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Abstract
In this tutorial we present our new distributed Big Data processing framework called Thrill. It is a C++
framework consisting of a set of basic scalable algorithmic primitives like mapping, reducing, sorting,
merging, joining, and additional MPI-like collectives. This set of primitives can be combined into larger
more complex algorithms, such as WordCount, PageRank, and suffix sorting. Such compounded
algorithms can then be run on very large inputs using a distributed computing cluster with external
memory.

After introducing the audience to Thrill we guide participants through the initial steps of downloading
and compiling the software package. The tutorial then continues to give an overview of the challenges
of programming real distributed machines and models and frameworks for achieving this goal. With
these foundations, Thrill’s DIA programming model is introduced with an extensive listing of DIA oper-
ations and how to actually use them. The participants are then given a set of small example tasks to
gain hands-on experience with DIAs.

After the hands-on session, the tutorial continues with more details on how to run Thrill programs on
clusters and how to generate execution profiles. Then, deeper details of Thrill’s internal software layers
are discussed to advance the participants’ mental model of how Thrill executes DIA operations. The
final hands-on tutorial is designed as a concerted group effort to implement K-means clustering for 2D
points.
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Weak-Scaling Benchmarks
WordCountCC – h · 49 GiB 222 lines

Reduce text files from CommonCrawl web corpus.

PageRank – h · 2.7 GiB, |E | ≈ h · 158 M 410 lines
Calculate PageRank using join of current ranks with outgoing
links and reduce by contributions. 10 iterations.

TeraSort – h · 16 GiB 141 lines
Distributed (external) sorting of 100 byte random records.

K-Means – h · 8.8 GiB 357 lines
Calculate K-Means clustering with 10 iterations.

Platform: h × r3.8xlarge systems on Amazon EC2 Cloud

32 cores, Intel Xeon E5-2670v2, 2.5 GHz clock, 244 GiB RAM,
2 x 320 GB local SSD disk, ≈ 400 MiB/s read/write
Ethernet network ≈ 1000 MiB/s throughput, Ubuntu 16.04.
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Experimental Results: Slowdowns
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Experimental Results: Throughput
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Example T = [
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Thrill’s Design Goals

An easy way to program distributed algorithms in C++.

Distributed arrays of small items (characters or integers).

High-performance, parallelized C++ operations.

Locality-aware, in-memory computation.

Transparently use disk if needed
⇒ external memory or cache-oblivious algorithms.

Avoid all unnecessary round trips of data to memory (or disk).

Optimize chaining of local operations.

Thrill is a moving target,
this tutorial is for the version in June 2020.
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Thrill’s Goal and Current Status
An easy way to program distributed external algorithms in C++.

Current Status:

Open-source prototype at http://github.com/thrill/thrill.
≈ 60 K lines of C++14 code, written by ≥ 12 contributors.

Published at IEEE Conference on Big Data [B, et al. ’16]

Faster than Apache Spark and Flink on five micro benchmarks:
WordCount1000/CC, PageRank, TeraSort, and K-Means.

Case Studies:

Five suffix sorting algorithms [B, Gog, Kurpicz, BigData’18]

Louvain graph clustering algorithm [Hamann et al. Euro-Par’18]

Process scientific data on HPC (poster) [Karabin et al. SC’18]

More: stochastic gradient descent, triangle counting, etc.

Future: fault tolerance, scalability, predictability, and more.

http://github.com/thrill/thrill


Example: WordCount in Thrill
1 using Pair = std::pair<std::string, size_t>;
2 void WordCount(Context& ctx, std::string input, std::string output) {
3 auto word_pairs = ReadLines(ctx, input) // DIA<std::string>
4 .FlatMap<Pair>(
5 // flatmap lambda: split and emit each word
6 [](const std::string& line, auto emit) {
7 tlx::split_view(' ', line, [&](tlx::string_view sv) {
8 emit(Pair(sv.to_string(), 1)); });
9 }); // DIA<Pair>

10 word_pairs.ReduceByKey(
11 // key extractor: the word string
12 [](const Pair& p) { return p.first; },
13 // commutative reduction: add counters
14 [](const Pair& a, const Pair& b) {
15 return Pair(a.first, a.second + b.second);
16 }) // DIA<Pair>
17 .Map([](const Pair& p) {
18 return p.first + ": " + std::to_string(p.second); })
19 .WriteLines(output); // DIA<std::string>
20 }



DC3 Data-Flow Graph with Recursion
T

T3 := T . FlatWindow3

S := T3. Sort

IS := S. MapN ′ := S. FlatWindow2

N := N ′. PrefixSum

N. Max TR := Zip([ IS, N ])

T ′R := TR. Sort

SAR := DC3(T ′R. Map)

I′R := SAR. ZipWithIndex

IR := I′R. Sort . Map

Z ′ := ZipWindow[3,2]([ T , IR ])

Z := Z ′. Window2

S′0 := Z . Map S′1 := Z . Map S′2 := Z . Map

S0 := S′0. Sort S1 := S′1. Sort S2 := S′2. Sort

Merge([ S0, S1, S2 ])

SAT

construct
lexicographic names

recursion and
calculate ranks

create tuples and merge suffix array
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Tutorial: Clone, Compile, and Run
This tutorial focuses on Linux and similar sys-
tems. Windows/Visual C++ is supported using
CMake, but needs some extra steps.

