATA
SIFS

Time

(c) No ACK - TXOP Burst

DATA
SIFS

ACK

AIFS CW
DATA

SIFS
ACK

SIFS
DATA

SIFS
ACK

SIFS

Superframe

Frame ≤ TXOPLimit

Time

(d) With ACK - TXOP Burst

Figure 7.2: Maximum throughput frame sequences

Every packet sent on an 802.11 device is wrapped with a three bytes LLC header followed by a five bytes
long subnetwork access protocol (SNAP) extension header, both defined in 802.2. In ns-3, this header is
added by WifiNetDevice; ns-2 lacks simulation of the LLC/SNAP header.
The 802.11 MAC adds a header and trailer to the frame payload for addressing and distributed coordination.
Figure 2.7 shows all possible header fields, however, not all are prefixed to each frame. Depending on the
frame type field, a different set of fields is transmitted. For maximum throughput calculation, this requires
a distinction between non-QoS data frames and QoS data frames, because QoS frames contain the extra
2 bytes QoS field.
So the total number of bytes bdata or bQoS-data contained in a MAC protocol data unit (MPDU), before
sending to the PHY, is

bdata(bpayload) = 24byte
MAC header

+ 8 byte
LLC/SNAP header

+ bpayload + 4 byte
MAC trailer

bQoS-data(bpayload) = 26byte
MAC QoS header

+ 8 byte
LLC/SNAP header

+ bpayload + 4 byte
MAC trailer

where bpayload is the number of payload bytes. The MAC header of a normal, non-QoS frame contains the
following fields: frame control, duration, address 1 (destination or broadcast address), address 2 (source
address), address 3 (BSSID) and sequence number. For QoS frames the addition QoS control field is added.
The MAC trailer contains only the four bytes CRC32 checksum.
For ACKed sequences the duration of an ACK frame is required. This control frame’s structure is different
from data frames. It consists only of the following fields: frame control, duration, address 1 (destination)
and CRC32 checksum [12, figure 7-8]. The total number of bytes is thus

bACK = 2byte
Frame Control

+ 2 byte
Duration

+ 6byte
Destination Address

+ 4 byte
CRC32

81

7 EDCA QoS Extensions

LLC/SNAP

MSDU CRC32MAC Header

PSDU PaddingPLCP Header

Payload

Figure 7.3: Wrapping of payload with headers and trailers

For the maximum throughput experiment three different 802.11a transmission modes are used: 6Mb/s,
24Mb/s and the highest 54Mb/s. On-air PHY transmission duration of a frame tf is specified by the 802.11
standard [12, p. 625] as

tf(b,NNBPS) = 16 µs
PLCP Preamble

+ 4 µs
“Signal” symbol

+
⌈

16bit + b · 8 bit
byte + 6 bit

NNBPS

⌉
Data symbols

· 4 µs
symbol

where b is the number of MSDU bytes and NNBPS the number of bits per symbol, depending on the used
data rate (see table 2.3). The values are 24 bit

symbol for 6Mb/s, 96 bit
symbol for 24Mb/s and 216 bit

symbol for
54Mb/s. The PLCP wrapping of the MSDU bytes is illustrated in figure 2.2. Duration of all frames used
for the maximum throughput experiment are tabulated in table 7.1.
From frame duration and waiting time until the next transmission, the length of a transmission iteration
period p can be easily calculated for unACKed and ACKed sequences.

pNoACK(b,NNBPS,AC) = tf(b,NNBPS) +AIFS[AC] + CWmin
2 · 9 µs

SlotTime

pACK(b,NNBPS,AC) = tf(b,NNBPS) + 16 µs
SIFSTime

+ tf(bACK, NNBPS) +AIFS[AC] + CWmin
2 · 9 µs

SlotTime

for b the MSDU payload bytes, NNBPS the number of bits per symbol and AC the EDCA access category.
And from the transmission iteration period, the maximum throughput rate is

rthroughput,T ype(b,NNBPS,AC) =
b · 8 bit

byte
pType(b,NNBPS,AC) (7.1)

where rthroughput is in bit/s, due to multiplying bytes by eight.
For the more complex calculation of transmission iteration periods in a TXOP burst sequences, review
figures 7.2(c) and 7.2(d). First the number of frames plus SIFS, which fit into one TXOPLimit, must be
calculated, where the last frame is not followed by SIFS. Waiting time before the next transmission is not
part of the TXOP. So the maximum number of frames in a burst with and without ACK can be determined
as

nburst-NoACK(b,NNBPS,TXOPLimit) =
⌊TXOPLimit + 16 µs
tf(b,NNBPS) + 16 µs

⌋

nburst-ACK(b,NNBPS,TXOPLimit) =
⌊ TXOPLimit + 16 µs
tf(b,NNBPS) + 16 µs + tf(bACK, NNBPS) + 16 µs

⌋

non-QoS frames QoS frames ACK
Payload bytes 80 200 400 2 304 80 200 400 2 304 14
6Mb/s 180 µs 340µs 608µs 3 144µs 184µs 344 µs 608µs 3 148µs 44 µs
24Mb/s 60 µs 100µs 168µs 804µs 64µs 104µs 168µs 804µs
54Mb/s 40 µs 56µs 88µs 368µs 40µs 56µs 88µs 368µs

Table 7.1: Frame durations used in maximum throughput experiment

82

7.4 Verification

where 16 µs is the SIFSTime for 802.11a and TXOPLimit in (micro)seconds.
And from the number of frames in a transmission iteration superframe followed by the appropriate waiting
time, the total iteration period is

pburst-Type(b,NNBPS,AC) = nburst-Type(b,NNBPS,TXOPLimit[AC]) ·
(
tf(b,NNBPS) + 16 µs

)
− 16 µs

+ AIFS[AC] + CWmin
2 · 9 µs

again where 16 µs is the SIFSTime and 9µs the SlotTime for 802.11a. The maximum throughput for TXOP
burst sequences is thus calculated by inserting pburst-NoACK or pburst-ACK into equation 7.1.
For all experimentally tested configurations the corresponding ideal analytic values are shown in table 7.2.

Experimental Maximum Throughput

To verify EDCA and CSMA/CA rules implemented in ns-3, a maximum throughput experiment was run
for each AC of the EDCA default parameters in 802.11e and 802.11p/D4.02. Three different wireless modes
and four different packet sizes were tested, as listed in the introductory section of this scenario.
For each experiment configuration, 100 independent replications were run, where each run simulated 60 s
time. For experiments with 2 304 byte packets the simulated time was increased to 120 s due to the longer
packet duration. The mean throughput and 99% confidence interval were determined, and compared to the
analytical mean value. Both ideal value and difference to the experimentally determined value are listed in
table 7.2 for each tested configuration. The second value following the difference is the result’s margin of
error with 99% confidence level.
As listed in the table, the maximum margin of error over all experimental maximum throughput value is
±1 726 b/s for unACKed AC_BE with 802.11e and 54Mb/s. This shows that random effects included in
the experiment due to random backoff selection have only a very small influence on the result.
The difference between analytic and mean experimental maximum throughput result is at most 701 b/s
for unACKed DCF traffic at 54Mb/s. This impressively small difference shows that DCF/EDCA frame
exchange sequences and the backoff procedure work as required for the single node case.
The next scenario focuses on collisions between multiple nodes and interruptions of EDCA backoff caused
by carrier sensing.

7.4.2 EDCA Traffic Streams

The second experiment is designed to test the relative QoS provided by the EDCA implementation added
to ns-3. In this scenario, multiple nodes are set up to send four independent data streams using the four
different ACs provided by EDCA. When the number of nodes is increased, medium utilization increases as
well and the four streams’ access priority takes effect.
All nodes are located at the same virtual location, thus propagation loss and delay have no influence the
experiment. One passive listener and n active senders are configured. Each sender transmits four traffic
streams: all four streams consist of packets with 200 payload bytes sent at 160Kb/s. The inter-packet
waiting time is Poisson distributed with 100 packets per second on average. To analyzed relative QoS, the
AC of the four traffic streams is set to VO, VI, BE and BK, by attaching a WifiQosTag to each generated
packet. The packets are sent with the base wifi data rate of 6Mb/s. Both unACKed broadcast and ACKed
unicast transmission parameters were tested.
The number of sender nodes is increased stepwise from 1 to 30, of which each broadcasts or unicasts the four
streams for 60 s simulated time. At the listener node all received packets are counted by AC. The received
data rate of each AC is plotted in figure 7.4 for the four ACs, configured once with 802.11e and once with
802.11p/D4.02 defaults (see section B.2).
Discussion of the results must first focus on the two unACKed broadcast plots. As the number of nodes
increases, medium load increases and relative QoS prioritization takes effect. The sharpest drop in through-
put can be seen for AC_BK in both diagrams, while with seven nodes the total load is 4 480 kB/s and only

83

7 EDCA QoS Extensions

few background packets are not sent, with eight sender nodes and a total load of 5 120 kB/s a much larger
amount of background traffic gets dropped. AC_VO, AC_VI and AC_BE priority packets clearly are sent
with higher priority than AC_BK.
For higher channel loads, throughput of the lower priority traffic streams decreases as expected. Note that
with 802.11e parameters, AC_VO and AC_VI have equal AIFSN = 2 and thus are treated equally in the
long run. However, their throughput is reversed in figure 7.4(a): less VO packets are received than VI. This
is due to the higher collision rate of VO packets on the medium: the packets are broadcasted and thus no
ACK frames are generated. Because the random backoff interval of VO is only [0 . . . 3], while that of VI is
[0 . . . 7], the collision rate of VO is higher and thus less packets are correctly received.
With 802.11p parameters (figure 7.4(b)), all AIFSN are different and therefore in the long run only VO traffic
is sent. With between 13 and 20 sender nodes, the relative QoS of the three streams is most prominently
shown: packets from all three categories are still sent, but different collision rates apply and prioritized
throughput is achieved.
The second pair of plots contains experimental results for ACKed unicast transmissions of all n senders to
the single listener. For 802.11e the expected priority of VO is now visible, due to fast retransmissions in
case the first frame was lost. In both plots relative QoS, as provided by EDCA, can be seen in a more
pronounced degree than in the unACKed experiments. Due to retransmissions, the channel load increases
faster than with broadcast frames and thus the lower priority streams throughput falls more quickly.
Further experiments with ACKed packet streams like measuring delay, retransmissions and channel access
time could be done. However, the two experiments with unACKed streams capture the core of EDCA
prioritization: ACKs and retransmissions are not core EDCA components.
The verifying experimental results show that relative QoS is correctly provided by the EDCA implementation
added to ns-3. By applying a WifiQosTag in existing ns-3 applications, research using relative QoS in wireless
simulations is now possible.

84

7.4
V
erification

Analytic maximum throughput Difference to experimental result and margin of error
Data rate no ACK with ACK no ACK with ACK
Payload bytes 80 200 400 2 304 80 200 400 2 304 80 200 400 2304 80 200 400 2304
DCF
6 Mb/s 2 273 535 3 624 009 4 510 218 5 679 248 1 874 085 3 190 429 4 158 545 5 576 161 5/194 -9/ 222 143/ 212 80/ 108 36/150 78/228 45/ 207 115/ 93
24 Mb/s 3 962 848 7 940 447 11 873 840 20 355 605 2 889 391 6 118 547 9 711 684 19 090 627 42/425 -158/ 702 116/ 928 -13/ 613 -9/274 7/607 177/ 693 260/ 702
54 Mb/s 4 522 968 10 158 730 16 886 544 39 258 786 3 176 179 7 356 322 12 825 651 34 810 198 46/514 -510/1 036 179/1 708 701/1 661 23/317 105/819 356/1 053 474/1 377

802.11e / AC_VO
6 Mb/s 3 129 584 4 349 303 5 001 954 0 2 403 305 3 716 609 4 573 062 0 9/ 30 14/ 36 38/ 42 0/ 0 16/ 22 12/ 37 35/ 39 0/ 0
24 Mb/s 7 837 577 13 047 910 17 026 937 21 646 506 4 470 835 8 698 607 12 838 516 20 221 613 40/ 64 -11/ 110 7/ 161 85/ 171 -6/ 35 9/ 76 -2/ 124 44/ 170
54 Mb/s 11 195 335 21 768 707 30 117 647 46 722 433 5 404 352 11 863 836 19 104 478 40 554 455 39/101 70/ 192 12/ 244 -109/ 293 3/ 45 28/ 92 114/ 180 128/ 303

802.11e / AC_VI
6 Mb/s 3 148 057 4 369 346 5 028 482 0 2 419 660 3 746 446 4 595 225 0 1/ 42 -9/ 56 58/ 60 0/ 0 20/ 33 3/ 46 36/ 55 0/ 0
24 Mb/s 7 868 417 13 116 904 17 103 725 22 034 668 4 495 735 8 738 693 12 896 725 20 559 955 40/105 -53/ 152 198/ 223 128/ 241 -12/ 55 66/124 71/ 166 167/ 198
54 Mb/s 11 244 510 21 864 324 30 272 386 47 132 055 5 428 152 11 918 063 19 190 405 40 756 219 67/142 113/ 266 40/ 385 96/ 432 55/ 60 -60/149 -146/ 206 132/ 428

802.11e / AC_BE
6 Mb/s 2 173 175 3 520 352 4 453 723 5 656 590 1 805 360 3 109 815 4 110 469 5 554 317 102/173 -144/ 242 5/ 214 88/ 107 -116/136 -28/182 7/ 212 113/ 94
24 Mb/s 3 667 622 7 459 207 11 490 126 20 155 276 2 729 211 5 828 780 9 453 471 18 914 315 -99/375 -187/ 687 155/ 998 -10/ 611 -79/233 -110/485 146/ 686 258/ 689
54 Mb/s 4 252 492 9 609 610 16 120 907 38 520 376 3 040 380 7 064 018 12 379 110 34 228 412 -202/477 -324/1 006 66/1 726 470/1 598 -85/267 -282/642 -33/1 018 459/1 353

802.11e / AC_BK
6 Mb/s 1 936 460 3 261 978 4 241 219 5 594 779 1 638 924 2 906 449 3 928 791 5 494 709 21/152 4/ 201 232/ 230 85/ 107 7/115 151/178 14/ 203 114/ 92
24 Mb/s 3 040 380 6 387 226 10 174 881 19 391 899 2 365 989 5 152 979 8 544 726 18 240 475 236/302 104/ 582 72/ 861 -87/ 575 12/202 -313/378 151/ 620 257/ 650
54 Mb/s 3 431 635 7 901 235 13 646 055 35 825 073 2 596 349 6 095 238 10 865 874 32 083 551 292/392 319/ 780 -126/1 188 154/1 430 41/229 -322/482 193/ 902 230/1 245

