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Summary

Sorting a set of items is a task that can be useful by itself or as a building block for
more complex operations. That is why a lot of effort has been put into finding sorting
algorithms that sort large sets as efficiently as possible. But the more sophisticated
and fast the algorithms become asymptotically, the less efficient they are for small
sets of items due to large constant factors.
A relatively simple sorting algorithm that is often used as a base case sorter is inser-
tion sort, because it has small code size and small constant factors influencing its
execution time.
We aim to determine if there is a faster way to sort small sets of items to provide an
efficient base case sorter. We looked at sorting networks, at how they can improve the
speed of sorting few elements, and how to implement them in an efficient manner by
using conditional moves. Since sorting networks need to be implemented explicitly
for each set size, providing networks for larger sizes becomes less efficient due to
increased code sizes. To also enable the sorting of slightly larger base cases, we
adapted sample sort to Register Sample Sort, to break down those larger sets into
sizes that can in turn be sorted by sorting networks.
From our experiments we found that when sorting only small sets, the sorting net-
works outperform insertion sort by a factor of at least 1.76 for any array size between
six and sixteen, and by a factor of 2.72 on average across all machines and array sizes.
When integrating sorting networks as a base case sorter into Quicksort, we achieved
far less performance improvements over using insertion sort, which is probably due
to the networks having a larger code size and cluttering the L1 instruction cache.
The same effect occurs when including Register Sample Sort as a base case sorter
for IPS4o. But for x86 machines that have a larger L1 instruction cache of 64 KiB or
more, we obtained speedups of 12.7% when using sorting networks as a base case
sorter in std::sort, and of 5–6% when integrating Register Sample Sort as a base case
sorter into IPS4o, each in comparison to using insertion sort as the base case sorter.
In conclusion, the desired improvement in speed could only be achieved under special
circumstances, but the results clearly show the potential of using conditional moves
in the field of sorting algorithms.
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1 INTRODUCTION

1.1 Motivation
Sorting, that is rearranging elements of an input set into a specific order, is a fundamental algorithmic challenge. At universities
around the globe, basic sorting algorithms are taught in introductory computer science courses as examples for theoretical
analysis of algorithms. We learn that bubble sort and insertion sort have quadratic asymptotic running time, Quicksort expected
(n log n) but worst-case quadratic time, and merge sort always runs in (n log n) time. These algorithms are analyzed by the
number of comparisons they require, both asymptotically, up to constant factors, and sometimes also exactly for small input
sizes n. But later, practical experience shows that pure theoretical analysis cannot tell the whole story. In real applications and
on real hardware factors such as average cases, cache effects, modern CPU features like speculative execution, and of course
constant factors actually matter, a lot. Any well-founded choice on which sorting algorithm to use (for a particular use case)
should be influenced by all factors.
The usual playing field for developing new sorting algorithms is to sort a large number of items as quickly as possible. We

will call these complex sorting algorithms and many follow the divide-and-conquer paradigm. However, the algorithmic steps
for large sets in these complex sorters do not perform well when sorting small sets of items, because they have good asymptotic
properties but larger constant factors that become more important for the small sizes. However also sorting small inputs can be
relevant for performance. This happens for the base case of complex sorting algorithms or when many sorting problems have to
be solved. The latter case for example occurs when the adjacency lists of a graph should be sorted by some criterion in order to
support some greedy heuristics. For example, the heavy edge matching heuristics1 repeatedly looks for the heaviest unmatched
edge of a vertex.
The most common choice for sorting small inputs is insertion sort, which has a worst-case running time of (n2), but small

constant factors that make it suitable to use for small n. When the sorter is executed many times, the total running time does add
up to a substantial part of the computing time of an application. In this paper we therefore attempt to optimize or replace this
quadratic sorting algorithm at the heart of most complex sorters and other applications.
Put plainly: what is the fastest method to sort up to sixteen elements on actual modern hardware?
We investigate two approaches: first to optimize sorting networks and the second to adapt sample sort to small numbers of

items. When optimizing sorting networks, the most important aspects are how to execute the conditional swap operations on
modern CPUs and which sorting network instances to use: the best known ones or locality-aware recursive constructions such
as Bose-Nelson’s2. Optimizing sorting networks has previously been addressed by Codish, Cruz-Filipe, Nebel, and Schneider-
Kamp3 in 2017, but we go much further into the hardware details of the conditional swap operations and use hand-coded
assembly employing conditional move instructions. For slightly larger sets of items (e.g. up to 256), we present Register Sample
Sort (RSS), which is an adaptation of Super Scalar Sample Sort4 to use the registers in the CPU for splitters.
For our experimental evaluation we used four machines: two with Intel CPUs, one with an AMD Ryzen, and a Rockchip

RK3399 ARM system on a chip. It turns out that sorting networks with hand-coded conditional move assembly instructions
perform much better (a factor 2.4–5.3 faster) and have a much smaller variance in running time than insertion sort. However,
when integrating sorting networks into Quicksort we unexpectedly saw only a speedup of 7–13% depending on the machine
and base algorithm. We attribute this to the larger code size of sorting networks and thus L1 instruction cache misses. Register
Sample Sort is also faster than insertion sort for 256 items: up to a factor 1.4 over std::sort. We then integrated both sorting
networks and Register Sample Sort into IPS4o, a fast complex comparison-based sorter by Axtmann et al.5. Our experiments
validate the authors measurements that IPS4o is some 40–60% faster than std::sort, and were able to show that our better
base case sorters improve this by another 1.3% on Intel CPUs, 5% on AMD CPUs, and 7% on the ARM machine. The ARM
machine has higher variance in running time but less outliers than the Intel and AMD ones. We conclude that the larger code
size of sorting networks is a disadvantage, and that Intel and AMD’s instruction scheduling and pipelining units are good at
accelerating insertion sort. For ARM machines, better algorithms however make a difference because the CPUs are simpler.
This paper is based on the bachelor’s thesis of Jasper Marianczuk6.

1.2 Overview of the Paper
Section 2 is dedicated to sorting networks: Section 2.1 starts with the general basics of sorting networks and inline assembly
code. After that, we look at different ways of implementing sorting networks efficiently in C++ in Section 2.2. We focused on
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elements that consist of a key and an additional reference value. This enables the sorting of complex items, not being limited to
integers.
In Section 3 we regard Super Scalar Sample Sort and develop an efficient modified version for sets with 256 elements or less

by holding the splitters in general purpose registers instead of an array. The resulting algorithm is called Register Sample Sort.
Section 4 discusses the results and improvements of using sorting networks we achieved in our experiments, measuring the

performance of the sorting networks and Register Sample Sort individually, and also including them as base cases into Quicksort
and IPS4o. After that we conclude the results of this paper in Section 5.

2 SORTING NETWORKS

2.1 Introduction
Sorting algorithms can be classified into two groups: those of which the comparison behavior depends on the input and those of
which the behavior is not influenced by the particular configuration of the input. Examples of the former are Quicksort7, merge
sort, insertion sort, etc8,9, while the latter are called data-oblivious.
One example of data-oblivious sorting algorithms are sorting networks. A sorting network operates on a fixed number n of

channels enumerated from 1 to n, each representing one input variable, and connections between the channels, called compara-
tors. When two channels are connected by a comparator then the values are compared and conditionally swapped: if the channel
with the lower number holds a value that is greater than the value of the channel with the higher number then the values in the
variables are exchanged.
The comparators are given in a fixed order that determines the sequence of executing these conditional swaps, such that in

the end the channels contain a permutation of the original input, and the values held by the channels are in non-decreasing
order. Sorting networks are data-oblivious because all comparisons are always performed in the same order, no matter which
permutation of an input is given.
The two most important metrics to quantify sorting networks are their size and depth. A network’s size refers to the total

number of comparators it contains, and a network’s depth describes theminimal number of levels a network can be divided into.
Each individual comparator is located on a singleton level. When two comparators do not share a channel and are consecutive,

then they can be combined into a common level. Inductively, multiple consecutive comparators can be merged into a level, if
their channels are not shared with any other comparator in the level. Most importantly for performance, since all the comparators
in a level are independent from one another, they can be executed in parallel.

2.1.1 Networks in Practice
There are many methods to come up with sorting networks which correctly order any input.

• Best known networks: Sorting networks with proven optimal sizes and optimal depths are known only for small numbers
of input channels. To date, the optimal depth is known only for n up to seventeen9,10,11,12,13, while the optimal size only for
n up to ten12. For example, a network for ten elements with optimal size twenty-nine has depth nine, and one with optimal
depth seven has size thirty-one9,12. For larger networks individual upper and lower bounds on size or depth are known.
These optimal networks were initially optimized by hand and nowadays are searched for with the help of computers and
evolutionary algorithms14.

• Recursively generated networks: Besides elaborate algorithms searching for optimal networks, there are also much
simpler methods to generate correct (but non-optimal) networks. The most commonly used paradigm is recursive divide-
and-conquer: split the input into two parts, sort each part recursively, and merge the two parts together in the end.
Representatives for this kind of approach are the constructions of Nelson and Bose2 and the algorithm by Batcher15.
Bose and Nelson split the input sequence into first and second half, while Batcher partitions it into elements with an even
index and elements with an odd index. The advantage of these recursive networks over the specially optimized ones is that
they can easily be created even for large network sizes. While the generated networks may have more comparators than the
best known networks, the number of comparators in a network acquired from either Bose-Nelson or Batcher of size n has
an upper bound of (n (log n)2). This was improved by Ajtai, Komlós, and Szemerédi16 to optimal (log n) depth with
the much-cited AKS sorting network, which however have prohibitively high constants and are thus unusable for small n.
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FIGURE 1 Recursively generated sorting network
by Bose and Nelson for six elements.
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FIGURE 2 Sorting network with optimal size for ten elements.

Sorting networks are customarily depicted by using horizontal lines for the channels, and undirected vertical connections
between these lines for the comparators. A network by Bose and Nelson for six elements is illustrated in this manner in Figure 1,
and Figure 2 shows a network with optimal size for ten elements. The dotted vertical lines indicate the nine levels in the network.

2.1.2 Improving the Speed of Sorting through Sorting Networks
The central question to our investigation in this section is how sorting networks can improve the sorting speed on a set of
elements (on average), if they can not take any shortcuts for “good” inputs, like an insertion sort that would leverage an already
sorted input and do one comparison per element. The answer to this question is avoiding penalties introduced by branching.
Because the compiler and CPU know in advance which comparisons are going to be executed in which order, the control flow
does not contain conditional branches, which in particular gets rid of expensive branch mispredictions and allows instruction
level (superscalar) parallelism. On uniformly distributed random inputs, the chances that any number is smaller than another
is 50% on average, making branches unpredictable. In the case of insertion sort that means not knowing in advance with how
many elements the next one has to be compared until it is inserted into the right place (on average it would be half of them).
Even though with sorting networks the compiler knows in advance when to execute which comparator, implementing the

conditional-swap operation in a naive way (as seen in Section 2.1.3) the compiler might still generate branches. In that case, the
sorting networks are no faster than insertion sort, or even slower. Hence, we investigated the use of assembly code in this paper.
Another interesting use of sorting networks may be in the field of cryptography and security-focused applications. The time

it takes to sort with non-data-oblivious algorithms (e.g. Quicksort) may introduce side channels allowing an attacker to infer the
order of the input elements.