Clone the tutorial example repository:
git clone --recursive https://github.com/thrill/tutorial-project.git

Compile with auto-detected C++14
GCC compiler:
$ cd tutorial-project
$ ./compile.sh

-DTHRILL_BUILD_EXAMPLES=ON

Run simple example:
$ cd build
$ ./simple
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Tutorial: Run Hello World

1 #include <thrill/thrill.hpp>
2 #include <iostream>
3

4 void program(thrill::Context& ctx) {
5 std::cout << "Hello World, I am "
6 << ctx.my_rank() << std::endl;
7 }
8

9 int main(int argc, char* argv[]) {
10 return thrill::Run(program);
11 }
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Control Model: Spark vs. MPI/Thrill
Apache Spark
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Tutorial: Hello World Output
Thrill: using 7.709 GiB RAM total, BlockPool=2.570 GiB,

workers=657.877 MiB, floating=2.570 GiB.
Thrill: running locally with 2 test hosts and 4 workers per host

in a local tcp network.
Thrill: using 7.709 GiB RAM total, BlockPool=2.570 GiB,

workers=657.877 MiB, floating=2.570 GiB.
Thrill: no THRILL_LOG was found, so no json log is written.
[main 000000] FOXXLL v1.4.99 (prerelease/Release)

(git a4a8aeee64743f845c5851e8b089965ea1c219d7)
[main 000001] foxxll: Using default disk configuration.
[main 000002] foxxll: Disk '/var/tmp/thrill.30713.tmp' is allocated,

space: 1000 MiB, I/O implementation: syscall queue=0 devid=0 unlink_on_open
Hello World, I am 0
Hello World, I am 1
Hello World, I am 2
Hello World, I am 7
Hello World, I am 3
Hello World, I am 6
Hello World, I am 4
Hello World, I am 5
Thrill: ran 6.7e-05s with max 0.000 B in DIA Blocks, 0.000 B network traffic,

0.000 B disk I/O, and 0.000 B max disk use.
malloc_tracker ### exiting, total: 1163264, peak: 1163264,

current: 0 / 65536, allocs: 71, unfreed: 4



2 Introduction to Parallel Machines

The Real Deal: Examples of Machines

Networks: Types and Measurements

Models

Implementations and Frameworks
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The Real Deal: HPC Supercomputers
Summit at Oak Ridge National Laboratory (ORNL)
#1 in TOP500 list since June 2018

CC BY Oak Ridge Leadership Computing Facility at ORNL

4 356 nodes with two 22-core Power9 CPUs and six NVIDIA Tesla V100
GPUs each. That are 202 752 physical CPU cores plus 2 211 840 GPU
SMs reaching 148.6 petaflops. The nodes are connected with a Mellanox
dual-rail EDR InfiniBand network. 2×800 GB non-volatile RAM per node.
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The Real Deal: HPC Supercomputers

SuperMUC-NG at Leibniz Rechenzentrum (LRZ) in Munich
#9 in TOP500 list from June 2019

Picture: Veronika Hohenegger, LRZ

6 336 nodes with (24+24)-core Intel Xeon 8174 CPUs with 96 GiB RAM.
The nodes are connected with an Intel Omni-Path 100 GB/s. In total
152 064 physical cores reaching 19.5 petaflops. No local disks.
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The Real Deal: HPC Supercomputers

ForHLR II at Steinbuch Centre for Computing (SCC) at KIT

Close-up of ForHLR II, Andreas Drollinger, KIT (SCC)

1 152 nodes with two (10+10)-core Intel Xeon E5-2660 v3 with 64 GiB RAM.
The nodes are connected with a Mellanox FDR adapter to an InfiniBand 4X
EDR interconnect. In total 23 040 physical cores reaching about 1 petaflop.
One 480 GB local SSD per node.
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The Real Deal: Cloud Computing

Not much is public about their size, infrastructure, or even location.

Delivers virtualized computer, disk, and network resources.

Probably built on commodity hardware, such as Intel processors,
with some proprietary customizations and a virtualization stack.