802.11p / AC_VO
6 Mb/s 2 764 579 4 086 845 4 881 770 5 768 111 2 195 540 3 543 743 4 472 397 5 661 803 33/ 62 33/ 74 21/ 65 74/ 29 23/ 38 -18/ 64 8/ 63 83/ 24
24 Mb/s 5 739 910 10 561 056 14 849 188 21 646 506 3 731 778 7 565 012 11 615 245 20 221 613 113/177 113/ 304 -67/ 333 31/ 164 30/ 84 -10/187 24/ 270 65/ 178
54 Mb/s 7 314 286 15 458 937 23 616 236 44 361 011 4 338 983 9 785 933 16 368 286 38 763 407 212/273 228/ 516 -309/ 636 236/ 525 39/101 51/282 -19/ 435 249/ 390

802.11p / AC_VI
6 Mb/s 2 661 123 3 995 006 4 815 651 5 751 911 2 129 784 3 474 484 4 416 839 5 646 194 -28/ 55 19/ 65 11/ 64 80/ 28 15/ 42 46/ 59 -32/ 55 87/ 26
24 Mb/s 5 311 203 9 968 847 14 253 898 21 420 105 3 545 706 7 256 236 11 247 803 20 023 900 -37/174 11/ 258 45/ 281 16/ 160 -16/ 96 39/185 -156/ 218 79/ 175
54 Mb/s 6 632 124 14 222 222 22 145 329 43 420 495 4 089 457 9 275 362 15 647 922 38 043 344 -42/236 26/ 522 -108/ 539 197/ 513 16/112 69/269 -336/ 365 238/ 372

802.11p / AC_BE
6 Mb/s 2 241 681 3 591 470 4 510 218 5 672 257 1 852 388 3 165 183 4 158 545 5 569 421 -19/ 90 -49/ 112 -5/ 133 78/ 53 -19/ 63 0/ 92 -17/ 117 94/ 47
24 Mb/s 3 867 069 7 785 888 11 873 840 20 355 605 2 838 137 6 026 365 9 711 684 19 090 627 -86/203 -62/ 363 68/ 516 24/ 307 -18/123 -57/258 87/ 357 140/ 347
54 Mb/s 4 522 968 10 158 730 16 886 544 39 258 786 3 176 179 7 356 322 12 825 651 34 810 198 -120/253 -201/ 564 22/ 948 340/ 828 -49/141 -121/338 -49/ 538 285/ 682

802.11p / AC_BK
6 Mb/s 1 836 442 3 146 509 4 142 395 5 564 377 1 566 707 2 814 424 3 843 844 5 465 382 33/139 -63/ 186 118/ 185 81/ 106 15/118 33/186 48/ 183 126/ 89
24 Mb/s 2 800 875 5 959 032 9 624 060 19 031 492 2 218 371 4 870 624 8 152 866 17 921 245 92/259 113/ 533 -19/ 754 -136/ 576 54/158 -89/411 -86/ 645 227/ 640
54 Mb/s 3 129 584 7 256 236 12 673 267 34 614 085 2 419 660 5 704 100 10 240 000 31 108 861 -182/302 172/ 651 102/ 980 143/1 373 48/223 104/506 -593/ 797 191/1 196

Table 7.2: Analytic maximum throughput and difference to experimental data

85

7 EDCA QoS Extensions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25 30Pa
yl
oa

d
ra
te

re
ce
iv
ed

at
lis
te
ne

r
(M

b/
s)

Number of sending nodes

AC_VO
AC_VI
AC_BE
AC_BK

(a) UnACKed broadcast with EDCA parameters in 802.11e

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0 5 10 15 20 25 30Pa
yl
oa

d
ra
te

re
ce
iv
ed

at
lis
te
ne

r
(M

b/
s)

Number of sending nodes

AC_VO
AC_VI
AC_BE
AC_BK

(b) UnACKed broadcast with EDCA parameters in 802.11p/D4.02

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 5 10 15 20 25 30Pa
yl
oa
d
ra
te

re
ce
iv
ed

at
lis
te
ne
r
(M

b/
s)

Number of sending nodes

AC_VO
AC_VI
AC_BE
AC_BK

(c) ACKed unicast with 802.11e

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 5 10 15 20 25 30Pa
yl
oa
d
ra
te

re
ce
iv
ed

at
lis
te
ne
r
(M

b/
s)

Number of sending nodes

AC_VO
AC_VI
AC_BE
AC_BK

(d) ACKed unicast with 802.11p/D4.02

Figure 7.4: EDCA traffic streams broadcast throughput

86

Chapter 8

Speed Comparison – ns-2 vs. ns-3

Simulation run time is a major aspect for researchers wanting to switch to ns-3. If the required experiment
models and applications are present in ns-3, is there a performance gain that can be achieve by switching
from ns-2? This section gives an answer to this question for wireless simulations.
Besides the performance consideration, other aspects should also be taken in account. The overall better
design and code quality of ns-3 is of higher value for reliable experiments. Moreover the complete restruc-
turing of ns-3’s core and rewritten individual models makes a direct comparison impossible. “Switching to
ns-3” is more a process of reengineering scenarios than of porting Tcl code.
Nevertheless, in this thesis a direct performance comparison of ns-2 and ns-3 is done in for a complex wireless
scenario. A sound, direct comparison was first made possible with the equal models implemented for this
thesis. The speed comparison must also focus on the different influencing factors as compiler, build options
and architecture. Possible future optimizations to increase performance of ns-3 are discussed after reviewing
speed test results.

8.1 Highway Lanes Scenario

To compare ns-2 and ns-3, an abstract, reasonably large highway scenario was designed. All components
used are available in both ns-2 and ns-3 and measured experimental results are absolutely equal.
A number of nodes is set up at fixed positions on a six lane highway as illustrated in figure 8.1. Multiples
of 6 nodes are used for all experiment runs.
In the experiment the 802.11 layers are focused, other aspects as TCP, IPv4 or routing are not in the scope
of this thesis and are omitted from the speed test experiment. Wireless communication is simulated in
ns-2 with the Mac802_11Ext and WirelessPhyExt class, whereas in ns-3 the Ns2ExtWifiPhy and standard
MAC modules are used. Thus the speed comparison encompasses the now compatible 802.11 MAC and
PHY models, packet construction and passing between simulation nodes and many core components like
the event scheduler and simulated time calculation.
The three-field log-distance propagation loss model is used without Nakagami fast fading in ns-2, and in
ns-3 the corresponding ThreeLogDistancePropagationLossModel, added for this thesis, is configured with
equal parameters.
All nodes periodically broadcast beacon-like packets at 10Hz containing 400 bytes payload. Start time of
the isochronous packet stream is uniform randomly distributed with [0 . . . 0.1] seconds.

Figure 8.1: Highway lanes scenario with 102 nodes

87

8 Speed Comparison – ns-2 vs. ns-3

Packets are sent at the basic 6Mb/s 802.11a data rate with 20 dBm transmit power, the carrier sense
threshold is set to -84 dBm and the noise floor is -99 dBm. Reception is determined by the SINR threshold
of 5 dB, which is the default in both employed PHY models. Frame capture is also activated in both
simulators with the default thresholds.
Only a very simple measurement is performed in the experiment: all sent and received packets are counted
over all nodes in the scenario. Furthermore, reception errors are measured to check for collisions, but these
values are not comparable in ns-2 and ns-3 due to the different effects they represent, and excluded from
the further analysis.
Great effort was put into making the experiment run equally on ns-2 and ns-3. Many problems and bugs
were encountered in this process. The following list contains some of the troublesome differences and, if
possible, how they were rectified.

• Start time of the periodic packet streams must be randomly distributed over one beacon interval.
To make both simulators produce equal results, these phase offsets were determined with a simple
pseudo-random function instead of using the complex random generators of each simulator. The
random function depends only on node number.

• For packet generation, the PBCAgent was used for periodic broadcast in ns-2, whereas in ns-3 the
TrafficApplication class was configured with constant intervals. Getting these two applications to
produce packets at exactly the same simulated time points was challenging.

• As described in previous sections, ns-2 does not add the eight byte LLC/SNAP header. This difference
is remedied by increasing the packet payload to 408 bytes.

• While ns-2 does not include the LLC header, it does simulate a link layer (LL) delay of by default
25 µs. This delay was deactivated to attain identical packet sending times.

• Reception power calculation in ns-2 is primarily done in watt, with conversion to dBm were necessary
for the log-distance model. Whereas in ns-3 it is generally done in dBm. This difference may introduce
some rounding errors.

• Simulated time in ns-2 and ns-3 is fundamentally different, because ns-2 uses a simple double type,
while ns-3 uses an exact 128-bit integer representing nanoseconds. Inaccuracies introduced by double
rounding are difficult to grasp.

• Results are gained in ns-2 by analysing the trace file after simulation finish, whereas in ns-3 statistical
analysis runs alongside the simulation. To alleviate this difference, the trace output of ns-2 was directly
coupling to an analysis program, as will be described in the following section.

Despite all these small differences between the simulators, and after fixing a critical bug in the cumulative
noise implementation of ns-2, the experimental results are exactly equal.
Moreover, a detailed tracing of exact packet send and arrival time points showed only very small variations
between ns-2 and ns-3. These small variations, in the range of microseconds, were due to fundamentally
different representations of simulated time, and do not influence the experimental results.

8.1.1 Compilers, Optimization Levels and Build Options

The speed comparison was done using ns-2.33, with an updated 802.11 patch from the DSN, and ns-3.4 with
extensions made for this thesis. These will be merged into a future ns-3 release.
The test machine contained a quad-core 64-bit Intel Xeon CPU clocked at 3.0GHz and had sufficient RAM
to hold the complete running simulation. Great care was taken that no other CPU-consuming program
was running during the speed measurements, which is attest by the result’s error margins. All tests were
performed on a standard, up-to-date Linux platform provided by the Ubuntu 8.10 (Intrepid) distribution.
Two different compilers were used to translate the source code: gcc, the GNU C/C++ compiler in version
4.3.2, and icc, the Intel C/C++ compiler in version 11.0.074 [16]. Use of the special Intel compiler was

88

8.1 Highway Lanes Scenario

said to give a performance boost, particularly for complex software. Many minor modifications of the ns-3
code were necessary to make compilation with icc work correctly, in particular the waf build system was
adapted and some code portions using non-standard constructs were rewritten. ns-2 compiled using icc
without modifications.
ns-2 was built in three different modes: default debug mode with gcc compiler and no optimization (-O0),
optimized gcc mode with -O3 compiler flag and using icc with -O3 optimization level.
ns-3 allows two different build modes: debug and optimized. In optimized build mode, the logging and
assertion macros like NS_LOG() and NS_ASSERT() are deactivated for maximum performance. Both gcc
with -O0 and -O3 optimization levels and icc with -O3 were tested.
Beyond these code compilation options, another architectural build option is available in ns-3. By default
ns-3 is built as a shared library called libns3.so and experiments are dynamically linked against it. During
this thesis an alternative, experimental method called static linking was tested. Details on two linking
mechanisms will be explained when discussing speed test results.
A last configuration option was added to compare 32-bit and 64-bit architectures. The ns-3 Time repre-
sentation uses 128-bit integers, which are manipulated using code that makes optimized use of 64-bit CPU
registers. Fallback 32-bit register code exists as well, but suggests a large performance loss. However, testing
the speed increase of 64-bit registers proves difficult, as time measurements from different machines cannot
be compared. So instead, 32-bit emulation mode as available in the 64-bit Intel Xeon architecture was used.
However, it is questionable if the obtained speed test results in this emulation mode are relevant for real
32-bit CPUs.
The speed test scenario results are fully deterministic: propagation loss is modeled only with log-distance
path loss, packet broadcast intervals are constant and broadcast offsets are determined with a pseudo-random
function depending only on node identifier. Furthermore, the time delta between two broadcast packet far
exceeds any DCF waiting interval and thus random backoff has no influence.
All speed test results are determined over 10 independent replications. The total time required to run the
binary experiment program is measured.
This leads to the question whether statistical evaluation of the experiment should be included in the measured
time. In ns-2 analysis is usually done by first writing a (rather large) trace file and creating statistics after the
experiment finishes, whereas ns-3 allows calculations of statistics during the experiment’s execution. This
architectural difference obviously favors ns-3, because writing to disk files is relatively slow. To alleviate this
difference, the trace output of ns-2 was written to a named pipe directly connected to a statistics program
running in parallel. Processing time of the evaluation program was included in the time measurement.

8.1.2 Execution Time Results

The highway lanes scenario was run for three different build configurations of ns-2 and seven build configu-
rations of ns-3.
Furthermore, two extra runs with activated Nakagami fast fading were done, one in ns-2 and the other in
ns-3. These two extra runs are not comparable to the others, and are used to determine the additional
processing time required to generate random variates. Discussion of these two extra runs is restricted to
section 8.1.2.
The execution time of 10 runs was measured for each experiment setup containing multiple of 6 nodes from
6 to 120. Average run value and 99% error margin are plotted in the result figure 8.3. The two plots contain
the same data, one is shown with linear time scale for an overview and the other with logarithmic time scale
for a detailed look at small time values.
Furthermore, the total number of sent and received packets were counted across all nodes in the simulation.
These packet sums are shown in figure 8.2.
A brief glance at the packet count plots shows that in all simulations approximately the same number of
packets are transmitted and received in each speed test configuration. This is also reflected by the exact
data values: for k nodes in an experiment exactly 600·k packets are sent.