2.1.3 Conditional Swap
For sorting networks, the basic operation is to compare two values against each other and swap them if they are in the wrong
order (the “smaller” element occurs after the “larger” one in the sequence). This conditional-swap operation can be implemented
straight-forwardly in C++ with an if and a swap:

1 void ConditionalSwap(Type& left, Type& right) {
2 if (right < left) { std::swap(left, right); }
3 }

Here Type is a template and can be instantiated with any type that implements the < operator. As suggested by Codish et. al.3,
the same piece of code can be rewritten like this:

1 void ConditionalSwap2(Type& left, Type& right) {
2 Type temp = left;
3 if (right < temp) { left = right; }
4 if (right < temp) { right = temp; }
5 }

At first glance it appears as if there are now two conditional branches. But since the statement executed when the condition is true
now only consists of a single assignment each, these can be expressed in x86-architecture with a conditional move instruction. In
AT&T syntax (see Section 2.1.4), a conditional move (cmov a,b) will write the value of register a into register b, if a condition
is met. If the condition is not met, no operation takes place (but still taking the same number of CPU cycles as the move operation
would have). Since the address of the next instruction no longer depends upon the previous condition, the control flow now does
not contain branches. This avoids the large cost of branch mispredictions which require the execution pipeline of the CPU to be
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flushed and many speculative operations to be undone. The only downside of conditional moves is that they may take longer to
evaluate than a normal move instruction on certain architectures, and can only be executed when the comparison has performed
and its result is available. They can also only operate on register entries.
When the elements to be swapped are plain integers, some compilers do generate code with conditional moves for those

operations while others default to jump branches. In the experiments in Section 4 we consider pairs of an unsigned 64-bit integer
key and an unsigned 64-bit reference value, which could be a pointer to data or an address in an array. To force the usage of
conditional moves, we investigated use of inline assembly17, a feature of gcc and other compilers that allows the programmer
to specify small amounts of assembly code to be inserted into the generated machine code. This technique and the notation is
further explained in the following Section 2.1.4.

2.1.4 Inline Assembly Code
In this section we introduce the reader to a relatively obscure feature in modern C/C++ compilers: inline assembly code. We
will use it in the next section to hard-code conditional swap operations and thus bypass the compiler’s optimizations for these
operations.
The machine instructions executed by the CPU are also called assembly code, which can be expressed as the actual op-codes

or as human-readable text. There are two competing conventions for the textual representation: the Intel syntax orMASM syntax
and the AT&T syntax.
The main differences are the parameter order and operand size. In Intel syntax the destination parameter is written first, then

the source of the value: mov dest,src, while the size of the operands need not be specified. In AT&T syntax on the other hand,
the source parameter is written first, followed by the destination: movq src,dest. The size of the operand must be appended
to the instruction: “b” (byte = 8 bit), “l” (long = 32 bit), “q” (quad-word = 64 bit). In this paper only the AT&T syntax will be
used, because it is used internally by gcc.
The gcc and clang C++ compilers have a feature that allows the programmer to write assembly instructions in between regular

C++ code, called “inline assembly” (asm)17. This inline code consists of a continuous piece of assembly code, together with a
specification of how it should interact with the surrounding C++ code. This specification communicates to the compiler what
happens inside the asm block and consists of a definition for input and output variables and a list of clobbered registers. Gcc
does not optimize the given assembly statements, they are added into the generated assembly code verbatim and translated to
machine code by the GNU Assembler.
A variable listed as output means that the value will be modified, a clobbered register is one where gcc cannot assume that the

value it held before the asm block will be the same as after the block. In this paper, the clobbered registers will almost always
be the conditional-codes registers (“cc”), which include the carry flag, zero flag and the signed flag, which are modified during
a compare-instruction. This way of specifying the input, output, and clobbered registers is also called extended asm.
Taking the code from Section 2.1.3, and assuming Type = uint64_t, the statement

1 uint64_t temp = left;
2 if (right < temp) {
3 left = right;
4 }

can now be written with extended inline x86 assembly as
1 uint64_t temp = left;
2 __asm__(
3 "cmpq %[temp],%[right]\n\t" // compare right and temp
4 "cmovbq %[right],%[left]\n\t" // left = right, if right < temp
5 : [left] "=&r"(left) // output variables
6 : "0"(left), [right] "r"(right), [temp] "r"(temp) // input variables
7 : "cc" // clobber variables
8 );

In extended asm, one can define C++ variables as input or output operands. For inputs the compiler will assign a register if
it has the “r” modifier and load the value into it. For outputs, a register is allocated and the value is written back to the given
variable after the asm block or used immediately in further steps. The names in square brackets are symbolic names only valid
in the context of the assembly instructions and independent from the names in the C++ code before. The link between the C++
names and the symbolic names is defined in the input and output declarations, which may or may not be the same.
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12345678910111213141516

FIGURE 3 Sorting network with optimal size for sixteen elements.

For conditional moves it is important to properly declare the input and output variables, because they perform a task that is a
bit unusual: an output variable may or may not be overwritten. In the case of the output register for left used above, two things
must apply: if the condition is false, it must hold the value of left, and if the condition is true, it must hold the value of right.
For optimizations purposes, the compiler might reduce the number of registers used by placing the output of one operation

into a register that previously held the input for some other operation. To prevent this, the declaration for the output [left]
"=&r"(left) has the “&” modifier added to it, meaning it is an “early clobber” register and that no other input can be placed
in that register. In combination with "0"(left) in the input definition, the same register is additionally tied to an input, such
that the previous value of left is loaded beforehand, in case the conditional move is not executed. Because left was already
declared as output, instead of giving it a new symbolic name we tie it to the input by referencing its index "0" in the output list.
The “=” in the output declaration only means that this register will be written to. Any output needs to have the “=” modifier.

Each assembly instruction is postfixed with “\n\t” because the strings are appended into a single long line by the C++ compiler
and the line breaks separate instructions for the assembler.
The cmov instruction is postfixed with “b” in this example, which stands for below, such that the move is executed if right

is below temp (unsigned comparison right < temp). Apart from below we will also see not equal (“ne”) and carry (“c”) as
a postfix in further examples. Furthermore, both the cmp and the cmovb are postfixed with “q” (quad-word) to indicate that the
operands are 64-bit values.
When a subtraction (minuend−subtrahend) is performed and subtrahend is larger than minuend (interpreted as unsigned

numbers), the operation causes an underflow which results in the carry flag being set. The carry flag can be used as a condition
by itself (postfix “c”) and it also influences condition checks like below. This property of the comparison setting the carry flag
will be used in Section 3.1.

2.2 Implementation of Sorting Networks
We now consider how to actually implement sorting networks for performance.

2.2.1 Providing the Network Frame
We collected the following sorting networks for small inputs: For sizes of up to sixteen elements the best networks were taken
from John Gamble’s Website18 and are size-optimal. The Bose-Nelson networks have been generated using the instructions
from their paper2. We did not use any Batcher odd-even network because Codish et. al.3 showed that there was no difference
between Batcher and Bose-Nelson in practice.
For sizes of eight and below the best and generated networks have the same amount of comparators and levels. For sizes larger

than eight the generated networks are at a disadvantage because they have more comparators and/or levels. As a trade-off their
recursive structure makes it possible to leverage a different trait: locality. Instead of optimizing them to sort in as few levels
as possible, we can first sort the first half of the set, then the second half, and then apply the merger. Thus chances are higher
that all n

2
elements of the first half may fit into the processor’s general purpose registers. To determine if there is an achievable

speedup, the networks were generated optimizing for (a) locality and (b) parallelism.
Furthermore, we investigated two implementations of locality-optimizing recursively defined Bose-Nelson networks: one

where the entire network is rolled out for each input size individually, and a second were the functions of each input size may
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12345678910111213141516

FIGURE 4 Bose-Nelson network for sixteen elements optimizing locality (unrolled or recursive implementations). The
subnetworks marked blue sort eight and four items, respectively.

12345678910111213141516

FIGURE 5 Bose-Nelson network for sixteen elements optimizing parallelism

call smaller sorters for parts of the input. The first unrolled variant retains the name locality, while we call the second one a
recursive implementation.
Examples of networks for sixteen elements can be seen in Figures 3, 4 and 5.
All networks are implemented such that they have an entry method that takes a pointer to an array A and an array size n as

input and delegates the call to the specific method for that number of elements. To measure different implementations for the
conditional swaps, the sorting networks are templated with both the swap and the item type.
Our approach differs from most previous work3 in the type of elements that were sorted. While most experiments measured

the sorting of plain ints, which are usually 32-bit sized integers, we made the decision to sort elements that consist of a 64-
bit integer key and a 64-bit integer reference value. This enables not only sorting of numbers but also of complex elements, by
giving a pointer or an array index as the reference value. This was implemented by creating a struct that contain a key and
reference value each, having the following structure:

1 struct SortableRef {
2 uint64_t key, ref;
3 }

We also defined the operators >, >=, ==, <, <=, and != for usability.

2.2.2 Implementing the Conditional Swap
ConditionalSwap is implemented as a templated method like this:

1 template <typename Type>
2 inline void ConditionalSwap(Type& left, Type& right) {
3 // body
4 }

Our goal is thus to find the best instructions to implement this method, either by convincing the compiler to produce good
code or by writing inline assembly instructions directly. The following variants will represent the body of one specialization of
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1 if (right < left)
2 std::swap(left, right);

FIGURE 6 ISwp (if and std::swap)
1 bool r = (right < left);
2 auto temp = left;
3 left = r ? right : left;
4 right = r ? temp : right;

FIGURE 7 TCOp (ternary conditional operators)
1 std::tie(left, right) = (right < left)
2 ? std::make_tuple(right, left)
3 : std::make_tuple(left, right);

FIGURE 8 Tie (std::tie with std::tuple)

1 __asm__(
2 "cmpq %[left_key],%[right_key]\n\t"
3 "jae %=f\n\t"
4 "xchg %[left_key],%[right_key]\n\t"
5 "xchg %[left_ref],%[right_ref]\n\t"
6 "%=:\n\t"
7 : [left_key] "=&r"(left.key),
8 [right_key] "=&r"(right.key),
9 [left_ref] "=&r"(left.ref),

10 [right_ref] "=&r"(right.ref)
11 : "0"(left.key), "1"(right.key),
12 "2"(left.ref), "3"(right.ref)
13 : "cc"
14 );

FIGURE 9 JXhg (jmp and xchg)

the template function for a specific struct. Each of them was given a three to four letter abbreviation to name them in the results.
We implemented the following approaches:
ISwp (if and std::swap) : This is the straight-forward way of writing the conditional-swap operation we already saw in

Section 2.1.3, without any inline assembly as a C/C++ if followed by a std::swap (Figure 6).
TCOp (ternary conditional operators) : This is an alternative C/C++ implementation without inline assembly. It uses two

ternary conditional operators (the ?: operator) to try to convince the compiler to generate conditional moves (Figure 7).
Tie (std::tie with std::tuple) : This is another portable C/C++ implementation using an assignment of structured bindings

that can be expressed in the current C++ versions with std::tuple and std::tie (Figure 8).
JXhg (jmp and xchg) : This is a straight-forward inline assembly version implemented using a comparison, a conditional

jump, and two exchange (xchg) instructions. The “%=” directive generates a unique label for each asm instance (Figure 9).
4Cm (four cmovs and temp variables) : This is the simplest implementation with a comparison and cmov operations. Since

we need to swap a key-reference pair of 64-bit integers, we need four cmovs and two temporary variables (Figure 10).
6Cm (six cmovs and temp variables) : In 4Cm the temporary variables are unconditionally assigned outside the assembly

block. This is unnecessary if the condition is false, such that we proposed this variant with six cmovs (Figure 11).
4CmS (four cmovs split and temp variables) : Since the C++ compiler cannot reorder operations inside inline assembly

blocks, we attempted to split these such that the compiler can interleave load/store operations from multiple consecutive
conditional-swap to avoid memory stalls. There is obviously a limit to this reordering, which requires the asm blocks to
be declared volatile such that these stay in order (Figure 12).

2CPm (move pointers with two cmovs) : This implementation is based on assembly code generated by the clang compiler for
the ConditionalSwap2 method in Section 2.1.3. Instead of operating on values, this variant applies cmov to pointers to
the SortableRef struct. For the transcription to inline assembly, we put the minimal necessary instructions concerning
the cmov into the asm block and let the compiler optimize operations on the structs (Figure 13).

2CPp (move pointers with two cmovs and predicate) : Instead of performing the comparison inside the asm block, which
requires knowledge of the datatype of the key, it can also be done using an indicator predicate. Combining predicates with
the pointer swapping technique from 2CPm delivers this variant which can operate on keys with custom comparators and
any data payload (Figure 14).