89

8 Speed Comparison – ns-2 vs. ns-3

0
10
20
30
40
50
60
70
80

0 20 40 60 80 100 120

Pa
ck
et
s
se
nt

(in
th
ou

sa
nd

s)

Number of nodes

0

1

2

3

4

5

6

0 20 40 60 80 100 120Pa
ck
et
s
re
ce
iv
ed

(in
m
ill
io
ns
)

Number of nodes
ns-2 unoptimized
ns-2 optimized
ns-2 icc optimized
ns-3 debug

ns-3 optimized
ns-3 optimized static
ns-3 icc optimized
ns-3 icc optimized static

ns-3 32-bit optimized
ns-3 32-bit optimized static
ns-2 nakagami optimized
ns-3 nakagami optimized static

Figure 8.2: Total packets sent and received during simulation

The number of received packets is also exactly equal for all build configurations of ns-2 and ns-3. However,
the results follow no simple proportional equation like the sent packets. Complex inter-packet contention,
channel load and the frame capture effect all play a role in these results. It is remarkable that they are
absolutely equal on both simulators.
Despite the identical experiments, measured execution time results in figure 8.3 range widely. Slowest
simulation configuration in ns-3 in debug mode with more than twice the execution time of unoptimized
ns-2. Optimizing ns-2 with -O3 brought about a moderate speed increase of 18.9±0.5%, compilation with
icc a further 4.1±0.3%. The percentages denote the execution time reduction as a 99% confidence interval
over all numbers of nodes tested.
Greatest speed increase was measured by compiling ns-3 in optimized mode. This attests ns-3 a high
number of assertion and logging macros or just easily optimized code. The speed reduction when building
in optimized mode was 76.3±0.5%.
Really unexpected was the further speed decreased of ns-3 that could be achieved by static linking of the
experiment object files. This build method brings a further 42.6±1.2% on top of the already optimized build
mode. In total the compiling ns-3 in optimized static mode, brings a 86.4±0.2% run time decrease relative to
debug mode. The reason for this further gain using static linking is examined in the following section 8.1.2.
Contrary to expectation, use of the Intel C/C++ compiler does not show great speed improvement. Instead,
run time of ns-3 compiled with icc is on average 1.9±0.4% slower than the corresponding gcc configuration
for dynamically linked binaries, and 2.5±0.9% slower with static linking. The binaries created by icc are
also slightly larger. This result suggests the optimizations done by gcc -O3 is more suitable for ns-3.
For the two 32-bit tests, the execution speed drops as expected due to less optimized processing of time
representation. Some profiling of code showed that a large percentage of run time is spent in calculations of
simulated time. The 32-bit speed results showed were 70.9±2.0% slows for dynamic linking and 62.8±2.0%
slower for static linking relative to the corresponding 64-bit configuration. As stated before, interpretation
of this result is difficult and not directly applicable for real 32-bit CPUs. However, even for the 32-bit code,
static linking decreased run time by 45.3±1.3% over dynamic linking.
All these results hold true for all tested experiment sizes from 6 to 120 nodes. This can be seen in the
logarithmic plot in figure 8.3 and is underlined by the small error margins in reduction percentages shown
above.
Overall the speed comparison between ns-2 and ns-3 shows that “switching” to ns-3 can reduce experiment
execution time to 58.6±1.8%. This is the relative speed gain from gcc optimized ns-2 to gcc optimized and
statically linked ns-3.

90

8.1 Highway Lanes Scenario

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120

Si
m
ul
at
io
n
ru
n
tim

e
(s
ec
on

ds
)

Number of nodes

ns-2 unoptimized
ns-2 optimized
ns-2 icc optimized
ns-3 debug
ns-3 optimized
ns-3 optimized static
ns-3 icc optimized
ns-3 icc optimized static
ns-3 32-bit optimized
ns-3 32-bit optimized static
ns-2 nakagami optimized
ns-3 nakagami optimized static

(a) Linear time scale

0

1

10

100

1000

0 20 40 60 80 100 120

Si
m
ul
at
io
n
ru
n
tim

e
(s
ec
on

ds
)

Number of nodes

ns-2 unoptimized
ns-2 optimized

ns-2 icc optimized
ns-3 debug

ns-3 optimized
ns-3 optimized static

ns-3 icc optimized
ns-3 icc optimized static

ns-3 32-bit optimized
ns-3 32-bit optimized static

ns-2 nakagami optimized
ns-3 nakagami optimized static

(b) Logarithmic time scale

Figure 8.3: Time measurements of different compilers, optimization levels and build options

91

8 Speed Comparison – ns-2 vs. ns-3

Static vs. Dynamic Linking

Statically linking the experiment binaries showed a reduction of execution time of at least 42% over all
optimization and compiler combinations. For long simulations this methods should be preferred over linking
with a shared library. However, besides creating rather large experiment executable binaries (about 30Mb),
static linking introduces difficulties in context of building language bindings for e.g. Python, because these
require shared libraries containing position-independent code (PIC).
The reason for faster statically linked simulations is connected to the mechanism of dynamic linking. The
general idea is well-known: to export commonly-used code portions into external files (called .so or .dll),
which are then shared between multiple programs and loaded on-demand upon program start up or during
execution. Each shared library exports a list of symbols, that are mapped to memory locations of functions
or variables. For C++these symbols are “mangled” serializations of namespace, class, function name and
arguments.
Beyond this general idea, precise information on the dynamic linking routine, as done on Linux by ld.so,
is expert knowledge and difficult to find. The dynamic linker is part of the glibc and every executable run
on Linux is loaded by it (except for itself). The current glibc maintainer, Ulrich Drepper, describes the
loading procedure and implications for authoring shared libraries in a technical guide [5]. All referenced
external symbols, including variables and functions imported from a .so, are contained in the Global Offset
Table (GOT), which is a mapping to the corresponding addresses. Referenced functions can be called via
an indirection call to the Procedure Linkage Table (PLT), which jumps to the appropriate address listed in
the GOT. This indirection jump is omitted when statically linking objects: here a direct function call is
used. For long running simulations the indirection outweighs the initial costs of library loading and (hashed)
dynamic symbol lookup etc.
Another disadvantage of dynamic linking is that it assumes that all functions can be replaced at run-time.
This prohibits inlining of the many functions generated by C++ templates say for ns-3’s callback or smart
pointer idioms.
The additional cost of PIC was also examined alongside this speed test, but omitted from the previous
plots and discussion. PIC is unavoidable for generating language bindings in shared libraries, and thus the
complete ns-3 code would have to be compiled twice to allow C++ experiment binary to use a non-PIC
version. PIC is said to make shared library code slower, because an extra CPU register is used to make
address positions relative. However, the speed test conducted with an optimized, statically linked ns-3
version compiled without PIC showed only a reduction of 1.1±0.3% over PIC in the speed test experiment.
Thus this optimization proposal need not be pursued further.
As the speed increase of static linking is substantial, ns-3 will need to support this build option despite the
disadvantages discussed before. Some work has begun to improve inlining by declaring these short functions
to be hidden. With this flag they are not exported via the dynamic linking mechanism and cannot be
replaced by shared libraries possibly loaded later.

Nakagami Propagation

Two extra speed test configurations were done with Nakagami propagation loss modeling. All other scenario
parameters were kept the same, and thus reception power was probabilistically distributed over the original
log-distance power. Figure 8.2 show that the number of sent packets stayed equal, whereas the successfully
received packet count decreased. For this experiment ns-2 and ns-3 cannot show exactly the same received
packet counts because of stochastic propagation, nevertheless results are very similar, as seen in the second
graph.
Aim of this extra speed test was not to compare ns-2 and ns-3, but to see how much computation time
is used for generating gamma variates. For ns-3 the simulation time increased by 8.1±1.0% relative to the
same optimized compilation configuration without Nakagami propagation; for 120 nodes this was 4.0 s of
the total 51.3 s run time.
In ns-2 the relative time increase required for Nakagami propagation was only 3.8±0.4%. However absolute
time increase was higher than for ns-3: for the ns-2 experiment with 120 nodes Nakagami propagation

92

8.1 Highway Lanes Scenario

increased run time by 5.4 s from 133.6 s to 139.0 s.
So these two extra speed tests show that the increased processing time of Nakagami propagation values is
low and thus usable for large simulations.

Further Optimization

Several idea for further optimization of ns-3 were already mentioned. Statically linking yields large perfor-
mance increases and is being added for the next release of ns-3. Intel’s C/C++ compiler does not show the
expected performance boost. Optimization of random variates generators can be pursued, yet only a small
increase in overall performance is achievable.
One hot topic currently dormant is extending ns-3 to run parallel or distributed simulations. In 2008, a
project was conducted in which a federated nodes approach using message passing interface (MPI) was
taken. Multiple nodes deemed “close” to each other were grouped into a federation located inseparably
on one processing machine. Packets sent across federation boundaries were serialized into real network
packets and sent to the appropriate processor via MPI. Conservative synchronization using MPI mutexes
was envisioned.
For the current ns-3 wireless network models no great speed improvement should be expected from this very
general approach. This is due to the broadcasting delivery of packets to all devices attached to the emulated
medium. This delivery range can be reduced to include only stations effected by the packet, but for most
scenarios these will be all simulated nodes. Particularly, because cumulative noise is currently calculated
within the PHY layer model, all packets contributing to the noise level must be processed. With a more
simplified physical layer model, higher parallelization could be achieved.
Currently ns-3 is not well prepared for multi-threading simulations. To allow multiple threads running
parallel on one simulation experiment, access to the state of all employed network objects would need to
be synchronized via mutexes. Complex interrelationships and dependencies between network objects would
quickly lead to deadlocks, and these must be handled or avoided.
A viable distributed simulation approach using “ghost nodes” was tested in the GTNetS [30] simulator by
George Riley, who is also a core contributor to ns-3. A future project may be conducted to implement this
technique in ns-3. This should be done while the project still has manageable size for extensive changes.

93

8 Speed Comparison – ns-2 vs. ns-3

94

Chapter 9

Conclusion

9.1 Summary

In this thesis the medium and physical layer models employed by wireless simulations in ns-2 and ns-3
were compared and enhancements of ns-2 were transferred to ns-3. These new models embed cleanly in the
existing 802.11 design and function identically to the models contained in ns-2.
Both the new SINR based PHY model and the existing BER/PER model were thoroughly explained in this
thesis. Moreover, the Nakagami fast fading propagation loss model contained in ns-2 was ported to ns-3
and verified to produce identical results.
On the 802.11 MAC layer, relative QoS was added by implementing EDCA extensions in ns-3. These can
be activated by creating QoS-enabled wireless station in the simulation and applying QoS specifier tags to
generated packets. The extensions were tested in a maximum throughput experiment against analytically
determined reference values. A second experiment showed how different relative QoS settings effected an
increasing number of traffic streams. The EDCA contribution of this thesis enables interesting experiments
with relative QoS in mobile wireless networks.
To assess the performance gain of ns-3 over ns-2, a complex wireless scenario was built in both simulators
using the models added in this study. They enabled a convincing speed comparison between ns-2 and
ns-3 with identical experiments producing equal results. Multiple different compilation settings and linking
methods were tested. The results and their causes were discussed and potential optimizations outlined.
Execution time of the tested experiment in ns-3 is reduced by up to 58.6% over the identical simulation in
ns-2.
Further advantages of ns-3 over ns-2 are the state-of-the-art design and modern software engineering methods
employed, which lead to an overall improved quality of code. All models in ns-3 are extensively documented
and can be configured flexibly to individual experiments. The project’s policy of using regression trace tests
and model validation tests increases the reliability of simulation in ns-3.
The equal 802.11 PHY models of ns-2 and ns-3 presented in this thesis allow an easy switch to the new
simulator. These models are at the heart of every wireless simulation and are thoroughly discussed and
verified. Moreover, the added EDCA extensions allow new and exciting experiments with relative QoS in
ns-3.

9.2 Future Work

Both extensions of 802.11 and simulations with ns-3 are very active fields of work.
The new upcoming 802.11p and 802.11n amendments will enable new applications with wireless LAN. In
ns-3 802.11p can be simulated by using the 802.11a model and modified propagation model parameters.
Adaption to 10MHz channels is a matter of changing bandwidth values.
Concurrent to this thesis, a project at the University of Florence focused on the 802.11n frame aggregation
and block ACKs feature. Initial support is already available for ns-3. Future plans are to add multiple input

95

9 Conclusion

and multiple output (MIMO) and 40MHz channel bonding, to simulate the high data speeds promised by
the amendment.
Another ongoing project is conducted by the Russian Academy of Sciences and aims at adding 802.11s
wireless mesh networking support to ns-3. The projected architecture is composed of a plugin attached
to the lower MAC layers, a mesh-capable routing layer with automatic station detection and a virtual
NetDevice, which forwards packets to stations across multiple hops in the mesh.
An interesting project was recently started at the University of Padova and aims at modeling the power spec-
tral density of transmissions across the whole radio spectrum. Targeted research fields are inter-technology
interference and cognitive radio band selection.
A completely different standard is focused by the 802.16 WiMAX implementation currently being developed
for ns-3. The scope of this project and the WiMAX standard are much broader than 802.11 and include
different transmission schedulers and bandwidth managers at the base station.

96

Bibliography

[1] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied.
Addison-Wesley, 5th edition, 2002. ISBN 0-201-70431-5.

[2] Qi Chen, Felix Schmidt-Eisenlohr, Daniel Jiang, Marc Torrent-Moreno, Luca Delgrossi, and Hannes
Hartenstein. Overhaul of IEEE 802.11 modeling and simulation in ns-2. In MSWiM ’07: Proceedings
of the 10th ACM Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
pages 159–168, New York, NY, USA, 2007. ACM.

[3] Claudio Cicconetti, Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea. A software architecture for
simulating IEEE 802.11e HCCA. In IPS-MoMe ’05: Proceeding from the 3rd Workshop on Internet
Performance, Simulation, Monitoring and Measurement, pages 97–104, March 2005.

[4] Peter T. Davis and Craig R. MacGuffin. Wireless Local Area Networks. McGraw-Hill, New York, NY,
USA, 1995. ISBN 0-07-015839-8.

[5] Ulrich Drepper. How To Write Shared Libraries. Version 4.0, August 2006. http://people.redhat.
com/drepper/dsohowto.pdf.

[6] Pal Frenger, Pal Orten, Tony Ottosson, and Arne Svensson. Multi-rate convolutional codes. Technical
Report 21, Department of Signals and Systems, Chalmers University of Technology, Göteborg, April
1998.

[7] Harald T. Friis. A note on a simple transmission formula. In Proceedings of the Institute of Radio
Engineers (IRE), volume 34, issue 5, pages 254–256, May 1946.

[8] Deyun Gao, Jianfei Cai, and King Ngi Ngan. Admission control in IEEE 802.11e wireless LANs. In
IEEE Network, volume 19, issue 4, pages 6–13, July-August 2005.

[9] Andrea Goldsmith. Wireless Communications. Cambridge University Press, New York, NY, USA, 1st
edition, 2005. ISBN 0-521-83716-2, 978-0-521-83716-3.

[10] Thomas R. Henderson. ns-3 tutorial. Presentation at WNS3 ’09: Workshop on ns-3 in
conjunction with SIMUTools ’09, March 2009. http://www.nsnam.org/workshops/wns3-2009/
ns-3-tutorial-part-1.pdf.

[11] Thomas R. Henderson, Sumit Roy, Sally Floyd, and George F. Riley. ns-3 project goals. In WNS2 ’06:
Proceeding from the 2006 Workshop on ns-2: the IP network simulator, New York, NY, USA, October
2006. ACM.

[12] IEEE Std. 802.11-2007 (Revision of IEEE Std. 802.11-1999). IEEE Standard for Information technology
– Telecommunications and information exchange between systems – Local and metropolitan area net-
works – Specific requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, December 2007.

[13] IEEE Std. 802.11e. IEEE Standard for Information technology – Telecommunications and information
exchange between systems – Local and metropolitan area networks – Specific requirements – Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications – Amendment
8: Medium Access Control (MAC) Quality of Service Enhancements, November 2005.

97

http://people.redhat.com/drepper/dsohowto.pdf
http://people.redhat.com/drepper/dsohowto.pdf
http://www.nsnam.org/workshops/wns3-2009/ns-3-tutorial-part-1.pdf
http://www.nsnam.org/workshops/wns3-2009/ns-3-tutorial-part-1.pdf

Bibliography

[14] IEEE Draft Std. 802.11p/D4.02. IEEE Draft Standard for Information technology – Telecommuni-
cations and information exchange between systems – Local and metropolitan area networks – Specific
requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications – Amendment 7: Wireless Access in Vehicular Environments, September 2008.