In Section 4.2 and 4.3 we report on our experiments with these conditional swap operations.
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1 uint64_t tmp = left.key;
2 uint64_t tmp_ref = left.ref;
3 __asm__(
4 "cmpq %[left_key],%[right_key]\n\t"
5 "cmovbq %[right_key],%[left_key]\n\t"
6 "cmovbq %[right_ref],%[left_ref]\n\t"
7 "cmovbq %[tmp],%[right_key]\n\t"
8 "cmovbq %[tmp_ref],%[right_ref]\n\t"
9 : [left_key] "=&r"(left.key),

10 [right_key] "=&r"(right.key),
11 [left_ref] "=&r"(left.ref),
12 [right_ref] "=&r"(right.ref)
13 : "0"(left.key), "1"(right.key),
14 "2"(left.ref), "3"(right.ref),
15 [tmp] "r"(tmp), [tmp_ref] "r"(tmp_ref)
16 : "cc"
17 );

FIGURE 10 4Cm (four cmovs and temp variables)
1 uint64_t tmp;
2 uint64_t tmp_ref;
3 __asm__ (
4 "cmpq %[left_key],%[right_key]\n\t"
5 "cmovbq %[left_key],%[tmp]\n\t"
6 "cmovbq %[left_ref],%[tmp_ref]\n\t"
7 "cmovbq %[right_key],%[left_key]\n\t"
8 "cmovbq %[right_ref],%[left_ref]\n\t"
9 "cmovbq %[tmp],%[right_key]\n\t"

10 "cmovbq %[tmp_ref],%[right_ref]\n\t"
11 : [left_key] "=&r"(left.key),
12 [right_key] "=&r"(right.key),
13 [left_ref] "=&r"(left.ref),
14 [right_ref] "=&r"(right.ref),
15 [tmp] "=&r"(tmp), [tmp_ref] "=&r"(tmp_ref)
16 : "0"(left.key), "1"(right.key), "2"(left.ref),
17 "3"(right.ref), "4"(tmp), "5"(tmp_ref)
18 : "cc"
19 );

FIGURE 11 6Cm (six cmovs and temp variables)

1 uint64_t tmp = left.key;
2 uint64_t tmp_ref = left.ref;
3 __asm__ volatile (
4 "cmpq %[left_key],%[right_key]\n\t"
5 :
6 : [left_key] "r"(left.key),
7 [right_key] "r"(right.key)
8 : "cc"
9 );

10 __asm__ volatile (
11 "cmovbq %[right_key],%[left_key]\n\t"
12 : [left_key] "=&r"(left.key)
13 : "0"(left.key), [right_key] "r"(right.key)
14 :
15 );
16 __asm__ volatile (
17 "cmovbq %[right_ref],%[left_ref]\n\t"
18 : [left_ref] "=&r"(left.ref)
19 : "0"(left.ref), [right_ref] "r"(right.ref)
20 :
21 );
22 __asm__ volatile (
23 "cmovbq %[tmp],%[right_key]\n\t"
24 : [right_key] "=&r"(right.key)
25 : "0"(right.key), [tmp] "r"(tmp)
26 :
27 );
28 __asm__ volatile (
29 "cmovbq %[tmp_ref],%[right_ref]\n\t"
30 : [right_ref] "=&r"(right.ref)
31 : "0"(right.ref), [tmp_ref] "r"(tmp_ref)
32 :
33 );

FIGURE 12 4CmS (four cmovs split and temp variables)

3 REGISTER SAMPLE SORT

After initial positive experimental results of our investigation of sorting networks for small inputs, we decided to turn to sample
sort for slightly larger inputs. Our preliminary experiments showed that sorting networks were indeed faster, but they also
required a lot of instructions, leading to large instruction decoding times and L1 cache misses. Another motivation was that the
base cases issued by In-Place Parallel Super Scalar Samplesort (IPS4o)5 were considerably larger than sixteen items. Hence,
instead of extending sorting networks beyond sixteen elements, we close this gap by providing a completely different basic
algorithm for small to medium size inputs: Register Sample Sort (RSS). Our new algorithm is based on Super Scalar Sample
Sort (S4)4 and can reduce large base case sizes down to blocks of sixteen or less in an efficient manner. The central idea is to
place the splitters not into an array, as described in the original S4, but to hold them in general purpose registers for the whole
duration of the element classification.
Basic Sequential Sample Sort
Sample sort19 is a sorting algorithm that follows the divide-and-conquer principle. The input is split into k disjoint intervals of
the total ordering defined by k + 1 splitters s0,… , sk. These are chosen by first selecting a sample subset S of a ⋅ k items with
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1 SortableRef* left_pointer = &left;
2 SortableRef* right_pointer = &right;
3 SortableRef temp = left;
4 __asm__ volatile(
5 "cmpq %[tmp_key],%[right_key]\n\t"
6 "cmovbq %[right_pointer],%[left_pointer]\n\t"
7 : [left_pointer] "=&r"(left_pointer)
8 : "0"(left_pointer),
9 [right_pointer] "r"(right_pointer),

10 [tmp_key] "m"(temp.key),
11 [right_key] "r"(right.key)
12 : "cc"
13 );
14 left = *left_pointer;
15 left_pointer = &temp;
16 __asm__ volatile(
17 "cmovbq %[left_pointer],%[right_pointer]\n\t"
18 : [right_pointer] "=&r"(right_pointer)
19 : "0"(right_pointer),
20 [left_pointer] "r"(left_pointer)
21 :
22 );
23 right = *rightPointer;

FIGURE 13 2CPm (move pointers with two cmovs)

1 SortableRef* left_pointer = &left;
2 SortableRef* right_pointer = &right;
3 SortableRef temp = left;
4 int cmp_result = (int)(right < temp);
5 __asm__ volatile(
6 "cmp $0,%[cmp_result]\n\t"
7 "cmovneq %[right_pointer],%[left_pointer]\n\t"
8 : [left_pointer] "=&r"(left_pointer)
9 : "0"(left_pointer),

10 [right_pointer] "r"(right_pointer),
11 [cmp_result] "r"(cmp_result)
12 : "cc"
13 );
14 left = *left_pointer;
15 left_pointer = &temp;
16 __asm__ volatile(
17 "cmovneq %[left_pointer],%[right_pointer]\n\t"
18 : [right_pointer] "=&r"(right_pointer)
19 : "0"(right_pointer),
20 [left_pointer] "r"(left_pointer)
21 :
22 );
23 right = *rightPointer;

FIGURE 14 2CPp (move pointers with two cmovs and predi-
cate)

oversampling factor a and sorting the sample S. Afterwards the splitters {s0, s1,… , sk−1, sk} = {−∞, Sa, S2a,… , S(k−1)a,∞}
are taken equidistant from S. Oversampling is used to get better splitters to achieve more evenly-sized partitions, trading balance
for the additional time to select and sort the larger sample.
Given the splitters, all elements ei are then classified by placing them into buckets bj , where j ∈ {1,… , k} and sj−1 < ei ≤ sj .

If k is a power of 2, this placement can be achieved by viewing the splitters as a binary tree, with sk∕2 being the root, all sl with
l < k∕2 representing the left subtree and those with l > k∕2 the right one. To classify an element, one must only traverse this
binary tree in logarithmic time, resulting in a binary search instead of a linear one4.
Quicksort7 can be seen as a specialization of sample sort with fixed parameter k = 2. Sample sort is very popular for sorting

large amounts of items on distributed systems20,21,22, on GPUs23, and also for strings24,25.

3.1 Implementing Register Sample Sort for Medium-Sized Sets
In this section we explain how to implement sample sort using registers in a CPU. The main issue is that, other than memory,
registers cannot be accessed using an index on most popular architectures.
Traversing A Tree in Registers
In implementations of S4 traversal of the splitter tree is performed using an index j. Splitters are organized in memory as a binary
search tree: the children of splitter j are at positions 2j and 2j + 1. Thus if an element is smaller than sj , it must be compared
to s2j or s2j+1 in the next step, which allows easy branchless traversal of the tree by multiplying j with two and conditionally
incrementing it. But this way of accessing the splitters does not work when they are placed in registers, because we cannot access
registers by index.
Our solution is to create a copy of the left subtree, and to use cmov operations to overwrite it with the right subtree should

the element be greater than the root node. The next comparison is then performed against the root of the copied tree that now
contains the correct splitters. This is obviously only possible for small trees. For 3 splitters this requires 1 conditional move,
and for 7 splitters it requires 3 conditional moves after the first comparison and 1 additional after the second comparison, per
element.
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TABLE 1 Number of registers required by Register Sample Sort with three or seven splitters.
3 splitters 7 splitters
block size block size

1 2 3 4 5 1 2 3 4 5
splitters 3 3 3 3 3 7 7 7 7 7

buckets pointer 1 1 1 1 1 1 1 1 1 1
current element index 1 1 1 1 1 1 1 1 1 1

element count 1 1 1 1 1 1 1 1 1 1
index 1 2 3 4 5 1 2 3 4 5

predicate result 1 2 3 4 5 1 2 3 4 5
splitterX 1 2 3 4 5 3 6 9 12 15

sum 9 12 15 18 21 15 20 25 30 35

Calculating the Final Bucket Index
However, after finding the correct splitters to compare to, we are left with yet another problem: how to determine the index of
the bucket the element is to be placed into. In S4 4 this bucket index is calculated directly from the index of the last splitter. For
Register Sample Sort, we choose an approach similar to creating this index using the correlation between binary numbers and
the tree-like structure of the splitters. We view the splitters not as a binary tree but just as a list where the middle of the list
represents the root node of the tree, its children being the middle element of the left and the middle element of the right list.
If an element ei is larger than the first splitter sk∕2 (with k−1 being the number of non-sentinel splitters), it must be placed in

a bucket bj with j ≥ k
2
(assuming 0-based indexing for b). This also means that the index of that bucket, represented as a binary

number, must have its bit at position l ∶= log k
2
set to 1. Hence the result of the comparison (ei > sk∕2) can be interpreted as

an integer (1 for true, 0 for false) and added to j. If it was not the final comparison, j is then multiplied by 2 (meaning its bits
are shifted left by one position). This means the bit from the first comparison makes its way “left” in the binary representation
while the comparison traverses down the tree, and so forth with the other comparisons. After traversing the splitter tree to the
end, ei will have been compared to the correct splitters and j will hold the index of the bucket that ei belongs into. A similar
method is used in S4 when calculating the index during tree traversal. These operations can be implemented without branches
by making use of the way the comparisons are performed:
At the end of Section 2.1.4 we explained that when comparing (unsigned) numbers (which is nothing but a subtraction), and

the subtrahend being greater than the minuend, the operation causes an underflow and the carry flag is set. We also notice
that when converting the result of the predicate (ei > sk∕2) to an integer value, the integer will be 1 for true and 0 for false.
So in assembly code, we can compare the result from evaluating the predicate to the value 0: cmp %[result],%[zero] where
zero is just a register that holds the value 0. This trick is needed because the cmp instruction needs the second operand to be
a register. This will execute 0 − result, which underflows for the predicate returning true. This way we can postfix the cmov
needed for moving the next splitters with “c” checking for a set carry flag. The second instruction we make use of is the rotate
carry left (rcl) instruction, which performs a rotate left instruction on j, but includes the carry flag as an additional bit after the
least significant bit of the integer. This exactly takes the predicate result and puts it at the bottom of j, with the previous content
being shifted one to the left beforehand. That means it performs two necessary operations at once.
Putting Things Together: Determining Parameters and Pseudocode
With the previous two challenges of classification solved, we can now design the parameters for our Register Sample Sort.
As with S4, when processing items from the input we can interleave classification of multiple elements, allowing for all the

registers in the machine to be used. This additional parameter is called block size.
The main constraint on the parameters of Register Sample Sort is the number of registers in the CPU. The keys of the splitters

(since we only need a splitter’s key for classifying an element) must be small enough to fit into a general purpose register. Needing
more than one register per key would mean running out of registers more quickly and also spending extra time to conditionally
move the splitter keys around. For three splitters the number of registers needed for block sizes 1 to 5 are shown in Table 1. We
can see that the trade-off for classifying multiple elements at the same time is the amount of registers needed.
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If we were to use 7 splitters instead of 3, the number of registers required for classifying just 1 element at a time would go
up to 15. Furthermore, if we get recursive subproblems with just slightly over sixteen items, classifying into 8 buckets would be
greatly inefficient, resulting in many empty buckets. This is why we decided to only use exactly three splitters for this particular
sorter.
Instead of inline assembly from our implementation, we present pseudocode of the classification for block size = 1 in

Algorithm 1. The index j is here called index, and the temporary subtree consists in this case of one splitter, which we gave the
name splitterX. For our branchless implementation we used cmovne together with a test instruction to move the right hand
splitter into splitterX and just assigned the integer result of the comparison to index in the first step (lines 9 and 11). At the
second and last level of classification no more movement of splitters is required, so instead of performing a comparison against
the predicate’s result and using rcl, we can just shift index left by one position and add the predicate’s result to it (line 13).
Alternatively we could use a bit-wise OR or XOR after the shift, which would have the same result. But we decided that adding
the predicate result was more readable.
For sorting the splitter sample, the same sorting method can be used as for the base case, which in our case is to use a sorting

network from Section 2.