[15] IEEE Std. 802.1D-2004 (Revision of IEEE Std. 802.1D-1998). IEEE Standard for Local and Metropolitan
Area Networks: Media Access Control (MAC) Bridges, June 2004.

[16] Intel C/C++ compiler. http://software.intel.com/en-us/intel-compilers/.

[17] Teerawat Issariyakul and Ekram Hossain. Introduction to Network Simulator NS2. Springer, New York,
NY, USA, October 2009. ISBN 978-0-387-71759-3, 0-387-71759-5.

[18] William C. Jakes. Microwave Mobile Communications. Wiley, 1974. ISBN 0-471-43720-4.

[19] Srinivasan Keshav. REAL: A network simulator. Technical report, University of California at Berkeley,
December 1988.

[20] Mathieu Lacage and Thomas R. Henderson. Yet another network simulator. In WNS2 ’06: Proceeding
from the 2006 Workshop on ns-2: the IP network simulator, New York, NY, USA, October 2006. ACM.

[21] Stefan Mangold, Sunghyun Choi, and Norbert Esseling. An error model for radio transmissions of
wireless LANs at 5GHz. In Proceedings of the 10th Aachen Symposium on Signal Theory, pages 209–
214, Aachen, Germany, September 2001.

[22] Stefan Mangold, Sunghyun Choi, Guido R. Hiertz, Ole Klein, and Bernhard Walke. Analysis of IEEE
802.11e for QoS support in wireless LANs. In IEEE Wireless Communications, volume 10, issue 6,
pages 40–50, December 2003.

[23] George Marsaglia and Wai Wan Tsang. A simple method for generating gamma variables. ACM
Transactions on Mathematical Software, 26(3):363–372, 2000.

[24] LBNL network simulator – ns version 1. http://www-nrg.ee.lbl.gov/ns/.

[25] The network simulator – ns-2. http://www.isi.edu/nsnam/ns/.

[26] The ns-3 network simulator. http://www.nsnam.org.

[27] PDNS - parallel/distributed NS. http://www.cc.gatech.edu/computing/compass/pdns/.

[28] John G. Proakis. Digital Communications. McGraw-Hill, New York, NY, USA, 4th international
edition, 2001. ISBN 0-07-232111-3, 0-07-118183-0.

[29] Theodore S. Rappaport. Wireless Communications. Prentice Hall, Upper Saddle River, NJ, USA, 2nd
edition, 2002. ISBN 0-13-042232-0.

[30] George F. Riley. The georgia tech network simulator. In MoMeTools ’03: Proceedings of the ACM
SIGCOMM Workshop on Models, Methods and Tools for Reproducible Network Research, pages 5–12,
New York, NY, USA, 2003. ACM.

[31] George F. Riley, Talal M. Jaafar, Richard M. Fujimoto, and Mostafa H. Ammar. Space-parallel net-
work simulations using ghosts. In PADS ’04: Proceedings of the eighteenth Workshop on Parallel and
Distributed Simulation, pages 170–177, New York, NY, USA, 2004. ACM.

[32] Jiho Ryu, Jeongkeun Lee, Sung-Ju Lee, and Taekyoung Kwon. Revamping the IEEE 802.11a PHY
simulation models. In MSWiM ’08: Proceedings of the 11th International Symposium on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, pages 28–36, New York, NY, USA, October
2008. ACM.

98

http://software.intel.com/en-us/intel-compilers/
http://www-nrg.ee.lbl.gov/ns/
http://www.isi.edu/nsnam/ns/
http://www.nsnam.org
http://www.cc.gatech.edu/computing/compass/pdns/

Bibliography

[33] Simon R. Saunders and Alejandro Aragón-Zavala. Antennas and Propagation for Wireless Communi-
cation Systems. John Wiley & Sons, Hoboken, NJ, USA, 2nd edition, 2007. ISBN 978-0-470-84879-1.

[34] Felix Schmidt-Eisenlohr, Jon Letamendia-Murua, Marc Torrent-Moreno, and Hannes Hartenstein. Bug
fixes on the IEEE 802.11 DCF module of the network simulator ns-2.28. Technical Report 2006-1,
Institute of Telematics, Univeristy of Karlsruhe, 2006.

[35] Henrik Schulze and Christian Lüders. Theory and Applications of OFDM and CDMA. John Wiley &
Sons, January 2006. ISBN 978-0-470-85069-5, 978-0-470-01740-1.

[36] International Telecommunication Union. Radio Regulations – Volume 1, Article 5: “Frequency Alloca-
tions”, 2004.

[37] Sven Wiethölter and Christian Hoene. Design and verification of an IEEE 802.11e EDCF simulation
model in ns-2.26. Technical Report TKN-03-019, Technische Universität Berlin, November 2003.

[38] Yunpeng Zang, Lothar Stibor, Georgios Orfanos, Shumin Guo, and Hans-Jürgen Reumerman. An
error model for inter-vehicle communications in highway scenarios at 5.9GHz. In PE-WASUN ’05:
Proceedings of the 2nd ACM International Workshop on Performance Evaluation of Wireless Ad-hoc,
Sensor and Ubiquitous Networks, pages 49–56, Montreal, Quebec, Canada, October 2005. ACM.

99

Bibliography

100

Appendix A

Background

A.1 A Note on Decibel

The decibel unit, as used in dB, dBm, dBW, dBi and others, is often confused and misunderstood. However,
with some background information, the difference between these units and similar units, measuring the same
quantities, is easily understood and mistakes prevented.
The most important point is that decibel (dB) is always a logarithmic, dimensionless value. Decibel is one
tenth of the base unit bel (B).

x = log10(x)B = 10 · log10(x) dB

Most often x is a ratio between two quantities, both expressed in the same dimension. Usually the numerator
is a measured and the denominator a reference value.
With two values of the same imaginary unit X, say 3000X and 30X, the ratio is

3000X
30X = 100 = log10(100)B = 2B = 20dB

Thus “dB” is a notational unit, but not a separate dimension of measurement.
The most commonplace use for decibel is to measure sound pressure levels. For example a jet engine is
said to have “150 dB” sound pressure level. Here the reference value is 20 µPa (rms), the assumed lowest
threshold of human hearing. There is also a related unit dB(A) or dBA, for which the sound pressure values
are weighted depending on frequency to account for sensitivity characteristics of the human ear.
In the domain of wireless communication and electronics the unit dBm (actually dBmW) is used to express a
power level relative to 1 milliwatt. Less commonly dBW (or incorrectly just dB) is used with reference value
1 watt. To indicate the reference value a suffix to the “dB”: dB-W and dB-mW or just dB-m. Nevertheless,
dBm and dBW remain dimensionless ratios. A power level x can be expressed in watt, milliwatt, dBW and
dBm.
For example 100mW = 0.1W can be expressed as

100mW
1mW = 10 · log10

(100mW
1mW

)
dBm = 20dBm = 10 · log10

(0.1W
1W

)
= −10dBW

Yet the expression “100mW = 20dBm” is incorrect regarding units, as dBm is dimensionless. Nevertheless
it is common to express power levels in dBm, even through dBm is not part of the International System of
Units (SI), which uses watt for power. Translations between mW and dBm are denoted with “=̂” in this
thesis.
When calculating with dB and dBm care must be taken due to the logarithmic expression. To determine
the sum of two power values given in dBm, it is incorrect to simple add both dBm values. For example
20dBm + 2dBm 6= 22dBm, instead 20dBm + 2dBm =̂ 100mW + 1.584mW = 101.584mW =̂ 20.068 dBm
(rounded to three decimals). However, calculating the ratio of two power levels is easy when both are given
in dBm: here simple subtraction will suffice. The logarithm function maps multiplications to additions.

101

A Background

Thus it is possible to add y dB to x dBm values, but the meaning of the expression is that the power level
x is increased 10

y
10 times. This direct addition operation can be used to express the relationship between

dBW and dBm:

x dBm = 10 log10

(
x

1mW

)
= 10 log10

(1000 · x
1W

)
= 10 log10

(
x

1W

)
+ 10 log10(1000) = x dBW + 30 dB

So this concludes x dBm = x dBW + 30 dB and x dBm− 30dB = x dBW.
In context of propagation loss modeling an issue occurs in which distinction between dBm and dB becomes
both important and difficult. The transmitted signal’s power can be described in dBm or mW as desired.
A propagation loss is usually described as attenuation of a transmitted signal. However, signal attenuation
is measured relative to transmission power so it will usually be expressed in dB. Propagation loss model
formulas can be viewed in two ways. First as a function of transmission power resulting in reception power
and thus both are measured in dBm. And secondly as an attenuation formula relative to a reference power
level and thus expressed in dB. Once the equation is viewed differentially and once as an absolute power
equation.
In wireless communication another dB unit is frequently used in connection with antenna gain: dBi. Again
this is a ratio, with the power of an isotropic antenna as reference value. This hypothetical antenna radiates
energy uniformly in all directions. So dBi specifies dimensionless, directional gain compared to this ideal
omnidirectional antenna. Contour diagrams of gain in dBi can often be found in antenna datasheets.
For reference, conversion formulas between W, mW, dBW and dBm are summarized in the following equation
table.

xmW =̂ 10 · log10(x) dBm = (10 · log10(x)− 30) dBW
x dBm =̂ 10

x
10 mW = 10

x
10−3 W

xW =̂ 10 · log10(x) dBW = (10 · log10(x) + 30) dBm
x dBW =̂ 10

x
10 W = 10

x
10 +3 mW

102

A.1 A Note on Decibel

103

Appendix B

Extra Figures and Tables

B.1 802.11a Convolutional Encoder

Figure B.1 shows the convolutional encoder defined in 802.11a as a state machine. See figure 2.4 for a
diagram of the same encoder as a linear feedback shift register.
In the state machine, nodes are labeled with the contents of the six registers before reading an input bit.
Each node has two outgoing edges: one for a zero input bit and one for a one input bit. Edges for zero bits
are solid while edges for one bits are dotted. Each edge is labeled with the two bits outputted when making
the corresponding transition.
In section 6.6.2 a simpler convolutional code is discussed in the context of bit error rate calculations.

104

B.1 802.11a Convolutional Encoder

000000

100000

000001

000010

100001

000011

000100

100010

000101000110

100011

000111

001000

100100

001001

001010
100101

001011

001100

100110

001101

001110

100111

001111

010000

101000

010001

010010

101001
010011

010100

101010

010101

010110 101011
010111

011000

101100

011001

011010

101101
011011

011100

101110

011101011110

101111

011111

110000

110001

110010

110011
110100

110101

110110
110111

111000

111001

111010

111011

111100

111101

111110
111111

00

11

11

00

10

01

01

10

00

11

11

00

10

01
01

10

11

00

00

11

01
10

10

01

11

0000

11

01
10

10

01

11

00

00

11

01

10

10

01

11

00

00

11

01

10

10

01

00

11

11

00 10

01

01

10

00

11

11

00

10

01

01

10

01

10
10

01
11

00

00

11 01

10

10

0111

00

00

11

10

01
01

10

00
11

1100
10

01
01

10

00

11

11

00

1001

01
10

00
11

11
00

1001

01
10

00

111100

01 10

10

01

11
00

00
11

01

10

1001

11

00

00

11

Figure B.1: State machine of the 802.11a convolutional encoder

105

B Extra Figures and Tables

B.2 Default EDCA Parameters

For use in an ad-hoc network (IBSS without a controlling AP) or outside the context of a BSS, the 802.11e
standard [13] prescribes default EDCA parameters. The actual parameter values depend on the PHY layer
used and are defined from PHY parameters by equations. These values may be changes by the SME to
adapt EDCA prioritization as required. Like in the standard, the PHY parameters are prefixed in the table
with an “a”, which was omitted in the rest of this thesis.
An illustrated discussion of the parameter sets can be found in section 2.4.7.
Table B.2 shows the default EDCA parameter equations and values for the PHYs defined in 802.11a, b and
g.
For communication outside a BSS the upcoming 802.11p [14] defines a set of parameters different from the
one in 802.11e. These parameters are shown in table B.1.

ACI / AC OFDM in 5.9GHz band
20MHz 10MHz 5MHz

1 / AC_BK
AIFSN/AIFS 9 97 µs 149 µs 253 µs

CWmin aCWmin 15 15 15
CWmax aCWmax 1 023 1 023 1 023

TXOP Limit 0 0 0

0 / AC_BE
AIFSN/AIFS 6 70 µs 110 µs 190 µs

CWmin (aCWmin + 1)/2− 1 7 7 7
CWmax aCWmin 15 15 15

TXOP Limit 0 0 0

2 / AC_VI
AIFSN/AIFS 3 43 µs 71 µs 127 µs

CWmin (aCWmin + 1)/4− 1 3 3 3
CWmax (aCWmin + 1)/2− 1 7 7 7

TXOP Limit 0 0 0

3 / AC_VO
AIFSN/AIFS 2 34 µs 58 µs 106 µs

CWmin (aCWmin + 1)/4− 1 3 3 3
CWmax (aCWmin + 1)/2− 1 7 7 7

TXOP Limit 0 0 0

DFS
AIFSN/AIFS 2 34 µs 58 µs 106 µs

CWmin aCWmin 15 15 15
CWmax aCWmax 1 023 1 023 1 023

Table B.1: Default 802.11p/D4.02 EDCA parameters

106

B
.2

D
efault

E
D
C
A

Param
eters

ACI / AC 802.11a OFDM with channels 802.11b 802.11g CCK & OFDM
20MHz 10MHz 5MHz HR/DSSS short preamble long preamble

1 / AC_BK
AIFSN/AIFS 7 79µs 123µs 211 µs 150µs 73µs 150 µs

CWmin aCWmin 15 15 15 31 15 / 31 15 / 31
CWmax aCWmax 1 023 1 023 1 023 1 023 1 023 1 023

TXOP Limit 0 0 0 0 0 0

0 / AC_BE
AIFSN/AIFS 3 43µs 71µs 127 µs 70µs 37 µs 70 µs

CWmin aCWmin 15 15 15 31 15 / 31 15 / 31
CWmax aCWmax 1 023 1 023 1 023 1 023 1 023 1 023

TXOP Limit 0 0 0 0 0 0

2 / AC_VI
AIFSN/AIFS 2 34µs 58µs 106 µs 50µs 28µs 50µs

CWmin (aCWmin + 1)/2− 1 7 7 7 15 7 / 15 7 / 15
CWmax aCWmin 15 15 15 31 15 / 31 15 / 31

TXOP Limit 3 008µs 3 008µs 3 008 µs 6 016 µs 3 008 µs 3 008 µs

3 / AC_VO
AIFSN/AIFS 2 34µs 58µs 106 µs 50µs 28µs 50µs

CWmin (aCWmin + 1)/4− 1 3 3 3 7 3 / 7 3 / 7
CWmax (aCWmin + 1)/2− 1 7 7 7 15 7 / 15 7 / 15

TXOP Limit 1 504µs 1 504µs 1 504 µs 3 264 µs 1 504 µs 1 504 µs

DFS
AIFSN/AIFS 2 34µs 58µs 106 µs 50µs 28µs 50µs

CWmin aCWmin 15 15 15 31 15 / 31 15 / 31
CWmax aCWmax 1 023 1 023 1 023 1 023 1 023 1 023

Table B.2: Default 802.11e EDCA parameters for different PHY

107

B Extra Figures and Tables

108

Appendix C

ns-3 Crash Course

This section is a crash course introduction into ns-3’s basic architecture and simulation setup. First basic
building blocks as callbacks, the object system with attribute metadata and smart pointers are introduced.
The second example scetches implementation of a protocol and demonstrates use of trace sources and event
handlers. The first two parts focuses on the inner workings of ns-3. In the last section actual experiment
source code used in the highway lanes scenario is explained step-by-step.
Much more information can be found in the ns-3 tutorial and reference manual distributed along with the
source code. PDF and HTML copies are also available online on the ns-3 homepage [26].
The C++ constructs and idioms used in ns-3 are very advanced. To understand the inner works requires
deep knowledge of class, templates, and the C++ idioms and design patterns implemented. However, to
only use them, this deep understanding is not necessary. Nevertheless, even this crash course assumes a
moderate level of experience with C++.