Algorithm 1 Register Sample Sort Classification Pseudocode for Three Splitters
1 void RegisterSampleSortClassification(Type* array, unsigned array_size) {
2 Type [splitter0, splitter1, splitter2] = determineSplitters();
3 Type* [b0,b1,b2,b3] = allocateBuckets(array_size);
4 for (int i = 0; i < array_size; ++i) {
5 int index = 0;
6 int cmp_result = (int)(splitter1 < array[i]);
7 splitterx = splitter0; // copy left tree into splitterx
8 if (cmp_result) { // first and only decision in a tree with three splitters
9 splitterx = splitter2; // overwrite using a cmovne

10 }
11 index = cmp_result;
12 cmp_result = (int)(splitterx < array[i]);
13 index = (index << 1) + cmp_result;
14 bindex.push_back(array[i]);
15 }
16 }

4 EXPERIMENTAL RESULTS

In this section we report on four sets of experiments with sorting networks and Register Sample Sort. The first are pure per-
formance measurements of sorting networks, either sorting the same array repeatedly or sorting a larger array containing many
independent small problems. The second experiments are on the performance of Quicksort with sorting networks as base case,
the third on finding good parameters for Register Sample Sort, and the last on integrating Register Sample Sort and sorting
networks into IPS4o.

4.1 Parameters, Machines, Inputs, Methodology
Machines and Compiler
Weused four differentmachines to perform themeasurements, including Intel, AMD, andARMCPUs. Their labels and hardware
properties can be seen in Table 2. In the table “I” and “D” refer to dedicated L1 instruction and data caches. While the AMD
Ryzen’s L3 cache has a total size of 16MiB, it is divided into two 8MiB caches that are exclusive to 4 cores each. Since all
measurements were done on a single core, the L3 cache size in brackets is the one available to the program.
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TABLE 2 Hardware properties of the machines used in our experiments.
Machine Name Intel-2650 Intel-2670 Ryzen-1800X RK3399

CPU
2 x Intel XeonE5-2650 v2 2 x Intel XeonE5-2670 v3 AMD Ryzen 1800X Rockchip RK3399

8-core, 2.6 GHz 12-core, 2.3 GHz 8-core, 3.6 GHz ARM Cortex-A53 | -A72
4 × 1.5 GHz | 2 × 2.0 GHz

RAM 128 GiB DDR3-1600 128 GiB DDR4-2133 32 GiB DDR4-2133 4 GiB LPDDR4
L1 cache (KiB per core) 32 I + 32 D (8-way) 32 I + 32 D (8-way) 64 I + 32 D (4/8-way) 32 I + 32 D | 48 I + 32 D
L2 cache (KiB per core) 256 (8-way) 256 (8-way) 512 (8-way) 512 | 1024

L3 cache (MiB total) 20 30 (20-way) 16 [8] (8-way) -
Linux Distribution Ubuntu 18.04 Ubuntu 18.04 Ubuntu 18.04 Armbian (Debian) Buster

Compiler gcc 7.3.0 gcc 7.3.0 gcc 7.3.0 gcc 8.3.0

For compiling our experiment code we used the gcc C++ compiler in version 7.3.0 or 8.3.0 with -O3 and -march=native
flags. We did not experiment with LLVM or other compilers because this increases the parameter space by another dimension.
The measurements were done with only essential processes running on the machine apart from the measurement. To prevent

the process from being swapped to another core during execution it was run with the command “taskset 0x1” as prefix, which
pins it to the first core.
Inputs: Random Numbers
In order to measure the time needed to sort some data, we first have to generate data. For all experiments the data type consisted
of a pair of one 64-bit unsigned integer key and one 64-bit unsigned integer reference value. Items were generated as uniformly
distributed random numbers by a lightweight implementation of the std::minstd_rand generator from the C++ <random>
library that works as follows: First a seed is set, taken e.g. from the current time. When a new random number is requested,
the generator calculates seed = (seed ⋅ 48271) mod 2147483647 and returns the current seed. The numbers generated by this
generator does not use all 64 bits available, which however has no effect on the experiment results.
For each measurement i, a new seedi is taken from the current time. The same seedi is then set before the execution of each

sorter, to provide all sorters with the same random inputs.
We only experimented with random inputs. In future work, “easy” inputs such as sorted and reverse sorted inputs, and others

should also be included.
Measurement of Cycles with perf_event
The actual measurement was done via linux’s perf_event interface that allows to do fine-grainedmeasurements using hardware
counters. We measured the number of CPU cycles spent on sorting. This also means that our results do not depend on clock
speeds (e.g. when overclocking), but only on the CPU’s architecture. On the ARM machine RK3399 we resorted to simply
measuring time, because the CPU cycles event interface was not available.
Checking Results: Permutation Check
For compilation, the optimization flag -O3was used to achieve high optimization and speed. This also meant that, without using
the sorted data in some way, the compiler would deem the result unimportant and skip the sorting altogether. That is why after
each sort, to generate a side-effect, the set is checked for two properties: That it is sorted, and that it is a permutation of the input
set. The first can easily be done by checking for each value that it is not greater than the value before it.
The permutation check is done probabilistically: At design time, a (preferably large) prime number p is chosen. Before sorting,

v =
∏n

i=1(z − ai) mod p is calculated for an arbitrary number z and values a = {a1,… , an}. To check the permutation after
sorting and obtaining a′ = {a′1,… , a′n}, w =

∏n
i=1(z − a′i) mod p is calculated. If v ≠ w, a′ cannot be a permutation of a. If

v = w, we claim that a′ is a permutation of a.
To minimize the chances of a′ not being a permutation of a, but v being equal to w, v = 0 was disallowed in the first step. If

v is zero, z is incremented by one and the product calculated again, until v ≠ 0.
Multiple Source File Compilation
Initially, the experiments were a single source file (.cpp) with an increasing amount of headers that were all included in that
single file. This was mostly due to the fact that templated methods cannot be placed in source files because they need to be
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visible to all including files at compile time. The increasing amount of code and the many different templates, however, brought
the compiler to a point where it took over a minute to compile the program. The problem we encountered was that the compiler
apparently allots less time to optimization the longer the compilation runs on a source file. Hence, once our experiment program
became reasonably large, the optimizations became poor. We saw measurements being slower for no apparent reason. To solve
that problem, we used code generation to create source files that contain a smaller amount of methods that initiate part of a
measurement in a wrapper method. From the main source file we thus only need to call the correct wrapper methods to perform
the measurements, and this way we were able to achieve results that were more stable and reproducible.
Measurement Loops and Warm-Up
As the sorting algorithm on a small number of items is very fast, we measured many iterations and divided by the number of
repetitions. Since in this scenario we have to generate new random inputs for each iteration, we decided to first measure the three
steps (a) data generation, (b) sorting, and (c) checking, and then measure only (a) data generation and (c) checking on the same
inputs. By subtracting the two running times we receive the pure sorting time. We call this measurement loop OneArrayRepeat.
More details on the method are now discussed: At the beginning a random seed is selected and the generator initialized.

To reduce the chance of cache misses at the beginning of the measurement, one warm-up run of random generation, sorting,
and checking is performed before starting the clock. After the warm-up round, the array is then filled, sorted, and checked
numberOfIterations times. The random generator is not reseeded each round. After the main measurement, a second phase is
run with the same data. But this time only the generation of the random numbers and the checking is measured to later subtract
the time from the previously measured one, resulting in the time needed for the sorting alone. To generate and check the same
input again, the random generator is reseeded with the previously selected seed. Obviously, the checking of the unsorted data
(usually) fails but it has to performed to measure the time. Hence, we devised a simulated checking method, which does the
exact same comparisons and permutation calculations, but ignores the result.
Nevertheless there are random non-deterministic fluctuations in running time even on the same code. And since both mea-

surement parts are subject to their own deviation, it can occasionally happen that the second measurement takes longer than the
first, leading to negative running times for sorting. We received negative values more often for the sorters with small array sizes,
where the sorting itself takes relatively little time compared to the random generation and sorted checking. The negative times
show up as outliers in the results.
The measurement loop itself is repeated numberOfMeasures times for each arraySize that is sorted.
For the measurements shown in Section 4.3 the method was slightly modified. The goal was to better highlight cache-

and memory-effects by creating one longer array that does not fit into the CPU’s L3-cache and then sorting disjoint short
subsequences of size arraySize in order. We call this modified measurement loop ArrayInRow.
Because we can create the whole array at the beginning, we can generate the numbers before and check for correct sorting

after measuring, hence there is no need to do a second measurement like in the OneArrayRepeat benchmark. As in the prior
benchmark, one warm-up round is performed prior to running the measured loop.
For ArrayInRow, instead of giving a numberOfIterations parameter to indicate how often the sorting is to be repeated,

we provide a numberOfArrays value that prescribes how many arrays of size arraySize are to be created contiguously. This
parameter is chosen for each arraySize in a way that (numberOfArrays ⋅ arraySize) does not fit into the L3 cache of the
machine the measurement is performed on.
Generating Plots
Due to the high number of dimensions in the measurements (machine the measurement is run on, type of sorting network,
conditional swap implementation, array size) the results could not always be plotted two-dimensionally.We used box-plots where
applicable to show more than just an average value for a measurement. The box encloses all values between the first quartile q1
and third quartile q3. The line in the middle shows the median. Further the inter-quartile-range q̄ is calculated as the distance
between first and third quartile. The lines (called whiskers) left and right of the boxes extend to the smallest value greater than
q1 − 1.5q̄ and the greatest value smaller than q3 + 1.5q̄ respectively. Values below these ranges are called outlier and shown as
individual dots.

4.2 Sorting Sets of 2–16 Items
In this and the following subsection we report on experiments comparing sorting algorithms and conditional-swap implemen-
tations. For the details about the different sorters and swaps refer to Section 2.2.
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TABLE 3 Size in bytes of binary x86 assembly code of sorters generated by GCC (with optimization).
Algorithm Size
IS Def 91
IS POp 122
IS STL 188
IS AIF 200
std::sort 1283
RSS 332 1280
IPS4o 42 689

Algorithm Size
SN Best ISwp 17 936
SN Best Tie 33 328
SN Best JXhg 12 080
SN Best 4Cm 19 008
SN Best 4CmS 19 472
SN Best 2CPm 24 064
SN Best 2CPp 26 912

Algorithm Size
SN BN-L ISwp 19 264
SN BN-L Tie 34 400
SN BN-L JXhg 10 160
SN BN-L 4Cm 17 456
SN BN-L 4CmS 17 312
SN BN-L 2CPm 25 360
SN BN-L 2CPp 28 416

Algorithm Size
SN BN-P ISwp 19 216
SN BN-P Tie 35 920
SN BN-P JXhg 12 880
SN BN-P 4Cm 20 640
SN BN-P 4CmS 20 704
SN BN-P 2CPm 25 696
SN BN-P 2CPp 28 736

Algorithm Size
SN BN-R ISwp 12 880
SN BN-R Tie 19 072
SN BN-R JXhg 6 144
SN BN-R 4Cm 9 584
SN BN-R 4CmS 10 720
SN BN-R 2CPm 14 096
SN BN-R 2CPp 14 640

The algorithms variants in the tables and figures are labeled in an abbreviatory way such as “SN BN-R 4CmS”. The
abbreviations are composed from the following three parts:

1. First, IS or SN indicate if the algorithm is insertion sort or a sorting network.
For ISwe evaluated four variants: Def is a textbook implementation with array indices, POp uses pointers as iterators, STL
is copied from gcc’s STL implementation, and AIF is Defwith an additional check if the next item is smaller than the first.

2. In case of sorting networks, the algorithms are labeled as Best networks or Bose-Nelson networks (BN). The Bose-Nelson
sorters are further available optimized for locality (BN-L), parallelism (BN-P), or written as recursively called sorting
functions (BN-R) (see Section 2.2.1).

3. And as last component, the name of the conditional swap implementation is appended for sorting networks (see
Section 2.2.2 for their abbreviations).

As an example consider “SN BN-R 4CmS”. This implementation is a Bose-Nelson sorting network generated using recursively
constructed functions which perform the conditional-swap using the 4CmS variant.
Table 3 shows the binary x86 code size of each insertion sort and sorting network variant. We determined their binary x86

code size by compiling the code (with -O3 optimization) and then disassembling the object file and identifying which functions
in therein belong to the algorithm. In Table 3 we also included the code size of std::sort, Register Sample Sort (RSS), and
IPS4o, each excluding any subsorters.
To determine the fastest algorithm variant, we ran the OneArrayRepeat experiment with the following parameters on all

machines and algorithms: numberOfIterations = 100, numberOfMeasures = 500, and arraySize ∈ {2,… , 16}.
Our results in Tables 4, 5, 6, and 7 contain the name of the sorter and the average number of cycles per iteration, over the

total of all measurements, for all machines . The algorithm that performed best in a column is marked in bold font, and for each
column the slowdown relative to the best in that column was calculated. For each row the geometric mean “GeoM” is shown
over these relative slowdown values and the mean is used to rank the algorithms. Table 8 shows our ranking of the algorithms
across all machines by geometric mean of the slowdown relative to the best on the machine, and Table 9 summarizes the fastest
sorting network over the fastest insertion sort implementation.
The tables show that the implementations with conditional branches (4Cm, 4CmS, 2CPm, 2CPp) and those without (ISwp, Tie,

JXhg) are clearly separated by rank on all machines, the former occupy the lower share of the ranks, while the latter all the
higher ranks. To improve readability, the variants TCOp and 6Cm are omitted.
Comparing Tables 4–7, we see that the claim from Section 2.2.2 for the 4CmS conditional swap is true for machines Intel-2650

and Intel-2670, but not for machine Ryzen-1800X. We also see in Table 8 that the first five ranks have very similar geometric
means, which means the Bose-Nelson networks (BN-L and BN-R) can compete with the optimized networks (Best) that have
fewer comparators due to their locality.
Figures 15, 16, 17, and 18 show box plots of the CPU cycle measurement for array size 8 on each machine. These plots

highlight that the best sorting network implementations are not only faster on average, but that their distribution is almost entirely
faster than any of the insertion sort implementations, together with a lower variance. As in the tables, the variants TCOp and
6Cm are omitted to improve readability. Furthermore, one outlier was removed from dataset of machine Intel-2670 for the SN
BN-P 4CmS sorter with value −228.55 such that the plot has a scale similar to those of the other two machines, to improve
comparability. It is remarkable that on the RK3399 machine the variance of the sorting networks is much higher than on the
other platforms. However, this may be an effect due to measuring nanoseconds wallclock time on the machine (due to lack of
performance counters or support for them) versus CPU cycles on the others.
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TABLE 4 Average number of CPU cycles per iteration of OneArrayRepeat experiment on machine Intel-2650.
Overall Array Size

Rank GeoM 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
IS Def 25 2.17 15.4 41.9 78.8 119 170 207 258 293 354 394 452 487 561 582 650
IS POp 28 2.29 17.1 45.4 83.1 128 180 219 268 302 367 409 476 503 582 607 681
IS STL 31 2.41 24.9 53.0 90.1 133 184 222 275 310 379 411 489 511 587 608 678
IS AIF 32 2.63 23.8 51.0 90.9 150 215 264 319 357 416 461 534 564 629 650 723
SN BN-L 4CmS 1 1.09 12.7 21.5 37.6 53.7 70.9 83.5 105 135 164 199 238 267 315 322 365
SN BN-L 4Cm 3 1.11 9.46 24.3 35.3 55.3 72.2 73.4 107 136 174 213 249 289 346 351 405
SN BN-L 2CPm 11 1.31 8.95 24.6 38.5 62.4 87.6 127 146 187 227 252 275 335 386 396 433
SN BN-L 2CPp 15 1.53 6.78 35.3 40.5 78.4 113 141 166 213 262 322 350 396 449 483 504
SN BN-L Tie 21 2.09 19.7 39.0 66.4 97.0 137 171 213 267 328 372 446 525 617 657 764
SN BN-L ISwp 22 2.10 19.8 42.1 74.8 96.3 136 164 213 262 348 366 488 499 635 623 708
SN BN-L JXhg 26 2.25 18.6 40.3 69.7 108 144 186 236 307 380 408 492 583 678 714 777
SN BN-P 4CmS 6 1.13 12.8 21.5 37.5 49.0 67.0 83.1 110 137 185 215 246 288 333 358 395
SN BN-P 4Cm 7 1.15 9.00 24.4 35.4 44.0 70.7 84.0 112 133 195 226 270 319 360 396 452
SN BN-P 2CPm 10 1.20 6.83 25.2 39.1 65.3 85.2 110 136 175 207 222 249 285 338 353 397
SN BN-P 2CPp 13 1.37 6.70 34.9 40.3 84.3 101 128 147 210 218 250 282 326 376 395 447
SN BN-P Tie 18 2.03 18.2 38.9 66.2 96.1 134 162 210 251 320 369 440 478 587 662 763
SN BN-P ISwp 19 2.04 21.0 42.4 74.1 98.6 136 168 210 250 321 346 425 480 589 573 676
SN BN-P JXhg 29 2.31 18.4 39.0 72.1 119 153 192 244 299 379 451 506 586 682 726 825
SN BN-R 4Cm 4 1.11 9.00 24.0 36.1 54.1 71.8 72.9 110 153 199 209 228 289 324 351 408
SN BN-R 4CmS 8 1.17 13.0 23.0 36.4 54.1 66.5 79.8 124 164 219 227 267 280 315 344 408
SN BN-R 2CPm 14 1.45 11.4 28.1 46.6 74.0 113 126 150 182 237 268 303 349 406 423 491
SN BN-R 2CPp 16 1.69 13.8 31.2 52.0 91.0 126 135 161 260 290 304 355 384 477 501 575
SN BN-R Tie 23 2.12 19.2 38.9 68.6 101 134 169 215 291 346 397 463 531 595 657 751
SN BN-R ISwp 24 2.15 19.9 39.4 75.6 100 140 168 231 299 349 409 453 537 596 641 707
SN BN-R JXhg 30 2.34 18.9 40.5 72.6 110 152 190 262 311 411 446 530 570 682 708 811
SN Best 4CmS 2 1.10 13.4 21.7 37.4 52.8 70.5 83.5 105 136 174 196 234 258 324 331 371
SN Best 4Cm 5 1.11 9.27 24.2 35.4 53.8 72.5 79.7 107 123 163 211 256 291 363 377 418
SN Best 2CPm 9 1.18 9.33 24.3 38.7 62.5 88.0 128 146 149 178 210 234 250 311 319 372
SN Best 2CPp 12 1.35 7.10 35.2 40.9 78.9 113 142 166 195 191 251 274 291 350 363 412
SN Best ISwp 17 2.02 19.4 43.6 74.0 102 149 171 221 262 299 346 416 442 554 558 667
SN Best Tie 20 2.04 19.7 39.7 66.4 99.8 139 183 217 262 311 348 426 487 568 613 724
SN Best JXhg 27 2.28 19.0 39.7 72.2 115 158 191 248 290 351 405 512 573 663 703 806

To see a trend in increasing array size, we chose a few conditional-swap implementations that do best for more than one
network and array size on all machines. Their average sorting times with OneArrayRepeat can be seen in Figure 19. For better
readability, we omitted the Bose-Nelson parallel (BN-P) networks in these plots. The figures underline the results already shown
in the tables: the 4Cm and 4CmS implementations have good performance and are almost always faster on average than insertion
sort (apart from arraySize = 2 on machine RK3399).
These results indicate that there is potential in using sorting networks, showing that the best insertion sort is slower by a factor

of 1.79 on average on machine RK3399, up to a factor of 4.47 on average on machine Ryzen-1800X (see Table 9 for details).
The issue with the OneArrayRepeat experiment is that the same memory area is sorted over and over again, which is rarely a
use case when sorting a base case. Because of this, the results probably reflect unrealistic conditions regarding cache accesses
and cache misses. To get closer to realistic base case sorting, the next section regards the ArrayInRow pattern.

4.3 Sorting Many Continuous Sets of 2–16 Items
In this section we consider the ArrayInRow benchmark: instead of sorting a single array multiple times, multiple arrays are
created adjacent to each other and sorted in series. The number of arrays used is chosen in a way that their concatenation does
not fit into the CPU’s L3 cache. Since the reference array is sorted before the measurement, the original array should not be
present in the cache.
Overall the results of ArrayInRow shown in Figure 20 are similar to the previous ones in Figure 19. Table 10 shows the

algorithms ranked by geometric mean of the relative slow across all machines, and we can see that the order has only changed
very slightly. Due to the input not being in cache there is a performance penalty for all sorters in ArrayInRow, but the relative
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TABLE 5 Average number of CPU cycles per iteration of OneArrayRepeat experiment on machine Intel-2670.
Overall Array Size