C.1 Callbacks

First unfamiliar C++ construct described here is the “ns-3 callback”. It is related to the basic function
pointers available in plain C and C++ and is sometimes also called generalized functor [1]. Callbacks are a
very powerful design artifact and used extensively in ns-3 to decouple models and layers.
This section gives a step-by-step introduction into callbacks following the example
source code. (right-click the filename if your PDF viewer supports file attachments).
The following code listings are taken from callback-example.cc. To make step-by-step explanation more
clear, the sequence of snippets is not in same order as in the file and some necessary but distracting lines
are omitted from the listings.

9 double AddInts(int a, int b)
10 {
11 return a + b;
12 }

35 int main()
36 {
37 Callback<double, int, int> cb1;
38

39 cb1 = MakeCallback(&AddInts);
40 std::cout << cb1(2, 5) << std::endl;

These two code examples introduce callbacks. First a simple adding function AddInts() is defined. For this
function a matching callback is defined in main() by creating a Callback<double, int, int> variable. It
is easiest to view this object as a traditional function pointer variable double (*cb1)(int, int), which
contains a typed memory address to some function’s code location. Note the matching signature: return
value a double and two int arguments.

109

code/callback-example.cc
// -*- mode: c++; c-file-style: "gnu"; indent-tabs-mode: nil; -*-

#include "ns3/core-module.h"

#include <iostream>

#include <math.h>

using namespace ns3;

double AddInts(int a, int b)

{

 return a + b;

}

double AddDoubles(double a, double b)

{

 return a + b;

}

class Point

{

public:

 static double Norm(int a, int b)

 {

 return sqrt(a*a + b*b);

 }

 int x, y;

 double Distance(int a, int b)

 {

 return sqrt((x-a)*(x-a) + (y-b)*(y-b));

 }

};

int main()

{

 Callback<double, int, int> cb1;

 cb1 = MakeCallback(&AddInts);

 std::cout << cb1(2, 5) << std::endl;

 cb1 = MakeCallback(&Point::Norm);

 std::cout << cb1(2, 5) << std::endl;

 Point p1 = { 1, 1 };

 cb1 = MakeCallback(&Point::Distance, &p1);

 std::cout << cb1(2, 5) << std::endl;

 // not valid - throws compile time error:

 // cb1 = MakeCallback(&AddDoubles);

 // valid - different callback signature:

 Callback<double, double, double> cb2 = MakeCallback(&AddDoubles);

}

class Alpha

{

public:

 void ReceiveInput(double x);

};

class UsualLayer

{

public:

 Alpha* m_alpha;

 void DoWork()

 {

 double work = 5;

 m_alpha->ReceiveInput(work);

 }

};

class EnhancedLayer

{

public:

 Callback<void, double> m_receiveWork;

 void DoWork()

 {

 double work = 5;

 m_receiveWork(work);

 }

};

Timo Bingmann
callback-example.cc Source Code

C ns-3 Crash Course

This callback variable can be assigned to AddInts() by using the magic MakeCallback() function, which
creates a callback to AddInts() as done in line 39. Callback variables can be invoked just like normal
function pointers, as seen in line 40.
14 double AddDoubles(double a, double b)
15 {
16 return a + b;
17 }

35 int main()
36 {
37 Callback<double, int, int> cb1;
38

49 cb1 = MakeCallback(&AddDoubles); // compile error
50 cb1(1, 2, 3); // another compile error
51

52 Callback<double, double, double> cb2 = MakeCallback(&AddDoubles);

Assignments to callbacks are type-checked at compile time. Consider a different function, named Add-
Doubles(), taking double arguments. Assignment to the old callback, which requires int arguments,
results in a compile error. Similarly invoking the callback with three arguments also yields a compile error.
The error messages from the compiler are rather long and cryptic, often the error is easier to spot by looking
at the code. Line 45 shows a correct callback assignment for AddDoubles().
In the previous two assignment scenarios, callbacks did not show any advantage over ordinary function
pointers. To show the real use of callbacks, one must regard functions within classes: the next snippet
shows a simple class with one static and one member function.
19 class Point
20 {
21 public:
22 static double Norm(int a, int b)
23 {
24 return sqrt(a*a + b*b);
25 }
26

27 int x, y;
28

29 double Distance(int a, int b)
30 {
31 return sqrt((x-a)*(x-a) + (y-b)*(y-b));
32 }
33 };

35 int main()
36 {
37 Callback<double, int, int> cb1;
38

39 cb1 = MakeCallback(&AddInts);
40 std::cout << cb1(2, 5) << std::endl;
41

42 cb1 = MakeCallback(&Point::Norm);
43 std::cout << cb1(2, 5) << std::endl;
44

45 Point p1 = { 1, 1 };
46 cb1 = MakeCallback(&Point::Distance, &p1);
47 std::cout << cb1(2, 5) << std::endl;

Both functions of Point can be used with the callback variable previously defined. In all three assignments
of cb1, a function with equal arguments and return value is referenced, however, these are of three different
kinds.
In line 39, the callback is assigned a plain function. MakeCallback() in line 42 also creates a plain function
callback, but this time the function is static and thus has no object context.

110

C.2 Objects, Ptrs, Attributes and TraceSources

The real magic of callbacks is shown in lines 45–46: a callback can also be constructed for a member function
with object context. When invoking the callback in 47, the function Distance() is called for the object
p1. Here the callback object actually contains two pointers: one to the object p1 and one to the member
function Point::Distance().
The last operation cannot be done with plain function pointers. Note that all three callback invocation are
identical, regardless of the currently assigned function.
In ns-3, this C++ idiom is used to decouple models and protocols. Packets crossing between layers usually
are passed through callbacks. By changing the callbacks, an additional layer can easily be inserted between
two layers. This decoupling is exemplified the following simpler scenario:
55 class Alpha
56 {
57 public:
58 void ReceiveInput(double x);
59 };
60

61 class UsualLayer
62 {
63 public:
64 Alpha* m_alpha;
65

66 void DoWork()
67 {
68 double work = 5;
69 m_alpha->ReceiveInput(work);
70 }
71 };
72

73 class EnhancedLayer
74 {
75 public:
76 Callback<void, double> m_receiveWork;
77

78 void DoWork()
79 {
80 double work = 5;
81 m_receiveWork(work);
82 }
83 };

In the above example, Alpha is some model or layer receiving input. The usual method to call an instance
of Alpha is shown in UsualLayer: it contains a pointer link to an Alpha object. This introduces a tight
coupling between UsualLayer and Alpha; insertion of an intermediate processing layer between the two is
difficult.
A better solution using callbacks is shown in EnhancedLayer. Note that EnhancedLayer does not mention
Alpha anymore. Instead, it specifies a callback function, which will receive work done by the layer. The
connection between an Alpha object and EnhancedLayer is established by plugging ReceiveInput() into
the callback. However, any other function or protocol layer matching the signature could also be used. The
layer class can now be detached from lower layers and stacked differently.

C.2 Objects, Ptrs, Attributes and TraceSources

After the short precursor into callbacks, this crash course continues on ns-3’s object and attribute system.
These will be explained by illustrating another C++ example program, defining a new class MyProtocol.
This protocol will do “something interesting” with a packet according to two parameters and indicate success
or failure through two different callbacks. It also demonstrates use of the simulator’s event loop by delaying
work for some time. To allow inspection of the protocol, two trace sources are defined.

111

C ns-3 Crash Course

The example’s complete source code is embedded in this PDF and can be extracted using a compatible PDF
viewer here: .
Before starting directly with the example code, reflect the broad problem of designing a simulator: any
network simulator will contain a myriad of network objects building up nodes, layers, device models and
more. All these objects have parameters controlling their behavior. Simulator users will want to list and
customize these parameters for their experiments. Modification of these parameters must be flexible and may
change with each simulation run. These parameters are described in ns-3 using object metadata encoded
in a TypeId object. All objects exporting this metadata are grouped into a hierarchy below the superclass
Object. This allows programmatic access to all attributes influencing the simulation. Attributes can thus
be modified and listed at run time using the command line or even with a graphical user interface.
Simulation objects can also export so called TraceSources in their metadata, which are called from within
the object’s code to indicate interesting events. Some examples of TraceSources are packet reception at the
MAC layer, TCP congestion window changes or when a wireless station associates with an AP.
Aside all this metadata functionality, simulated objects also require memory management in C++. An
ownership relation of layers quickly becomes too complex due to the myriad of interrelated objects in the
simulation. To solve this C++-inherit problem, ns-3 defines the Ptr<> template. Almost all simulation
objects in ns-3 are derived from Object and use Ptr<> as a smart pointer. Due to the metadata system,
ns-3 requires most objects to be created with CreateObject<> instead of new.
Correct object creation and pointer handling is illustrated in the following example. Getting used to this
syntax may need some time, but it is mandatory in ns-3.

1 Ptr<Node> mynode = CreateObject<Node>();
2 Ptr<Node> node1;
3 node1 = mynode;
4 std::cout << node1->GetId();
5 Ptr<Packet> mypacket = Create<Packet>(100);

The snippet above shows a simple case of how to use Ptr<Node> instead of Ptr* and CreateObject<Node>()
instead of new Node(). A notable exception to the use of CreateObject<> is shown in line 5: for performance
considerations, Packet is not derived from Object. Instead, Packets are instantiated using a more basic
Create<> method.
The source code of the MyProtocol example begins with the following lines:

1 // −∗− mode: c++; c−file−style: "gnu"; indent−tabs−mode: nil; −∗−
2

3 #include <ns3/core-module.h>
4 #include <ns3/simulator-module.h>
5 #include <ns3/common-module.h>
6

7 using namespace ns3;

Most C++ source code in ns-3 begins with the line 1 shown above. This line is an emacs directive, setting
the editor options to ns-3 indention standards.
Lines 3–5 include all headers from the components core, simulator and common, which are described in
section 4.1.
Line 7 makes the whole ns3 namespace available without prefixing each class with ns3::. All classes exported
by ns-3 are enclosed in this namespace.
The example class MyProtocol is derived from Object (actually from ns3::Object) and receives many
features from it. The following listing contains the whole class declaration and is explained in the following
paragraphs.

9 class MyProtocol : public Object
10 {
11 public:
12 // returns a TypeId describing the class’s Attributes and TraceSources.
13 static TypeId GetTypeId();
14

112

code/myprotocol-example.cc
// -*- mode: c++; c-file-style: "gnu"; indent-tabs-mode: nil; -*-

#include <ns3/core-module.h>

#include <ns3/simulator-module.h>

#include <ns3/common-module.h>

using namespace ns3;

class MyProtocol : public Object

{

public:

 // returns a TypeId describing the class's Attributes and TraceSources.

 static TypeId GetTypeId();

 // do something interesting with the packet

 void ReceivePacket(Ptr<Packet> packet);

 // work finished after some time

 void FinishWork(Ptr<Packet> packet, Time workStarted);

 // signature of a callback for successful and failed work

 typedef Callback< void, Ptr<const Packet> > WorkSuccess;

 typedef Callback< void, Ptr<const Packet>, int > WorkFailed;

 // set an external function to be called on successful or failed work

 void SetWorkSuccessCallback(WorkSuccess callback);

 void SetWorkFailedCallback(WorkFailed callback);

private:

 // actual callback variables, set using public functions

 WorkSuccess m_workSuccessCallback;

 WorkFailed m_workFailedCallback;

 // parameters of the interesting work on the packet

 int m_param1;

 double m_param2;

 Time m_paramTime;

 // trace callback for start of work with initial packet

 TracedCallback< Time, Ptr<const Packet> > m_workStartTrace;

 // trace callback for time and duration of work done with processed packet

 TracedCallback< Time, Time, Ptr<const Packet> > m_workEndTrace;

};

NS_OBJECT_ENSURE_REGISTERED(MyProtocol);

TypeId

MyProtocol::GetTypeId()

{

 static TypeId tid = TypeId("ns3::MyProtocol")

 .SetParent<Object>()

 .AddConstructor<MyProtocol>()

 .AddAttribute("Param1",

 "Important parameter of work done by this protocol.",

 IntegerValue(502),

 MakeIntegerAccessor(&MyProtocol::m_param1),

 MakeIntegerChecker<int>())

 .AddAttribute("Param2",

 "Another important parameter of work done by this protocol.",

 DoubleValue(999.0),

 MakeDoubleAccessor(&MyProtocol::m_param2),

 MakeDoubleChecker<double>(100, 10000))

 .AddAttribute("ParamTime",

 "Actual parameter specifying work time.",

 TimeValue(MilliSeconds(10)),

 MakeTimeAccessor(&MyProtocol::m_paramTime),

 MakeTimeChecker())

 .AddTraceSource("WorkStart",

 "Time packet work started.",

 MakeTraceSourceAccessor(&MyProtocol::m_workStartTrace))

 .AddTraceSource("WorkEnd",

 "Triggered on work end.",

 MakeTraceSourceAccessor(&MyProtocol::m_workEndTrace))

 ;

 return tid;

}

void

MyProtocol::SetWorkSuccessCallback(WorkSuccess callback)

{

 m_workSuccessCallback = callback;

}

void

MyProtocol::SetWorkFailedCallback(WorkFailed callback)

{

 m_workFailedCallback = callback;

}

void

MyProtocol::ReceivePacket(Ptr<Packet> packet)