Rank GeoM 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
IS Def 22 2.21 8.67 33.9 66.0 103 135 169 205 246 281 321 377 421 466 500 526
IS POp 26 2.32 10.4 37.3 69.4 110 143 181 218 255 294 337 383 423 478 523 566
IS STL 31 2.59 18.0 52.7 78.2 117 159 198 239 276 322 387 446 486 522 572 611
IS AIF 32 2.69 17.1 51.0 78.5 131 179 222 260 298 334 396 446 493 524 562 612
SN BN-L 4Cm 1 1.08 2.70 13.1 22.6 39.0 45.6 61.5 76.9 105 126 178 204 262 300 312 348
SN BN-L 4CmS 3 1.09 3.39 21.2 22.1 41.7 49.1 64.5 77.8 111 124 172 190 240 256 282 299
SN BN-L 2CPm 11 1.31 -0.93 21.3 26.5 49.8 60.0 90.0 103 153 168 201 223 278 303 330 345
SN BN-L 2CPp 15 1.61 -0.05 30.6 31.9 67.0 79.0 110 125 189 214 246 273 347 360 392 415
SN BN-L ISwp 21 2.19 11.0 37.5 62.8 82.4 105 144 171 226 285 311 410 441 551 593 677
SN BN-L Tie 24 2.22 12.0 34.3 55.7 79.5 119 142 181 243 281 318 431 479 551 626 691
SN BN-L JXhg 27 2.38 11.0 34.0 61.7 99.0 128 172 199 264 313 337 421 504 579 657 693
SN BN-P 4CmS 7 1.14 3.62 20.9 22.2 38.8 45.7 64.6 79.9 112 148 182 200 256 285 330 339
SN BN-P 4Cm 8 1.14 2.59 12.8 22.4 37.6 43.3 61.8 79.4 110 161 195 221 282 318 356 394
SN BN-P 2CPm 10 1.22 -0.12 26.5 25.3 47.0 51.0 78.0 89.4 137 147 182 195 246 285 309 335
SN BN-P 2CPp 14 1.45 0.07 30.6 32.4 61.6 67.1 96.0 107 164 178 213 232 293 311 358 390
SN BN-P ISwp 18 2.13 10.4 38.6 61.3 85.2 104 140 173 217 258 304 382 428 510 558 631
SN BN-P Tie 20 2.17 12.0 33.7 55.0 81.5 105 139 192 229 266 317 407 472 541 604 664
SN BN-P JXhg 29 2.45 10.5 39.1 62.4 96.5 119 159 203 259 327 396 423 556 590 687 755
SN BN-R 4Cm 4 1.09 2.60 12.0 22.7 38.8 45.4 63.0 77.8 139 158 172 176 255 305 306 314
SN BN-R 4CmS 6 1.12 4.00 13.2 22.3 41.4 49.7 63.8 94.0 130 170 188 228 242 234 285 312
SN BN-R 2CPm 12 1.41 4.31 28.4 30.0 53.5 64.9 93.7 109 198 174 204 226 288 311 344 367
SN BN-R 2CPp 16 1.73 4.60 33.7 37.4 72.4 83.3 114 132 237 222 260 279 346 374 425 463
SN BN-R Tie 23 2.22 12.1 33.0 53.6 88.0 109 143 179 248 287 343 404 466 542 625 707
SN BN-R ISwp 25 2.25 10.9 36.3 61.1 85.7 117 142 194 244 282 338 403 490 541 595 676
SN BN-R JXhg 30 2.50 10.3 36.1 60.8 103 135 167 212 288 341 381 475 527 582 670 731
SN Best 4CmS 2 1.09 3.66 20.7 22.6 42.3 49.6 64.8 78.2 109 121 165 181 228 274 286 308
SN Best 4Cm 5 1.10 2.95 13.7 22.1 38.9 46.1 61.6 77.8 105 125 181 212 267 309 339 359
SN Best 2CPm 9 1.18 -0.72 21.7 26.4 49.4 60.2 90.0 103 130 132 169 189 215 253 278 294
SN Best 2CPp 13 1.43 -0.12 30.9 32.6 67.4 78.3 110 125 157 157 193 218 255 298 324 358
SN Best ISwp 17 2.10 10.8 35.7 63.3 90.3 114 152 181 223 240 300 345 389 478 533 609
SN Best Tie 19 2.16 12.0 35.1 56.4 82.7 110 150 193 234 253 306 388 449 504 599 632
SN Best JXhg 28 2.41 10.9 34.9 63.3 104 133 182 204 250 285 358 421 495 588 661 726

performances do not change much. Table 11 also shows that insertion sort is slower by a factor of 2.26 on average across all
machines

4.4 Sorting a Large Set of Items with Quicksort
After the encouraging performance of the sorting networks, we were interested in how they perform as base case sorters inside a
sorting algorithm for larger sets. To study this we modified Introsort26, the Quicksort implementation used in the current gcc’s
STL library. In this particular implementation Introsort calls insertion sort only once at the end on the entire array. Since this is
not possible with our sorting networks, we modified the implementation to called the networks directly when the partitioning
resulted in a set of 16 elements or less. Also we determined the pivot using a 3-element Bose-Nelson network instead of using
if-else and std::swap.
In the results we labeled the base case sorter variants with the same schema as described in Section 4.2, but note again that this

time the label describes the base case sorter integrated into Introsort. To validate the results, we also include two unmodified
Introsort implementations as references: QSort is a direct source code copy of gcc’s Introsort doing a final insertion sort at
the end, and StdSort is a simple call to std::sort. Theoretically these should perform identically but in practice there are
differences due to the way gcc optimizes library and non-library code.
The sorters were measured using the OneArrayRepeat experiment loop with parameters numberOfIterations = 50,

numberOfMeasures = 200, arraySize = 214 = 16384. The running times are shown as box plots in Figures 21, 22, 23, and
24. The speedups of the best modified Introsort variants with sorting networks are compared against the std::sort reference
implementation and variants with insertion sort as base case in Table 12.
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TABLE 6 Average number of CPU cycles per iteration of OneArrayRepeat experiment on machine Ryzen-1800X.
Overall Array Size

Rank GeoM 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
IS Def 19 4.14 15.0 46.9 80.3 125 167 220 258 290 327 369 397 446 464 510 559
IS POp 21 4.23 10.9 45.8 84.9 134 183 228 266 298 339 382 414 462 495 555 591
IS STL 31 5.09 21.1 63.3 103 150 200 255 298 340 392 433 485 536 577 629 695
IS AIF 32 5.27 22.3 59.5 103 149 201 264 314 364 415 459 516 557 599 662 747
SN BN-L 4Cm 1 1.08 6.13 10.3 14.8 27.4 35.7 44.8 56.8 70.0 82.4 99.5 113 145 156 163 181
SN BN-L 4CmS 2 1.14 6.72 13.6 15.1 28.4 35.3 53.9 60.0 73.8 84.0 109 113 145 154 154 186
SN BN-L 2CPm 11 1.82 2.86 17.6 26.3 52.7 54.6 88.3 86.3 133 167 200 222 272 285 317 335
SN BN-L 2CPp 15 2.10 3.15 27.2 25.6 70.1 72.0 90.8 94.5 162 201 236 251 295 313 341 351
SN BN-L JXhg 17 3.92 15.1 37.0 65.9 91.8 125 161 205 275 325 372 425 497 561 619 691
SN BN-L Tie 23 4.24 15.1 40.0 76.3 103 133 189 223 292 337 405 451 527 590 671 791
SN BN-L ISwp 27 4.33 14.2 41.0 76.8 104 130 176 219 304 370 404 494 541 661 724 782
SN BN-P 4Cm 4 1.18 6.69 10.9 14.4 25.7 33.4 46.6 55.2 75.0 99.4 106 127 173 178 214 231
SN BN-P 4CmS 7 1.24 6.65 13.1 15.2 24.3 39.0 51.8 59.1 80.2 93.7 130 125 154 183 240 231
SN BN-P 2CPm 9 1.61 2.55 17.0 20.3 49.9 48.8 79.0 92.4 127 140 171 186 227 237 270 284
SN BN-P 2CPp 13 1.87 3.12 26.8 25.2 68.2 61.6 84.1 90.4 147 156 185 206 242 266 295 311
SN BN-P JXhg 20 4.23 14.4 42.6 68.9 99.1 128 168 227 277 350 420 466 549 588 733 802
SN BN-P Tie 24 4.25 16.2 34.1 63.2 97.7 140 199 226 295 347 402 461 535 631 725 790
SN BN-P ISwp 26 4.32 13.9 40.3 73.9 106 143 191 237 309 338 418 467 538 622 715 752
SN BN-R 4Cm 3 1.15 5.87 11.2 14.8 25.6 35.0 48.5 56.2 93.4 93.7 113 124 148 153 187 202
SN BN-R 4CmS 8 1.29 6.06 10.9 15.2 28.8 35.8 59.8 71.8 89.8 132 157 161 147 156 197 216
SN BN-R 2CPm 14 2.06 8.12 19.1 26.8 55.5 71.8 87.0 93.9 140 179 209 225 287 298 325 347
SN BN-R 2CPp 16 2.38 8.72 31.5 28.3 75.2 75.2 92.6 107 180 209 244 256 299 321 354 390
SN BN-R JXhg 18 4.10 19.4 42.4 57.6 96.5 132 177 221 289 334 382 442 504 557 635 667
SN BN-R Tie 25 4.31 15.6 37.1 61.9 111 146 193 228 322 372 426 464 553 607 684 709
SN BN-R ISwp 29 4.37 14.3 41.3 80.4 99.8 141 189 252 328 359 415 468 529 576 702 790
SN Best 4Cm 5 1.19 8.05 10.2 14.8 28.8 36.1 45.2 59.3 74.3 85.9 104 126 164 188 206 233
SN Best 4CmS 6 1.23 7.30 13.6 16.1 29.7 36.4 55.2 63.9 74.7 87.6 103 117 162 185 211 224
SN Best 2CPm 10 1.62 3.27 17.5 20.4 53.3 55.2 80.8 86.5 130 129 162 202 200 226 264 276
SN Best 2CPp 12 1.86 3.84 27.0 25.9 70.5 72.1 91.1 94.7 142 139 170 196 214 249 274 292
SN Best JXhg 22 4.24 16.0 39.8 70.8 102 137 180 223 278 333 397 437 543 634 714 774
SN Best Tie 28 4.34 16.6 39.2 72.5 106 138 205 242 294 337 386 455 529 598 715 814
SN Best ISwp 30 4.41 17.2 37.5 76.1 120 149 194 247 309 339 410 457 517 608 681 777

Our first notable observation is that the variants with immediate insertion sort at the base case are faster than the one with the
delayed final insertion sort, which probably comes from the fact that the elements are still present in the first- or second-level
caches. This also explains why the 2CPm conditional swap performs the best with Quicksort, while we saw in the last section
that this is not necessarily the case when we have a cache miss for loading the items.
Recalling the results from the previous sections, we expected large improvements by reducing the time needed for sorting

sets of 2–16 items due to the branchless sorting networks. However, the results with Quicksort highlight the networks’ main
weakness: the larger code size (see again Table 3).
By integrating the sorting networks into Quicksort for sorting the base cases, every time a partition has 16 elements or less,

the executions switches from the code for Quicksort to the code for the sorting network. Considering the code sizes shown in
Table 3, we can conclude that Quicksort with insertion sort is around 1500 bytes, while Quicksort with sorting networks ranges
from 12–37KiB. We believe the code for Quicksort is partly removed from the L1 instruction cache and replaced with the code
for the sorting network. Because the network’s code is a branchless sequence of conditional swaps, each line of code is accessed
exactly once per base case sort. This causes a lot of Quicksort’s code to be removed from the instruction cache, counteracting
the speedup of the sorting network which is then in the cache and will be partially removed again when Quicksort is handed
back the flow of control.
This effect is more pronounced for machines Intel-2650, Intel-2670, and RK3399 which have 32 or 48 KiB of L1 instruction

cache, where the speedup is 4.3–6.7% for the best network base case over the best insertion sort base case, and 6.9–9% over
std::sort. On machine Ryzen-1800X a larger improvement was achieved for std::sort, probably due to the 64 KiB L1
instruction cache. Here we achieved a speedup of 12.7% over std::sort when making use of the best networks.
Furthermore, it comes as no surprise that we do not see improvements as large as those in Section 4.2 or 4.3 because the

partitioning steps of Quicksort take the same amount of time regardless of the base case sorter. Some simple measurements
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TABLE 7 Average number of nanoseconds per iteration of OneArrayRepeat experiment on machine RK3399.
Overall Array Size