{

 std::cerr << "MyProtocol::ReceivePacket() with "

 << "Param1=" << m_param1 << ", Param2=" << m_param2 << "\n";

 m_workStartTrace(Simulator::Now(), packet);

 Simulator::Schedule(Simulator::Now() + m_paramTime,

 &MyProtocol::FinishWork, this,

 packet, Simulator::Now());

}

void

MyProtocol::FinishWork(Ptr<Packet> packet, Time workStarted)

{

 // do something interesting with packet.

 bool workOk = (m_param1 % 2 == 1);

 if (workOk)

 {

 m_workSuccessCallback(packet);

 }

 else

 {

 m_workFailedCallback(packet, 10);

 }

 m_workEndTrace(Simulator::Now(), Simulator::Now() - workStarted,

 packet);

}

/* main program */

void

Proto1WorkSuccessCallback(Ptr<const Packet> packet)

{

 std::cerr << "proto1's work succeeded on packet.\n";

}

void

Proto1WorkFailedCallback(Ptr<const Packet> packet, int reason)

{

 std::cerr << "proto1's work failed on packet, reason: " << reason << ".\n";

}

void

Proto1WorkStartTrace(std::string context,

 Time start, Ptr<const Packet> packet)

{

 std::cerr << Simulator::Now() << " " << context

 << " time=" << start << ".\n";

}

void

Proto1WorkEndTrace(std::string context,

 Time start, Time duration, Ptr<const Packet> packet)

{

 std::cerr << Simulator::Now() << " " << context

 << " time=" << start

 << " duration=" << duration << ".\n";

}

int main(int argc, char *argv[])

{

 Config::SetDefault("ns3::MyProtocol::Param1", IntegerValue(503));

 CommandLine cmd;

 cmd.Parse(argc, argv);

 Ptr<MyProtocol> proto1

 = CreateObject<MyProtocol>("Param2", DoubleValue(1001.0),

 "ParamTime", TimeValue(Seconds(0.240)));

 proto1->SetAttribute("Param2", StringValue("1002.5"));

 proto1->SetWorkSuccessCallback(MakeCallback(&Proto1WorkSuccessCallback));

 proto1->SetWorkFailedCallback(MakeCallback(&Proto1WorkFailedCallback));

 proto1->TraceConnect("WorkStart", "main::proto1",

 MakeCallback(&Proto1WorkStartTrace));

 proto1->TraceConnect("WorkEnd", "main::proto1",

 MakeCallback(&Proto1WorkEndTrace));

 Simulator::Schedule(Seconds(1),

 &MyProtocol::ReceivePacket, proto1,

 Create<Packet>(100));

 Simulator::Run();

}

Timo Bingmann
myprotocol-example.cc Source Code

C.2 Objects, Ptrs, Attributes and TraceSources

15 // do something interesting with the packet
16 void ReceivePacket(Ptr<Packet> packet);
17

18 // work finished after some time
19 void FinishWork(Ptr<Packet> packet, Time workStarted);
20

21 // signature of a callback for successful and failed work
22 typedef Callback< void, Ptr<const Packet> > WorkSuccess;
23 typedef Callback< void, Ptr<const Packet>, int > WorkFailed;
24

25 // set an external function to be called on successful or failed work
26 void SetWorkSuccessCallback(WorkSuccess callback);
27 void SetWorkFailedCallback(WorkFailed callback);
28

29 private:
30 // actual callback variables, set using public functions
31 WorkSuccess m_workSuccessCallback;
32 WorkFailed m_workFailedCallback;
33

34 // parameters of the interesting work on the packet
35 int m_param1;
36 double m_param2;
37 Time m_paramTime;
38

39 // trace callback for start of work with initial packet
40 TracedCallback< Time, Ptr<const Packet> > m_workStartTrace;
41

42 // trace callback for time and duration of work done with processed packet
43 TracedCallback< Time, Time, Ptr<const Packet> > m_workEndTrace;
44 };
45

46 NS_OBJECT_ENSURE_REGISTERED(MyProtocol);

Most of the magic of the object and attribute system is found in the GetTypeId() of MyProtocol. This
function is listed in the next snippet and returns a description of all attributes exported by the class. The
metadata is contained in the returned TypeId object.
The example class has two main functions ReceivePacket() and FinishWork(), which are supposed to
do something interesting with a packet. Note the arguments’ type Ptr<Packet> in lines 16 and 19. The
methods receive packets as smart pointers. Generally a packet is passed around in form of such a pointer;
real copies must explicitly be made.
Two callbacks are typedefed in MyProtocol, lines 22 and 23: one to indicate successful work and one for
failure. These lines only typedef the callbacks; in lines 31 and 32 the actual memory space for them is
prepared as two variables of the class. To set these private variables, two public functions SetWorkSuccess-
Callback() and SetWorkFailedCallback() are defined.
For illustration purposes, two parameter variables m_param1 and m_param2 are defined in lines 35 and 36.
The third parameter m_paramTime is actually used to delay invocation of FinishWork().
Finally, two TracedCallback<>s are defined by MyProtocol in lines 40 and 43: one indicating that work
started on a packet and one for completed work. TracedCallback<> is based on Callback<> and extends
it to process a list of attached callbacks, which are all invoked sequentially to indicate an event.
Line 46 is a macro which ensures that the metadata of MyProtocol is globally available.
The code listing below defines the metadata description function GetTypeId().
48 TypeId
49 MyProtocol::GetTypeId()
50 {
51 static TypeId tid = TypeId("ns3::MyProtocol")
52 .SetParent<Object>()
53 .AddConstructor<MyProtocol>()
54 .AddAttribute("Param1",

113

C ns-3 Crash Course

55 "Important parameter of work done by this protocol.",
56 IntegerValue(502),
57 MakeIntegerAccessor(&MyProtocol::m_param1),
58 MakeIntegerChecker<int>())
59 .AddAttribute("Param2",
60 "Another important parameter of work done by this protocol.",
61 DoubleValue(999.0),
62 MakeDoubleAccessor(&MyProtocol::m_param2),
63 MakeDoubleChecker<double>(100, 10000))
64 .AddAttribute("ParamTime",
65 "Actual parameter specifying work time.",
66 TimeValue(MilliSeconds(10)),
67 MakeTimeAccessor(&MyProtocol::m_paramTime),
68 MakeTimeChecker())
69 .AddTraceSource("WorkStart",
70 "Time packet work started.",
71 MakeTraceSourceAccessor(&MyProtocol::m_workStartTrace))
72 .AddTraceSource("WorkEnd",
73 "Triggered on work end.",
74 MakeTraceSourceAccessor(&MyProtocol::m_workEndTrace))
75 ;
76 return tid;
77 }

The function returns an object of type TypeId, which contains a lot of metadata on the object. The syntax
for creating a TypeId is rather non-standard; for all usual purposes it is most practical to just copy it from
an exist file and adapt it.
Lines 51–53 define the class’s metadata name, parent class and default constructor in a straight-forward
manner.
Lines 54–58 and 59–63 define two public attributes of the class: “Param1” and “Param2”. These attributes
must be viewed in a broader scope: consider them as parameters of a complex protocol implementations.
Simulation users will want to change them for different runs of an experiment. A third attribute “Param-
Time” is added in lines 64–68, and will control work time required by the protocol.
The first three lines of each exported attributes contains the name, a short description and the default
value. The default value is not just an integral type, but uses an AttributeValue wrapping. This wrapping
is required to enable flexible type conversions and allows special types in the attribute metadata. In the
example, the default values are encapsulated in an IntegerValue, a DoubleValue and a TimeValue object.
Each attribute also contains an accessor and a checker object, they are used by the attribute system to
access the variable’s memory. Discussion of accessors and checkers are outside the scope of this example.
In summary: the object exports three attributes with a lot of extra information. The ns-3 attribute system
allows comfortable access to these variables, which will be described later on. In whole the attributes replace
traditional GetXYZ() and SetXYZ() function pairs with programmatically accessible attribute definitions.
TraceSources are also exportable via the metadata system. In the example, the two sources WorkStart
and WorkEnd are added to the constructed TypeId in lines 69–71 and 72–74. Once registered, they can be
connected to different TraceSinks defined by the simulation user.
After the previous highly obscure piece of code, follow two refreshingly simple assignment functions:
79 void
80 MyProtocol::SetWorkSuccessCallback(WorkSuccess callback)
81 {
82 m_workSuccessCallback = callback;
83 }
84 void
85 MyProtocol::SetWorkFailedCallback(WorkFailed callback)
86 {
87 m_workFailedCallback = callback;
88 }

These two public functions can be used to set the private callback objects. Review the class definition to
see that WorkSuccess and WorkFailed are typedefed Callback<> classes.

114

C.2 Objects, Ptrs, Attributes and TraceSources

In the following snippet, MyProtocol’s two processing functions are defined.
90 void
91 MyProtocol::ReceivePacket(Ptr<Packet> packet)
92 {
93 std::cerr << "MyProtocol::ReceivePacket() with "
94 << "Param1=" << m_param1 << ", Param2=" << m_param2 << "\n";
95

96 m_workStartTrace(Simulator::Now(), packet);
97

98 Simulator::Schedule(Simulator::Now() + m_paramTime,
99 &MyProtocol::FinishWork, this,

100 packet, Simulator::Now());
101 }
102

103 void
104 MyProtocol::FinishWork(Ptr<Packet> packet, Time workStarted)
105 {
106 // do something interesting with packet.
107 bool workOk = (m_param1 % 2 == 1);
108

109 if (workOk)
110 {
111 m_workSuccessCallback(packet);
112 }
113 else
114 {
115 m_workFailedCallback(packet, 10);
116 }
117

118 m_workEndTrace(Simulator::Now(), Simulator::Now() - workStarted,
119 packet);
120 }

The example protocol will “start” processing a packet in the ReceivePacket() function. This imaginary
protocol requires some processing time, thus ReceivePacket() only indicates start of work by calling the
appropriate trace callbacks in line 96. To simulate processing time, an event must be schedules at the time
when work ends. The event handler used is FinishWork() and must be scheduled to be executed after
m_paramTime elapsed.
This event is scheduled in lines 98–100 by invoking the Simulator::Schedule() function. Simulator is a
singleton object holding the global simulation coordinator. The arguments to this call are Schedule(time,
function-pointer, object-address, arguments...). Note that any function can be called; the event
handler need not be derived from a class Event as in ns-2. Furthermore any arguments can be passed to
the handler, in the example the current time and processed packet are pushed to the handler when invoked.
Thus after m_paramTime, counted from the current simulator time, the FinishWork() function is called. This
function then does some interesting packet processing algorithm and determines whether it was successful.
Accordingly either m_workSuccessCallback or m_workFailedCallback is called.
To allow an experimenter to gather information on the protocol’s behavior, the WorkEnd trace callback is
called with the possibly modified packet as an argument.
The protocol definition is now complete and the next listings will describe how the new protocol can be
used.
In the next listing four callback functions are defined: two for the success/failure callbacks and two for the
start/end trace sources.
122 /∗ main program ∗/
123

124 void
125 Proto1WorkSuccessCallback(Ptr<const Packet> packet)
126 {
127 std::cerr << "proto1’s work succeeded on packet.\n";

115

C ns-3 Crash Course

128 }
129 void
130 Proto1WorkFailedCallback(Ptr<const Packet> packet, int reason)
131 {
132 std::cerr << "proto1’s work failed on packet, reason: " << reason << ".\n";
133 }
134

135 void
136 Proto1WorkStartTrace(std::string context,
137 Time start, Ptr<const Packet> packet)
138 {
139 std::cerr << Simulator::Now() << " " << context
140 << " time=" << start << ".\n";
141 }
142 void
143 Proto1WorkEndTrace(std::string context,
144 Time start, Time duration, Ptr<const Packet> packet)
145 {
146 std::cerr << Simulator::Now() << " " << context
147 << " time=" << start
148 << " duration=" << duration << ".\n";
149 }

The signatures of these functions are fixed according to the definitions in the MyProtocol class. Only new
parameter is context to the TraceSink functions. context is used in large simulations to indicate the object
issuing the trace event: it contains node id, protocol and application names, which otherwise would not be
available to the TraceSink function.
In the following main(), one protocol object is created and its callbacks are connected to the printing
functions defined above.
151 int main(int argc, char *argv[])
152 {
153 Config::SetDefault("ns3::MyProtocol::Param1", IntegerValue(503));
154

155 CommandLine cmd;
156 cmd.Parse(argc, argv);
157

158 Ptr<MyProtocol> proto1
159 = CreateObject<MyProtocol>("Param2", DoubleValue(1001.0),
160 "ParamTime", TimeValue(Seconds(0.240)));
161

162 proto1->SetAttribute("Param2", StringValue("1002.5"));
163

164 proto1->SetWorkSuccessCallback(MakeCallback(&Proto1WorkSuccessCallback));
165 proto1->SetWorkFailedCallback(MakeCallback(&Proto1WorkFailedCallback));
166

167 proto1->TraceConnect("WorkStart", "main::proto1",
168 MakeCallback(&Proto1WorkStartTrace));
169 proto1->TraceConnect("WorkEnd", "main::proto1",
170 MakeCallback(&Proto1WorkEndTrace));
171

172 Simulator::Schedule(Seconds(1),
173 &MyProtocol::ReceivePacket, proto1,
174 Create<Packet>(100));
175

176 Simulator::Run();
177 }

In lines 158–159, the protocol object is created using the CreateObject<> template. During creation, all
attribute values defined in TypeId() are initialized with their default values. There are many ways to
override these default values, of which the example shows the following four:
First method is to use the global Config utility as shown in line 153. By changing the default value here,
all objects created afterwards will have the new value.

116

C.3 Highway Lanes Scenario Code

Second method shown in the example is to pass parameters to the CreateObject<> call. The parameters
are always pairs of string key and AttributeValue.
Attribute values can also be changed later by calling SetAttribute() on an object, as exemplified in line
162.
A fourth way to override attributes is enabled by parsing the command line in lines 155–156. ns-3 contains
a complex command line processor: for example by running the simulation with “myprotocol-example
--ns3::MyProtocol::Param1=300” the default value of “Param1” can be overridden with 300.
After setting all parameters of the MyProtocol object, lines 164–165 connect the two callbacks and lines
167–170 connect the other two trace callbacks. Main difference between both callbacks is that for the event
traces multiple callbacks may be registered and for the plain callback only one is allowed.
Not shown in the example is how to connect event traces by using Config::Connect(). This is not possible
in the example because no network Node object is created. In a real simulation containing Nodes, each node
contains a list of attached protocols and these are accessible via Config. In such a full-blown simulation,
the TraceSource could also be connected with

1 Config::Connect("/NodeList/*/$ns3::MyProtocol/WorkStart",
2 MakeCallback(&Proto1WorkStartTrace));

To make the protocol instance proto1 do some work, the main() function manually schedules a packet
transmission in lines 172–174. Note the direct reference to ReceivePacket() and construction of the packet
using Create<>.
In line 176 the simulation’s main event processing loop is run. The loop terminates when no more scheduled
events require processing.
The output of the example program, when run with no parameters, is the following:

1 MyProtocol::ReceivePacket() with Param1=503, Param2=1002.5
2 1000000000ns main::proto1 time=1000000000ns.
3 proto1’s work succeeded on packet.
4 2240000000ns main::proto1 time=2240000000ns duration=1240000000ns.