Rank GeoM 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
IS Def 20 1.84 17.6 38.4 56.5 86.9 114 138 172 205 249 284 326 369 409 465 513
IS POp 22 2.13 26.7 39.5 61.9 94.8 127 162 195 235 284 331 373 433 485 539 595
IS AIF 25 2.57 42.6 69.3 88.3 122 154 184 221 271 315 363 408 467 522 583 647
IS STL 26 2.59 37.4 62.2 94.1 123 155 194 232 268 324 369 422 472 531 592 656
SN BN-L 4Cm 3 1.07 22.2 31.5 38.8 51.7 63.0 68.2 87.4 106 129 150 167 189 202 239 256
SN BN-L 4CmS 5 1.45 26.1 36.2 45.5 66.3 83.0 103 110 146 180 205 233 270 321 377 384
SN BN-L ISwp 10 1.54 23.4 34.4 48.0 66.7 87.0 103 121 176 205 246 266 308 341 372 417
SN BN-L 2CPp 11 1.55 21.1 35.9 50.8 68.3 88.1 103 125 172 205 241 266 304 339 374 419
SN BN-L JXhg 14 1.57 27.4 33.7 53.6 75.2 84.2 105 130 169 204 241 260 303 329 372 405
SN BN-L 2CPm 24 2.56 24.7 52.0 66.9 113 141 188 222 307 359 428 461 561 613 675 728
SN BN-L Tie 31 3.40 31.1 56.5 82.4 129 174 219 256 427 511 651 717 829 904 1028 1040
SN BN-P 4Cm 1 1.03 17.1 28.6 40.4 51.7 59.6 72.8 79.6 109 126 151 163 190 204 233 249
SN BN-P 2CPp 7 1.54 22.9 33.3 46.1 70.1 86.1 110 123 171 212 233 266 300 346 372 399
SN BN-P ISwp 8 1.54 22.0 32.0 47.3 70.8 86.0 111 130 169 206 240 266 299 350 370 401
SN BN-P JXhg 17 1.60 30.4 36.9 51.2 73.8 93.8 114 130 174 195 232 283 292 329 369 406
SN BN-P 4CmS 18 1.64 30.2 37.5 49.2 63.9 79.5 105 118 156 198 248 289 347 409 463 497
SN BN-P 2CPm 27 2.62 26.2 50.5 72.5 108 143 188 216 309 369 448 495 576 637 716 758
SN BN-P Tie 32 3.85 46.4 67.5 95.4 171 221 283 323 465 552 654 717 846 935 1056 939
SN BN-R 4Cm 4 1.25 27.6 29.7 41.8 52.6 61.7 70.6 86.7 129 185 228 271 244 258 256 274
SN BN-R ISwp 13 1.56 21.5 31.6 48.6 68.7 87.2 107 133 180 218 248 275 316 344 386 416
SN BN-R 2CPp 16 1.57 25.3 34.3 46.1 66.8 86.1 103 132 184 218 254 272 304 342 384 413
SN BN-R JXhg 19 1.68 27.5 42.9 52.6 69.4 86.6 109 152 189 229 269 281 315 347 392 440
SN BN-R 4CmS 21 1.89 31.5 38.6 48.7 61.1 84.0 125 169 198 243 290 346 426 484 574 634
SN BN-R 2CPm 28 2.66 29.5 49.9 72.7 108 142 191 237 304 364 427 479 576 647 730 800
SN BN-R Tie 29 3.17 36.5 69.0 85.3 134 174 221 261 372 444 533 572 706 747 798 847
SN Best 4Cm 2 1.04 25.6 29.5 41.3 50.8 61.7 69.4 84.7 106 120 149 164 165 198 217 236
SN Best 2CPp 6 1.50 22.8 39.6 46.7 72.5 87.0 107 125 165 187 242 253 276 303 341 379
SN Best JXhg 9 1.54 29.1 37.2 50.7 73.7 86.3 105 130 162 201 221 245 283 315 355 377
SN Best ISwp 12 1.55 31.7 37.4 49.0 74.8 91.2 107 137 166 178 239 253 280 305 346 381
SN Best 4CmS 15 1.57 26.4 41.8 49.8 61.9 86.3 107 110 154 183 229 270 304 379 423 476
SN Best 2CPm 23 2.54 30.4 52.9 70.3 110 142 193 219 283 341 408 453 527 597 659 701
SN Best Tie 30 3.32 34.0 60.3 89.6 130 175 224 260 423 462 591 670 705 830 956 1002

TABLE 8 Ranking of sorting algorithms by geometric mean of relative slowdowns for the OneArrayRepeat experiment across
all machines.

Sorter GeoM
SN BN-L 4Cm 1.019
SN BN-L 4CmS 1.020
SN BN-R 4Cm 1.022
SN Best 4CmS 1.022
SN Best 4Cm 1.024
SN BN-P 4CmS 1.027
SN BN-P 4Cm 1.038
SN BN-R 4CmS 1.043

Sorter GeoM
SN Best 2CPm 1.113
SN BN-P 2CPm 1.122
SN BN-R 2CPm 1.126
SN BN-L 2CPm 1.150
SN Best 2CPp 1.171
SN BN-P 2CPp 1.180
SN BN-L 2CPp 1.240
SN BN-R 2CPp 1.243

Sorter GeoM
SN Best Tie 1.324
SN BN-P Tie 1.360
SN BN-R Tie 1.374
SN BN-L Tie 1.381
SN BN-R ISwp 1.398
SN BN-P ISwp 1.413
SN Best ISwp 1.415
SN BN-P JXhg 1.416

Sorter GeoM
SN BN-L ISwp 1.432
SN BN-L JXhg 1.441
IS Def 1.444
SN Best JXhg 1.452
SN BN-R JXhg 1.461
IS POp 1.462
IS STL 1.516
IS AIF 1.525

TABLE 9 Speedup factor of the fastest sorting network over the fastest insertion sort implementation for the OneArrayRepeat
experiment and array sizes 2–16.
Machine 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avg
Intel-2650 2.37 1.91 2.16 2.79 2.54 2.62 2.44 2.16 2.20 1.95 2.08 1.84 1.76 1.77 1.78 2.16
Intel-2760 – 3.15 3.16 3.02 3.23 2.84 2.77 2.47 2.27 2.04 2.06 1.97 1.86 1.79 1.80 2.46
Ryzen-1800X 4.51 5.28 5.29 5.17 5.61 7.11 4.86 4.26 4.03 3.72 3.60 3.35 3.70 3.25 3.25 4.47
RK3399 1.08 1.16 1.39 1.50 1.85 1.92 1.92 2.00 2.05 1.91 1.94 2.05 2.00 2.03 2.05 1.79
Average 2.65 2.88 3.00 3.12 3.31 3.62 3.00 2.72 2.64 2.40 2.42 2.30 2.33 2.21 2.22 2.72
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FIGURE 15 OneArrayRepeat experiment with array size = 8 on machine Intel-2650
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FIGURE 16 OneArrayRepeat experiment with array size = 8 on machine Intel-2670
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FIGURE 17 OneArrayRepeat experiment with array size = 8 on machine Ryzen-1800X
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FIGURE 18 OneArrayRepeat experiment with array size = 8 on machine RK3399
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FIGURE 19 OneArrayRepeat experiment with array size 2–16 on all machines
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FIGURE 20 ArrayInRow experiment with array sizes 2–16 across all machines
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TABLE 10 Ranking of sorting algorithms by geometric mean of relative slowdowns for the ArrayInRow experiment across all
machines.

Sorter GeoM
SN BN-L 4CmS 1.030
SN Best 4CmS 1.041
SN BN-L 4Cm 1.041
SN Best 4Cm 1.053
SN BN-R 4Cm 1.076
SN BN-P 4CmS 1.080
SN BN-P 4Cm 1.082
SN BN-R 4CmS 1.145

Sorter GeoM
SN Best 2CPm 1.277
SN BN-P 2CPm 1.308
SN Best 2CPp 1.443
SN BN-L 2CPm 1.451
SN BN-P 2CPp 1.483
SN BN-R 2CPm 1.537
SN BN-L 2CPp 1.685
SN BN-R 2CPp 1.773

Sorter GeoM
SN Best Tie 2.239
SN Best ISwp 2.244
SN BN-P ISwp 2.244
SN BN-L Tie 2.244
SN BN-P Tie 2.248
IS Def 2.300
SN BN-R Tie 2.302
SN BN-L ISwp 2.329

Sorter GeoM
IS POp 2.330
SN BN-R ISwp 2.338
SN BN-L JXhg 2.415
SN Best JXhg 2.449
SN BN-P JXhg 2.457
SN BN-R JXhg 2.460
IS STL 2.487
IS AIF 2.514

TABLE 11 Speedup factor of the fastest sorting network over the fastest insertion sort implementation for the ArrayInRow
experiment and array sizes 2–16.
Machine 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avg
Intel-2650 1.50 1.88 1.82 2.01 2.29 2.47 2.52 2.36 2.35 2.25 2.23 2.08 2.06 1.96 1.90 2.11
Intel-2760 1.69 2.14 2.06 2.14 2.46 2.54 2.53 2.41 2.36 2.23 2.23 2.07 2.09 1.91 2.14 2.20
Ryzen-1800X 1.44 2.11 2.52 2.84 3.09 3.37 3.53 3.48 3.50 3.36 3.44 3.19 3.20 3.18 3.21 3.03
RK3399 1.03 1.07 1.23 1.46 1.61 1.70 1.77 1.78 1.95 1.94 2.04 1.99 1.97 2.03 2.12 1.71
Average 1.42 1.80 1.91 2.11 2.36 2.52 2.59 2.51 2.54 2.45 2.49 2.34 2.33 2.27 2.34 2.26

TABLE 12 Average speedups of the fastest sorting network over the fastest insertion sort as base case in Quicksort and
unmodified std::sort

Intel-2650: Intel-2670: Ryzen-1800X: RK3399:
SN BN-L 4CmS SN Best 4CmS N Best 2CPm SN Best 4Cm

IS Def 6.7% 6.3% 8.7% 4.26%
IS POp 7.4% 6.8% 4.8% 5.9%

std::sort 8.96% 8.3% 12.7% 6.9%

showed that only 13–20% of the time of Quicksort is spent in the base cases. Hence, these are a considerable fixed part of the
variants that is not optimized using sorting networks.

4.5 Sorting a Medium-Sized Set of Items with Sample Sort
In this section we focus on evaluating Register Sample Sort. The measurements were done with two different goals in mind:
First, to determine which parameters work best for the machines and the array size set. And second to see if the results from the
preceding three Sections 4.2, 4.3, and 4.4 would relate to the results from sample sort with the sorting networks as base cases.
Register Sample Sort was measured using the OneArrayRepeat experiment loop with parameters: numberOfIterations =

50, numberOfMeasures = 200, and arraySize = 256. In the experimental results the parameters of Register Sample Sort are
labeled with “xyz” where x = numberOfSplitters, y = oversamplingFactor, and z = blockSize.
Figures 25, 26, 27, and 28 show box plots of running times of Register Sample Sort with numberOfSplitters = 3 and

locality-optimized Bose-Nelson networks as base case on 256 items. To be able to compare the results on the different machines,
the configurations in all plots were ordered based on their speed on machine Intel-2650. We measured larger variances and got
a lot more outliers, so choosing a “best” configuration was not so easy.
An oversampling factor of 3 performed best with respect to the median on machine Intel-2650, Intel-2670, and RK3399, while

4 was best on machine Ryzen-1800X. The best results with respect to blockSize are also interesting, because these depend on
the number of general purpose registers available. On machine Intel-2650 blockSize = 1 was best with oversampling factor 3,
while machine Intel-2670 allowed a blockSize = 4, with 3 and 2 close behind. On machine Ryzen-1800X block sizes larger
than 2 performed better (on average) along with an oversampling factors of 3 or greater. When looking at the other networks
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FIGURE 21 Running time of Quicksort with different base cases on machine Intel-2650
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FIGURE 22 Running time of Quicksort with different base cases on machine Intel-2670
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FIGURE 23 Running time of Quicksort with different base cases on machine Ryzen-1800X
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FIGURE 24 Running time of Quicksort with different base cases on machine RK3399
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TABLE 13 Average speedups of the fastest sorting network over the fastest insertion sort as base case in Register Sample Sort
and unmodified std::sort

Intel-2650: Intel-2670: Ryzen-1800X: RK3399:
SN Best 4CmS SN Best 4CmS SN BN-R 4Cm SN Best 4Cm

I Def 13.3% 15% 19.7% 9.6%
std::sort 28.7% 32.5% 21.5% 2.8%

and insertion sort as base case, consistently well performing parameters are an oversampling factor of 3 and a block size of 4,
but with very little lead over other configurations.
That is interesting to see because all three machines run x86_64 assembly instructions and have the same number of publicly

visible general purpose registers. What comes into play here are hidden virtual registers and the size of the instruction cache:
Machine Ryzen-1800X has double the amount of L1 instruction cache of what machines Intel-2650 and Intel-2670 have. We
can only assume that the instructions for classifying three elements need more space than the smaller 32 KiB instruction caches
can provide, while the 64 KiB instruction cache in machine Ryzen-1800X can fit the instructions for classifying four and/or
almost five elements at once, considering that block size 5 also performs well.
Machine RK3399 however is an ARM chip, which shows a much larger variance in the results of Register Sample Sort,

but is also more robust against the parameters. On machine RK3399 oversampling factor 3 with blockSize = 3 was best,
which indicates a similar number of general purpose registers as in the x86_64 machines. However, the larger robustness can
actually be interpreted as that the ARM chip incorporates fewer unpredictable running time optimizations such as speculative
and out-of-order execution of instructions.
The second goal was to see if the results from Sections 4.2, 4.3, and 4.4 would relate to using sample sort with the sorting

networks as base cases. These results can be seen in Figures 29, 30, 31, and 32 for the 332 configuration. All measurements
were made with a base case limit of 16.
The achieved speedups of using the sorting networks are summarized in Table 13. On the left we see Register Sample Sort

with insertion sort as base case I Def and unmodified std::sort that was also measured sorting 256 elements. On the top
we see the best performing network “SN Best 332 4CmS” as a base case for Register Sample Sort on all three machines. The
number indicates the speedup of Register Sample Sort with the sorting network over Register Sample Sort with insertion sort
and over std::sort.
Again we see that due to machine Ryzen-1800X having a larger L1 instruction cache the performance gain is greater than for

the other machines. And the results from ARM machine RK3399 again have a larger variance than the others with conditional
swap 4Cm performing better than 4CmS. Unlike in the previous section though we achieved much greater speedups as a result of
using the sorting networks as a base case. That comes from the fact that Register Sample Sort has no unpredictable branches
classifying the elements, as opposed to Quicksort having to deal with conditional branches during the partitioning, while both
need to invest the same time to sort all the base cases. So with Register Sample Sort, the base case sorting takes up a larger time
portion of the whole execution than it does with Quicksort. From further results we also see that we can get up to a factor of 1.4
faster than std::sort for sets of 256 items with very few conditional branches.

4.6 Sorting a Large Set of Items with IPS4o
With our efficient implementation of Register Sample Sort for medium-sized sets we can now incorporate our new base case
sorters into a complex sorting algorithm. We evaluated them in Axtmann et. al’s In-Place Parallel Super Scalar Samplesort
(IPS4o)5 without additionally introducing parallelism into our experiments. The IPS4o algorithm has many parameters that can
be adjusted. For our evaluation the most important parameter was IPS4oBaseCaseSize, which specifies which base case size
to aim for. Even though this number is the goal, IPS4o may output larger base cases because it is a large-size sorter. This was
the reason we developed Register Sample Sort to break these medium-sized sets down into sizes that can be sorted using the
sorting networks.
We initially started the measurement using the best combination of Register Sample Sort from Section 4.5 as a base case for

IPS4o, together with the default IPS4oBaseCaseSize = 16. However, this combination turned out to perform worse than just
insertion sort.
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FIGURE 25 Register Sample Sort on machine Intel-2650 with 256 items and different configurations
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FIGURE 26 Register Sample Sort on machine Intel-2670 with 256 items and different configurations
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FIGURE 27 Register Sample Sort on machine Ryzen-1800X with 256 items and different configurations
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FIGURE 28 Register Sample Sort on machine RK3399 with 256 items and different configurations
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FIGURE 29 Register Sample Sort 332 with different base cases on machine Intel-2650
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FIGURE 30 Register Sample Sort 332 with different base cases on machine Intel-2670
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FIGURE 31 Register Sample Sort 332 with different base cases on machine Ryzen-1800X
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FIGURE 32 Register Sample Sort 332 with different base cases on machine RK3399
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TABLE 14 Average speedups of the fastest sorting network over the fastest insertion sort as base case in IPS4o and unmodified
std::sort

Intel-2650: Intel-2670: Ryzen-1800X: RK3399:
IS+SN BN-R 16 4CmS IS+SN BN-R 16 4CmS IS+SN BN-R 16 4CmS SS+SN Best 64 4CmS

IS 16 Def 1.3% 1.36% 4.9% 7%
IS 32 Def -0.7% -0.08% 6% 15.4%
std::sort 58.2% 62.2% 66.6% 38.4%

In preliminary measurements we found the 51% of base case are at most 16 items, and 78% are at most 32 items with
IPS4oBaseCaseSize = 16. For IPS4oBaseCaseSize = 32, 23% of base case are at most 16 items, and 47% are at most 32
items. From that it was evident that in most of the instances with parameter IPS4oBaseCaseSize = 16 the base case sorter was
being invoked on sets smaller than even 32 elements. That also meant that Register Sample Sort had to deal with only slightly
larger inputs than 16, which incurs a larger overhead than plain insertion sort and is not justified by the larger amount of items.
In addition to that the size of the instruction cache that had already had a great influence on the measurements of Quicksort

seemed to be another factor for the bad performance of Register Sample Sort as a base case.
That is why we decided to measure the following setups: (a) pure insertion sort as base case (IS) with IPS4oBaseCaseSize ∈

{16, 32}, and (b) Register Sample Sort as base case (SS+SN) with IPS4oBaseCaseSize ∈ {16, 32, 64}, tree configurations
“331” and “332”, and Best networks and Bose-Nelson networks optimizing locality (BN-L) and recursion (BN-R) for base case
size 16 of Register Sample Sort with conditional swap 4CmS, and (c) a combination of the sorting networks and insertion sort
(IS+SN) without Register Sample Sort. Variant (c) was introduced because the base case sizes were often smaller than 16, and
we wanted to make use of that by using the sorting networks, while not having to rely on Register Sample Sort with its larger
overhead for the slightly larger base cases, hence IS+SN uses the Bose-Nelson networks optimizing locality if the set had 16
elements or less, and insertion sort otherwise.
Figures 33, 34, 35, and 36 display the results from the measurements with the four variants above. The

IPS4oBaseCaseSize ∈ {16, 32} was added to the variant’s label along with an underscore followed by the Register Sam-
ple Sort configuration. The OneArrayRepeat experiment loop was used with parameters numberOfIterations = 50,
numberOfMeasures = 200, and arraySize = 218 = 262144. On Machine Intel-2650 one outlier for “SS+SN BN-R 32_331
4CmS” with the value 38454084 cycles was removed from the plot for better readability.
As already seen in Axtmann et. al’s publication5, we measured an average speedup factor of 2.3 over std::sort with

unchanged IPS4o across all machines. However, on machine Intel-2650, none of our variants (IS, SS+SN, IS+SN) led to an
improvement in sorting speed over the default use of insertion sort with IPS4oBaseCaseSize = 32. For machine Intel-2670,
interestingly, using Register Sample Sort did not lead to an improvement, but the combination of insertion sort and Bose-Nelson
networks did manage to reach par with the default implementation. For machine Ryzen-1800X, Register Sample Sort also did
not lead to an improvement, but IS+SN outperformed the default insertion sort by about 5%. Only on machine RK3399 we see
a reasonable speedup of Register Sample Sort with sorting networks of up to 7% in the best configuration.

5 CONCLUSION

5.1 Results and Assessment
We have seen that for sorting sets of up to 16 elements it can be viable to use sorting algorithms other than insertion sort.
We looked at sorting networks in particular, paying special attention to the implementation of the conditional swap and giving
multiple alternative ways of realizing it.
After seeing that the sorting networks outperform insertion sort each on their own for a specific array size in Section 4.2 and

4.3, we saw in Section 4.4 that this improvement does not necessarily transfer to sorting networks being used as base case sorter
in Quicksort. Because the networks have a larger code size, the code for Quicksort is removed from the instruction cache and
the advantage of not having conditional branches is impaired by that larger code size. But we also saw that for machines with
larger instruction caches using sorting networks with Quicksort can lead to visible improvements of up to 9% over std::sort
on machine Intel-2650.
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FIGURE 33 Sorting times for IPS4o on machine Intel-2650 with different base cases and base case sizes
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FIGURE 34 Sorting times for IPS4o on machine Intel-2670 with different base cases and base case sizes
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FIGURE 35 Sorting times for IPS4o on machine Ryzen-1800X with different base cases and base case sizes
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Then we integrated the sorting networks into a more advanced sorter, IPS4o, which was possible by adding an intermediate
sorter into the procedure. For that we created Register Sample Sort, which is an implementation of Super Scalar Sample Sort
that holds the splitters in general-purpose registers instead of an array. When measuring IPS4o with Register Sample Sort as a
base case, we found that the instruction cache makes even more of a difference, because we now add the code size for Register
Sample Sort on top of the code size for the sorting networks.
We proposed an additional alternative to Register Sample Sort, using a combination of insertion sort and sorting networks:

For base cases of 16 elements or less, we used the sorting network, for any size above that insertion sort.
On machine Intel-2650 with a smaller instruction cache of 32 KiB we could not achieve a speedup with any of the variants,

on machine Intel-2670 the combination of insertion sort and sorting networks led to a running time on par with insertion sort as
base case. The only substantial improvement we achieved with IPS4o was on the ARM machine, where using Register Sample
Sort led to an improvement of 7% over the best insertion sort variant.
In closing, we want to mention that this particular implementation only compiles when using the gcc C++ compiler due to

compiler-dependent inline-assembly statements. This also means that the code is probably not as fast as it could be due to the
inline-assembly not being optimized by the compiler. However, as of today, there is no consistent method to generate conditional
move operations from C++ without assembly. The complete project is available on github at https://github.com/JMarianczuk/
SmallSorters.

5.2 Experiences and Hurdles
The greatest hurdle we encountered during this project was, as mentioned in Section 4.1, the fact that the compiler reduces
its optimizations with increasing compilation effort, when compiling only a single source file. That can lead to performance
variations that happen for no “apparent” reason, and is especially tricky when dealing with templated methods that can not be
moved from header files into source files. The solution was to use code generation and to include all logically coherent method
invocations in one wrapper method that is then placed in its own source file, to not have different parts of the program influencing
each other over the decision which one gets to be optimized and which one not.

5.3 Future Work
Empirically, an important improvement would be to mitigate the instruction cache faults that limited performance in our exper-
iments. Besides looking at sorting networks with smaller memory footprint, one could separate and delay solving the base cases
from the remaining logics of a divide-and-conquer sorter such as Quicksort or sample sort. By also bucket-sorting the base
cases by their size, one could further improve instruction-cache locality – one could then solve batches of subproblems of iden-
tical size. The obvious downside of worsened data locality could be mitigated by performing this separation not globally but on
subproblems that fit into an appropriate level of the cache hierarchy (e.g., L3 cache).
Identical subproblem sizes are also possible when implementing the base case of merge sort. For large data sets, this would

likely imply using merge sort for intermediate input sizes that fit into the cache and one would want to have a highly tuned
implementation that avoids branch mispredictions, e.g., based on27. One could even consider merging circuits as yet another
intermediate stage.
One can also look further into implementation techniques for sorting networks. One would like to explore further possibilities

to implement the conditional swap for the sorting networks, as well as seeing which of the C++ compilers generate conditional
moves when using portable C++ code instead of compiler- and architecture-dependent inline-assembly. That also includes
looking at conditional swaps for elements that differ from the 64-bit key and reference value pair that we looked at in this paper.
We also have not investigated yet how the instruction scheduling policies of the compilers interact with our implementations.
For some data types, it would certainly be interesting to consider SIMD instructions.
Going beyond sorting networks, one could look for small case sorters not based on compare-and-swap primitives. These might

involve fewer instructions or data-dependencies.

https://github.com/JMarianczuk/SmallSorters
https://github.com/JMarianczuk/SmallSorters
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