Note that Config::SetDefault() overrides the “Param1” to 503, which allows the protocols work to suc-
ceed. Success is signaled via the callback. In the tracing output lines, progress of simulated time can be
observed: protocol processing time was 124ms, as set with “ParamTime” in the CreateObject<> call.
This wraps up the example protocol implementation. Not all features shown in this example are required
to build simulations. Many aspects are more part of inner workings of ns-3 and their understanding is only
required to read model and protocol implementation code. The next example shows how to actually build
a simulation.

C.3 Highway Lanes Scenario Code

In this section the crash course continues with a wireless network simulation experiment built using ns-3. The
example upon which this short introduction is given, is a simplified version of the highway lanes experiments
used to speed test ns-2 and ns-3 in section 8.1. In particular the whole time measurement code was removed
to make the example more concise, also Nakagami fast fading was added to demonstrate this new feature.
The described simulation source code is embedded in this PDF: . It contains enhance-
ments added to ns-3 in this thesis and thus cannot be directly run with ns-3.4, however, future major versions
will include the contributed features. The principle simulation composition method can be applied to other
scenarios requiring different models and applications.
The source code file starts, as all previous files, with an emacs directive setting automatic indentation style.
After a short description of the simulation scenario, ns-3 headers files are included. Note that, different
from previous code examples, here ...-module.h headers are used. These are automatically generated and
include all public header files of the specific component (see section 4.1). Furthermore, three header from
the STL are included for output and calculations.

117

code/highway-lanes.cc
// -*- mode: c++; c-file-style: "gnu"; indent-tabs-mode: nil; -*-

/*

 * Experiment scenario: 6*n nodes on a six lane highway

 *

 * 6*n nodes are put on a highway with 6 lanes. Each lane is 5 meters apart

 * from neighboring lanes. Cars are spaced at 90 meters on each lane (15 meters

 * between two nodes along the x axis) yielding a total of 66.6 nodes per kilometer.

 */

#include "ns3/core-module.h"

#include "ns3/simulator-module.h"

#include "ns3/node-module.h"

#include "ns3/wifi-module.h"

#include "ns3/helper-module.h"

#include "ns3/traffic-application.h"

#include <iostream>

#include <iomanip>

#include <numeric>

using namespace ns3;

NS_LOG_COMPONENT_DEFINE("Main");

class Experiment

{

public:

 static const double m_simulatedTime = 60.0;

 unsigned int m_appTxPackets;

 unsigned int m_appRxPackets;

 unsigned int m_phyRxErrors;

 void

 Run(unsigned int numNodes)

 {

 // Create nodes and store them in the container.

 NodeContainer nodes;

 nodes.Create(numNodes);

 // Add packet socket handlers.

 PacketSocketHelper packetSocket;

 packetSocket.Install(nodes);

 // Install wifi devices on the nodes.

 Ns2ExtWifiChannelHelper wifiChannel;

 wifiChannel.SetPropagationDelay("ns3::ConstantSpeedPropagationDelayModel");

 wifiChannel.AddPropagationLoss("ns3::ThreeLogDistancePropagationLossModel");

 wifiChannel.AddPropagationLoss("ns3::NakagamiPropagationLossModel",

 "m0", DoubleValue(1.5),

 "m1", DoubleValue(1.0),

 "m2", DoubleValue(1.0));

 Ns2ExtWifiPhyHelper wifiPhy = Ns2ExtWifiPhyHelper::Default();

 wifiPhy.SetChannel(wifiChannel.Create());

 wifiPhy.Set("UseConstantNoiseFloor", BooleanValue(true));

 wifiPhy.Set("ConstantNoiseFloor", DoubleValue(-99.0));

 wifiPhy.Set("PreambleCapture", BooleanValue(true));

 wifiPhy.Set("DataCapture", BooleanValue(true));

 WifiHelper wifi = WifiHelper::Default();

 wifi.SetMac("ns3::AdhocWifiMac");

 wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager",

 "DataMode", StringValue("wifia-6mbs"),

 "NonUnicastMode", StringValue("wifia-6mbs"));

 wifi.Install(wifiPhy, nodes);

 // Position nodes on to highway lanes.

 Ptr<ListPositionAllocator> positionAlloc

 = CreateObject<ListPositionAllocator>();

 for (unsigned int i = 0; i < numNodes; ++i)

 {

 positionAlloc->Add(Vector(i * 15, (i % 6) * 5, 0.0));

 }

 MobilityHelper mobility;

 mobility.SetPositionAllocator(positionAlloc);

 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");

 mobility.Install(nodes);

 // Use broadcast packet address for applications.

 PacketSocketAddress socketBroadcast;

 socketBroadcast.SetAllDevices();

 socketBroadcast.SetPhysicalAddress(Mac48Address::GetBroadcast());

 socketBroadcast.SetProtocol(1);

 // Install TrafficApplication on each node.

 Ptr<SimpleTrafficPacketFactory> packetFactory

 = CreateObject<SimpleTrafficPacketFactory>("Size", UintegerValue(400));

 TrafficHelper trafficApp("ns3::PacketSocketFactory", socketBroadcast);

 trafficApp.SetAttribute("PacketFactory", PointerValue(packetFactory));

 trafficApp.SetAttribute("OnTime",

 RandomVariableValue(ConstantVariable(m_simulatedTime)));

 trafficApp.SetAttribute("OffTime",

 RandomVariableValue(UniformVariable(0.0, 0.1)));

 trafficApp.SetAttribute("Interval",

 RandomVariableValue(ConstantVariable(0.1)));

 ApplicationContainer app = trafficApp.Install(nodes);

 app.Start(Seconds(0.0));

 app.Stop(Seconds(m_simulatedTime));

 // Add Trace callbacks to gather statistics.

 Config::Connect("/NodeList/*/ApplicationList/*/$ns3::TrafficApplication/Tx",

 MakeCallback(&Experiment::AppTxTrace, this));

 Config::Connect("/NodeList/*/ApplicationList/*/$ns3::TrafficApplication/Rx",

 MakeCallback(&Experiment::AppRxTrace, this));

 Config::Connect("/NodeList/*/DeviceList/*/Phy/State/RxError",

 MakeCallback(&Experiment::PhyRxErrorTrace, this));

 // Zero counters and run simulation.

 m_appTxPackets = 0;

 m_appRxPackets = 0;

 m_phyRxErrors = 0;

 Simulator::Run();

 Simulator::Destroy();

 }

 void

 AppTxTrace(std::string context, Ptr<const Packet> p)

 {

 NS_LOG_DEBUG(context << " TX size=" << p->GetSize());

 ++m_appTxPackets;

 }

 void

 AppRxTrace(std::string context, Ptr<const Packet> p, const Address& from)

 {

 NS_LOG_DEBUG(context << " RX from=" << from << " size=" << p->GetSize());

 ++m_appRxPackets;

 }

 void

 PhyRxErrorTrace(std::string context, Ptr<const Packet> p,

 Ptr<const WifiPhyTag> phytag, WifiPhy::RxErrorReason reason)

 {

 NS_LOG_DEBUG(context << " PHYRXERROR"

 << " reason=" << WifiPhy::RxErrorReasonToString(reason)

 << " phytag={" << *phytag << "} p={" << *p << "}");

 ++m_phyRxErrors;

 }

};

template <typename Container>

double meanValue(const Container& c)

{

 return std::accumulate(c.begin(), c.end(), 0.0) / c.size();

}

template <typename Container>

double standardDeviation(const Container& c)

{

 double squareSum = 0.0;

 double sum = 0.0;

 for (typename Container::const_iterator ei = c.begin();

 ei != c.end(); ++ei)

 {

 squareSum += (double)(*ei) * (double)(*ei);

 sum += *ei;

 }

 double mean = sum / c.size();

 return sqrt((squareSum / c.size()) - (mean * mean));

}

template <typename Container>

double errorMargin(const Container& c)

{

 return 2.576 * standardDeviation(c) / sqrt(c.size());

}

int main(int argc, char *argv[])

{

 CommandLine cmd;

 int replications = 1;

 unsigned int fixedNumNodes = 0;

 cmd.AddValue("Replications", "Perform independent replications.", replications);

 cmd.AddValue("NumNodes", "Run for a fixed number of node.", fixedNumNodes);

 cmd.Parse(argc, argv);

 for (unsigned int numNodes = 6; numNodes <= 180; numNodes += 6)

 {

 if (fixedNumNodes != 0 && numNodes != fixedNumNodes) continue;

 std::vector<unsigned int> appTxPackets;

 std::vector<unsigned int> appRxPackets;

 std::vector<unsigned int> phyRxErrors;

 for(int rep = 0; rep < replications; ++rep)

 {

 SeedManager::SetRun(rep);

 Experiment experiment;

 experiment.Run(numNodes);

 appTxPackets.push_back(experiment.m_appTxPackets);

 appRxPackets.push_back(experiment.m_appRxPackets);

 phyRxErrors.push_back(experiment.m_phyRxErrors);

 }

 std::cout << std::fixed

 << numNodes

 << " " << meanValue(appTxPackets) << " " << errorMargin(appTxPackets)

 << " " << meanValue(appRxPackets) << " " << errorMargin(appRxPackets)

 << " " << meanValue(phyRxErrors) << " " << errorMargin(phyRxErrors)

 << std::endl;

 }

 return 0;

}

Timo Bingmann
highway-lanes.cc Source Code

C ns-3 Crash Course

1 // −∗− mode: c++; c−file−style: "gnu"; indent−tabs−mode: nil; −∗−
2

3 /∗
4 ∗ Test case: 6∗n nodes on a six lane highway
5 ∗
6 ∗ 6∗n nodes are put on a highway with 6 lanes. Each lane is 5 meters apart
7 ∗ from neighboring lanes. Cars are spaced at 90 meters on each lane (15 meters
8 ∗ between two nodes along the x axis) yielding a total of 66.6 nodes per kilometer.
9 ∗/

10

11 #include "ns3/core-module.h"
12 #include "ns3/simulator-module.h"
13 #include "ns3/node-module.h"
14 #include "ns3/wifi-module.h"
15 #include "ns3/helper-module.h"
16 #include "ns3/traffic-application.h"
17

18 #include <iostream>
19 #include <iomanip>
20 #include <numeric>

Following the includes preamble, two directive are needed prior to beginning experiment code. First the
complete ns3 namespace is imported instead of reiterating ns3:: in front of each used class. Second the
ns-3 logging facilities are informed that log messages from this file are to be categorized as “Main”. The
example will use ns-3 logging macros, which can be activated or suppressed at run-time.
22 using namespace ns3;
23

24 NS_LOG_COMPONENT_DEFINE("Main");

In the following snippet, the experiment class is started. The whole experiment setup and running code
is contained in one class. This encapsulation allows intuitive scoping of result variables and provisions
for running multiple replications of the same experiment with different parameters. To record results the
class contains the three variables m_appTxPackets, m_appRxPackets and m_phyRxErrors, which will count
transmitted, received and dropped packets across all simulated nodes.
26 class Experiment
27 {
28 public:
29

30 static const double m_simulatedTime = 60.0;
31

32 unsigned int m_appTxPackets;
33 unsigned int m_appRxPackets;
34 unsigned int m_phyRxErrors;

One iteration of the experiment is executed in the following Run() function. The complete simulation setup
is contained in this function. All simulated objects are created and destroyed in each replication; they are
not reused.
36 void
37 Run(unsigned int numNodes)
38 {
39 // Create nodes and store them in the container.
40

41 NodeContainer nodes;
42 nodes.Create(numNodes);
43

44 // Add packet socket handlers.
45

46 PacketSocketHelper packetSocket;
47 packetSocket.Install(nodes);

118

C.3 Highway Lanes Scenario Code

The highway lanes experiment has one parameter: the number of nodes placed on the lanes. These nodes
are created in line 42 using the NodeContainer helper object. This container can be simply viewed as a
vector of Node objects. It is the basis for a series of helper classes contained in ns-3 to make common tasks
during simulation set up easy. This helper pattern is exemplified by the following lines 46–47, in which the
packet socket “stack” is added to each node. Packet sockets are simplified versions of UDP or TCP sockets,
except that each packet is transferred with no modifications. No header or trailer, sequence numbering or
congestion control algorithm is added.
Instead of using the helper classes NodeContainer and PacketSocketHelper, the node set up could be
written out into a for loop containing CreateObject<Node>() and corresponding construction of packet
sockets. These loops are hidden for convenience in the Create() and Install() functions. This becomes
very useful when creating a wireless channel and adding wireless LAN devices to the nodes:
49 // Install wifi devices on the nodes.
50

51 Ns2ExtWifiChannelHelper wifiChannel;
52 wifiChannel.SetPropagationDelay("ns3::ConstantSpeedPropagationDelayModel");
53 wifiChannel.AddPropagationLoss("ns3::ThreeLogDistancePropagationLossModel");
54 wifiChannel.AddPropagationLoss("ns3::NakagamiPropagationLossModel",
55 "m0", DoubleValue(1.5),
56 "m1", DoubleValue(1.0),
57 "m2", DoubleValue(1.0));
58

59 Ns2ExtWifiPhyHelper wifiPhy = Ns2ExtWifiPhyHelper::Default();
60 wifiPhy.SetChannel(wifiChannel.Create());
61 wifiPhy.Set("UseConstantNoiseFloor", BooleanValue(true));
62 wifiPhy.Set("ConstantNoiseFloor", DoubleValue(-99.0));
63 wifiPhy.Set("PreambleCapture", BooleanValue(true));
64 wifiPhy.Set("DataCapture", BooleanValue(true));
65

66 WifiHelper wifi = WifiHelper::Default();
67 wifi.SetMac("ns3::AdhocWifiMac");
68 wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager",
69 "DataMode", StringValue("wifia-6mbs"),
70 "NonUnicastMode", StringValue("wifia-6mbs"));
71

72 wifi.Install(wifiPhy, nodes);

The 802.11 model is highly configurable and thus this part of the simulation set up has the most param-
eters. For the experiment the Ns2ExtWifiChannel and Ns2ExtWifiPhy classes created for this thesis are
used. Again their actual creation is done by helper wrappers instead of explicitly. Nevertheless, detailed
configuration of the models can be done through the helpers, which follow the factory design pattern and
create object instances with modified parameters.
The channel object is created with Ns2ExtWifiChannelHelper and configured to use three-log-distance
and Nakagami propagation loss. The default speed-of-light propagation delay model is also applied. For
demonstration, the m parameters of the Nakagami model are modified before instantiation.
Wireless network devices are created with Ns2ExtWifiPhyHelper. These are attached to the previously
configured channel and some model parameters are modified. Frame capture is actually activated by default,
but setting these options to true doesn’t hurt.
WifiHelper is a helper class used to create the remaining MAC layer objects of the 802.11 model, which
are located on top of WifiPhy. Primary option of these higher layers is the type of wireless station created.
In the example a non-QoS ad-hoc station is created, QosAdhocWifiMac could be used to add EDCA QoS
queues. Each wireless station also contains a WifiRemoteStationManager, which is used for rate control
and retransmission counters. The rate control algorithm is set in the example to a constant “algorithm”
fixing the rate to 6Mb/s.
After the complex configuration process, wireless network devices (WifiNetDevices) are installed on all
nodes with just one line of code using Install().
In the next step, “mobility” of nodes is defined. For the highway lanes scenario this means positioning nodes
on six parallel lines.

119

C ns-3 Crash Course

74 // Position nodes on to highway lanes.
75

76 Ptr<ListPositionAllocator> positionAlloc
77 = CreateObject<ListPositionAllocator>();
78 for (unsigned int i = 0; i < numNodes; ++i)
79 {
80 positionAlloc->Add(Vector(i * 15, (i % 6) * 5, 0.0));
81 }
82

83 MobilityHelper mobility;
84 mobility.SetPositionAllocator(positionAlloc);
85 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
86 mobility.Install(nodes);

Again the actual creation of the mobility objects is left to helpers. The mobility class is verbosely named
ConstantPositionMobilityModel. Initial, and in this case fixed, node positions are taken from a list,
which is filled with positions calculated using the formula in line 80. More complex and actually mobile
simulations can be created with other mobility models.
Next the traffic generator applications are installed. In this scenario, the TrafficApplication packet
generator implemented for this thesis is set up to create isochronous beacon-like traffic.
88 // Use broadcast packet address for applications.
89

90 PacketSocketAddress socketBroadcast;
91 socketBroadcast.SetAllDevices();
92 socketBroadcast.SetPhysicalAddress(Mac48Address::GetBroadcast());
93 socketBroadcast.SetProtocol(1);
94

95 // Install TrafficApplication on each node.
96

97 Ptr<SimpleTrafficPacketFactory> packetFactory
98 = CreateObject<SimpleTrafficPacketFactory>("Size", UintegerValue(400));
99

100 TrafficHelper trafficApp("ns3::PacketSocketFactory", socketBroadcast);
101 trafficApp.SetAttribute("PacketFactory", PointerValue(packetFactory));
102 trafficApp.SetAttribute("OnTime",
103 RandomVariableValue(ConstantVariable(m_simulatedTime)));
104 trafficApp.SetAttribute("OffTime",
105 RandomVariableValue(UniformVariable(0.0, 0.1)));
106 trafficApp.SetAttribute("Interval",
107 RandomVariableValue(ConstantVariable(0.1)));
108

109 ApplicationContainer app = trafficApp.Install(nodes);
110 app.Start(Seconds(0.0));
111 app.Stop(Seconds(m_simulatedTime));

Again a helper class TrafficHelper is used. Each traffic generator must be configured with a destination
address, which in this case is the broadcast address. Because the packet socket stack is used, a Packet-
SocketAddress must be used (instead of say an Ipv4Address). Destination address of the socket created
in lines 91–94 is the MAC broadcast address.
Packet creation in TrafficApplication follows the abstract factory pattern: the traffic generator must be
configured with an instance of TrafficPacketFactory. In this example the predefined SimpleTraffic-
PacketFactory is used to created 400 byte sized zero-filled packets.
Traffic stream properties are set in lines 103–108: packets are generated at 10Hz by setting “Interval”
to a constant random variable. For Poisson traffic, an ExponentialVariable can be used. Start of the
isochronous packet sequences is randomized for each node by setting the “OffTime” parameter to a uniform
variable. The traffic generator starts in an off state of random duration, then it switches to on and starts
transmitting packets for m_simulatedTime.
As before with other helpers, the configured traffic application is installed on all nodes in line 110. However,
the installed application objects must be set up to start and stop at specific simulated time points. This

120

C.3 Highway Lanes Scenario Code

starting and stopping is common to all applications and is not related to the on/off state alteration in Traf-
ficApplication. As NodeContainer groups Nodes, ApplicationContainer contains many Applications,
which are all started at simulation time start and stopped after the targeted time.
To collect information for evaluation of the experiment, callbacks must be connected to trace sources of
interest.
113 // Add Trace callbacks to gather statistics.
114

115 Config::Connect("/NodeList/*/ApplicationList/*/$ns3::TrafficApplication/Tx",
116 MakeCallback(&Experiment::AppTxTrace, this));
117 Config::Connect("/NodeList/*/ApplicationList/*/$ns3::TrafficApplication/Rx",
118 MakeCallback(&Experiment::AppRxTrace, this));
119

120 Config::Connect("/NodeList/*/DeviceList/*/Phy/State/RxError",
121 MakeCallback(&Experiment::PhyRxErrorTrace, this));

Three callbacks are attached to trace sources available in the scenario. The actual trace callback functions
are defined in one of the following code parts. Syntax of the trace source path specifier is somewhat obscure
and it is best to reuse existing examples.
The two traces exported by TrafficApplication are hooked: transmission and reception of a packet. Note
that the traffic generator also automatically accepts all received packets, otherwise they would be queued
indefinitely. For collision statistics, the WifiPhy trace source “RxError” is hooked.
The simulation set up is now complete and the event loop can start.
123 // Zero counters and run simulation.
124

125 m_appTxPackets = 0;
126 m_appRxPackets = 0;
127 m_phyRxErrors = 0;
128

129 Simulator::Run();
130 Simulator::Destroy();
131 }

Prior to starting the event loop, the statistics counters are zeroed. With Simulator::Run() the event
loop is entered. It runs until no more events are scheduled and then terminates the experiment. All created
simulation objects are destroyed and allocated memory is freed with Simulator::Destroy(). This concludes
the Experiment::Run(), statistical processing is left to outside code.
These statistics are base on the packet counters incremented by following three trace callbacks.
133 void
134 AppTxTrace(std::string context, Ptr<const Packet> p)
135 {
136 NS_LOG_DEBUG(context << " TX size=" << p->GetSize());
137 ++m_appTxPackets;
138 }
139

140 void
141 AppRxTrace(std::string context, Ptr<const Packet> p, const Address& from)
142 {
143 NS_LOG_DEBUG(context << " RX from=" << from << " size=" << p->GetSize());
144 ++m_appRxPackets;
145 }
146

147 void
148 PhyRxErrorTrace(std::string context, Ptr<const Packet> p,
149 Ptr<const WifiPhyTag> phytag, WifiPhy::RxErrorReason reason)
150 {
151 NS_LOG_DEBUG(context << " PHYRXERROR"
152 << " reason=" << WifiPhy::RxErrorReasonToString(reason)
153 << " phytag={" << *phytag << "} p={" << *p << "}");
154 ++m_phyRxErrors;

121

C ns-3 Crash Course

155 }
156 };

These callbacks were connected to their corresponding trace sources during simulation set up. Their param-
eter list must match the required callback signature exactly, otherwise a verbose run-time error is thrown
and the experiment is not run.
The callbacks in this example only increment the corresponding packet counter and optionally outputs a
debug message. These logging macros can be activated in ns-3 debug mode by setting the environment
variable NS_LOG=Main.
The collected packet counts will be processed using the following three statistical functions.
158 template <typename Container>
159 double meanValue(const Container& c)
160 {
161 return std::accumulate(c.begin(), c.end(), 0.0) / c.size();
162 }
163

164 template <typename Container>
165 double standardDeviation(const Container& c)
166 {
167 double squareSum = 0.0;
168 double sum = 0.0;
169

170 for (typename Container::const_iterator ei = c.begin();
171 ei != c.end(); ++ei)
172 {
173 squareSum += (double)(*ei) * (double)(*ei);
174 sum += *ei;
175 }
176

177 double mean = sum / c.size();
178 return sqrt((squareSum / c.size()) - (mean * mean));
179 }
180

181 template <typename Container>
182 double errorMargin(const Container& c)
183 {
184 return 2.576 * standardDeviation(c) / sqrt(c.size());
185 }

Mean value and 99% error margin will be calculated over a number of independent replications.
In the following main() function, the Experiment class is instantiated and results are collected.
187 int main(int argc, char *argv[])
188 {
189 CommandLine cmd;
190 int replications = 1;
191 unsigned int fixedNumNodes = 0;
192 cmd.AddValue("Replications", "Perform independent replications.", replications);
193 cmd.AddValue("NumNodes", "Run for a fixed number of node.", fixedNumNodes);
194 cmd.Parse(argc, argv);

To make the experiment program more flexible, two special parameters are added to the already highly
versatile ns-3 command line options. One is the number of independent replication performed, and the other
can be used to test only a fixed number of nodes, which is useful to run multiple experiments processes in
parallel.
The final code snippet contains the rest of the main() function.
196 for (unsigned int numNodes = 6; numNodes <= 180; numNodes += 6)
197 {
198 if (fixedNumNodes != 0 && numNodes != fixedNumNodes) continue;
199

200 std::vector<unsigned int> appTxPackets;

122

C.3 Highway Lanes Scenario Code

201 std::vector<unsigned int> appRxPackets;
202 std::vector<unsigned int> phyRxErrors;
203

204 for(int rep = 0; rep < replications; ++rep)
205 {
206 SeedManager::SetRun(rep);
207

208 Experiment experiment;
209 experiment.Run(numNodes);
210

211 appTxPackets.push_back(experiment.m_appTxPackets);
212 appRxPackets.push_back(experiment.m_appRxPackets);
213 phyRxErrors.push_back(experiment.m_phyRxErrors);
214 }
215

216 std::cout << std::fixed
217 << numNodes
218 << " " << meanValue(appTxPackets) << " " << errorMargin(appTxPackets)
219 << " " << meanValue(appRxPackets) << " " << errorMargin(appRxPackets)
220 << " " << meanValue(phyRxErrors) << " " << errorMargin(phyRxErrors)
221 << std::endl;
222 }
223

224 return 0;
225 }

The default experiment configuration iterates over all node counts from 6 to 180 with 6 nodes added in each
step. Line 198 was the easiest way to set a fixed number of nodes without refactoring the whole experiment
code.
Experiment replications are run in the for loop in lines 204–214. Independently seeded random streams
are created by using SeedManager::SetRun() function. In each iteration of the for loop a new experiment
object is created, run and results are saved in the three vectors. Average and error margins of these results
are then outputted for further processing, e.g. with gnuplot.
In figure C.1 the results of this example experiment are plotted. Note that the number of sent packets is
indicated by the left y axis, whereas the number of received packets and reception errors is scaled by the
right y axis. This representation was chosen, because the somewhat oversimplified total packet count metric
reaches high numbers for lots of broadcasting nodes.
As expected for this experiment, the number of sent packets is proportional to the number of broadcasting
nodes. Successfully received packets also increases proportionally, which indicates that the medium is not
saturated. Error margins on the received packets are rather large due to probabilistic Nakagami fast fading.
Reception errors are indicated by ns-3 for a number of different reasons, which include low signal strength,
interrupting preamble or data capture or concurrent transmission. These reasons are not broken down into
different figures, but are all contained in the increasing reception error plot line.
This concludes the crash course into basic ns-3 simulation architecture and scenario structure. Simulation
source code using other models like Ethernet can be found in the examples directory of the ns-3 distribution.
This directory also features some scenarios built using the Python bindings. More tutorials, talks and
examples are collected on the official ns-3 website [26].

123

C ns-3 Crash Course

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

N
um

be
r
of

pa
ck
et
s
se
nt

(in
th
ou

sa
nd

s)

N
um

be
r
of

pa
ck
et
s
re
ce
iv
ed

(in
m
ill
io
ns
)

Number of nodes

Sent packets
Received packets
Reception errors

Figure C.1: Results from the highway example experiment

124

	Title Page
	Acknowledgments
	Zusammenfassung
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	I Related Work
	2 IEEE 802.11
	2.1 802: The Big Picture
	2.2 Outline of 802 and 802.11 Layers
	2.3 PHY Layers
	2.3.1 The ISM and U-NII Bands
	2.3.2 802.11a -- OFDM
	2.3.3 802.11p -- WAVE

	2.4 MAC Layer
	2.4.1 Communication Context
	2.4.2 CSMA/CA using CS and NAV
	2.4.3 Interframe Space
	2.4.4 DCF
	2.4.5 PCF
	2.4.6 HCF
	2.4.7 EDCA
	2.4.8 HCCA

	3 The ns-2 Network Simulator
	3.1 Overview
	3.2 Problems with 802.11 and Overhaul by DSN

	4 The ns-3 Network Simulator
	4.1 Design Overview
	4.2 Architecture of 802.11 Implementation

	II Enhancements
	5 Propagation Model Enhancements
	5.1 Propagation in ns-3
	5.2 Basic Propagation Loss Models
	5.3 Further Models in ns-3.4
	5.4 Nakagami-m Fast Fading
	5.5 Implementation and Verification

	6 PHY Layer Enhancements
	6.1 Modeling the Transceiver
	6.2 Implementation of Cumulative Noise
	6.3 SINR Reception Criterion
	6.4 Frame Capture Effect
	6.5 Implementation Issues
	6.5.1 ns-2 Implementation
	6.5.2 Porting to ns-3

	6.6 BER/PER Reception Criterion
	6.6.1 Digital Modulation
	6.6.2 Convolutional Decoding
	6.6.3 Packet Error Rate

	6.7 Verification
	6.7.1 Two Nodes Distance Scenario
	6.7.2 Three Nodes Capture Scenario

	6.8 Discussion of Reception Criteria

	7 EDCA QoS Extensions
	7.1 Modeling DCF
	7.1.1 Simulating Channel Access Rules
	7.1.2 Initiating Frame Transmission

	7.2 Extending Model with EDCA
	7.2.1 Implementing TXOPLimits

	7.3 Implementation Issues
	7.4 Verification
	7.4.1 Maximum Throughput
	7.4.2 EDCA Traffic Streams

	8 Speed Comparison -- ns-2 vs. ns-3
	8.1 Highway Lanes Scenario
	8.1.1 Compilers, Optimization Levels and Build Options
	8.1.2 Execution Time Results

	9 Conclusion
	9.1 Summary
	9.2 Future Work

	Bibliography
	A Background
	A.1 A Note on Decibel

	B Extra Figures and Tables
	B.1 802.11a Convolutional Encoder
	B.2 Default EDCA Parameters

	C ns-3 Crash Course
	C.1 Callbacks
	C.2 Objects, Ptrs, Attributes and TraceSources
	C.3 Highway Lanes Scenario Code