Examples of AWS instances:

m5.12xlarge has 48 vCPUs with 192 GB RAM and 10 Gb/s
network, and costs $2.31 per hour

i3.8xlarge has 32 vCPUs with 244 GB RAM, 10 Gb/s network,
4×1.9 TB NVMe SSDs, and costs $2.50 per hour
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The Real Deal: Custom Local Clusters

heterogeneous
server installations

Raspberry Pi clusters
photo and report by Joshua Kiepert,

see Joshua Kiepert, "Creating a Raspberry Pi-based Beowulf Cluster."
Technical Report, Boise State University (2013).
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The Real Deal: Shared Memory

AMD Ryzen 5 3600, 6 cores, 3.60 GHz, 7 nm, 32 MiB L3 cache,
die photo from https://www.flickr.com/photos/130561288@N04/albums, modified
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The Real Deal: GPUs

diagram from NVIDIA Tesla V100 GPU architecture whitepaper

NVIDIA Tesla V100 with 80 streaming multiprocessors (SMs), each
containing 64 CUDA cores, in total of 5 120 cores and up to 32 GB RAM.
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2 Introduction to Parallel Machines

The Real Deal: Examples of Machines

Networks: Types and Measurements

Models

Implementations and Frameworks
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Types of Networks

HPC supercomputers:

remote direct memory access (RDMA)

different network topologies: fat trees, kD-torus, islands.

cloud computing and local Ethernet clusters:
Application Layer

Transport Layer

Internet Layer

Link Layer

HTTP
FTP

SMTP
TLS/SSL

TCP UDP

IP ICMP
IGMP

Ethernet
DSL

ISDN
RDMA

TCP/UDP/IP stack

switched 100 Mb/s, 1 Gb/s, 10 Gb/s, or more

shared-memory many-core and GPU systems

implicit communication via cache coherence
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Round Trip Time (RTT) and Bandwidth
2 hosts in LAN at our institute at KIT 2019-08-08

RTT: 140 µs, bandwidth sync: 941 MiB/s

4 × r3.8xlarge AWS instances with 10 Gb/s net 2016-07-14

RTT: 100 µs, bandwidth sync: 389 MiB/s

4 × i3.4xlarge AWS instances with 10 Gb/s net 2017-12-17

RTT: 81 µs, bandwidth sync: 1 144 MiB/s, async: 4 278 MiB/s

4 × ForHLR II hosts with RDMA/4X EDR Infiniband 2019-08-08

RTT: 10.4 µs, bandwidth sync: 5 935 MiB/s, async: 5 554 MiB/s

RTT Ping-Pong Sync Send ASync Send
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MPI Random Async Block Benchmark
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requests submitted
with MPI_Waitany()

more: https://github.com/bingmann/mpi-random-block-test
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Random Blocks on ForHLR II, 8 Hosts
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Variety of Parallel Computing Hosts
cluster types: homogeneous or heterogeneous

host types: commodity hardware, virtual instances on cloud
computing platforms, shared-memory many-core systems,
GPUs, or HPC systems with RDMA.

storage devices:

no local storage

local storage: rotational disks,
SSD, or NVMe devices

transparent distributed storage

network interconnect:

implicit communication protocols

explicit communication: Ethernet, virtual networking,
RDMA/Infiniband, etc.
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2 Introduction to Parallel Machines

The Real Deal: Examples of Machines

Networks: Types and Measurements

Models

Implementations and Frameworks
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Control Model: Fork-Join
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Trivially Parallelizable Work
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many workloads are
trivially parallelizable,
also called
embarrassingly parallel

only one phase,
no synchronization
needed between tasks

easy to schedule using
batch processing
systems
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Control Model: Master-Worker

Master

Q

Worker 1

Worker 2

Worker 3

submit
jobs

A F G J N P

B D H K M O

C E I L Q

Worker 1

Worker 2

Worker 3

master controls jobs
on workers

easy to add or replace
workers

implicit dynamic load
balancing

used by Apache Spark
and Apache Flink

single point of failure!

not truly scalable!
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Control Model: Spark vs. MPI/Thrill
Apache Spark
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Bulk Synchronous Parallel (BSP)
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2 Introduction to Parallel Machines

The Real Deal: Examples of Machines

Networks: Types and Measurements

Models

Implementations and Frameworks
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MPI (Message Passing Interface)
History:

Version 1.0 from 1994 for C, C++, and Fortran.

Still most used interface on supercomputers.
Collective Operations:

MPI_se
nd

MPI_recv

Bcast

Gather

Allgather

+ +

Reduce

0 1 2

0 1 2

0 1 2

0 0 0

1 1 1

2 2 2

Alltoall

Timo Bingmann – Thrill Tutorial: High-Performance Algorithmic Distributed Computing with C++
Institute of Theoretical Informatics – Algorithmics June 1st, 2020 41 / 114



Map/Reduce Model

Time Money

Money Power

Happy Time Money

(Time,1)
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(Power,1)
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Reduce

Computation model popularized in 2004
by Google with the name MapReduce.
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Map/Reduce Framework

Changes the perspective from the number of processors
to how data is processed.

A simple algorithmic and programming abstraction with

automatic parallelization of
independent operations (map) and aggregation (reduce),

automatic distribution and balancing of data and work,

automatic fault tolerance versus hardware errors.

⇒ all provided by MapReduce framework
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Apache Spark and Apache Flink

New post-Map/Reduce frameworks use A B := A. Map()

C := B. Sort() Cdata-flow functional-style programming.

Apache Spark started in 2009 in Berkeley.

central data structure:
resilient distributed data sets (RDDs)

operations broken down into stages executed on cluster

driver initiates and controls execution of stages

Apache Flink started as Stratosphere at TU Berlin.

first version (2010): “PACTs” and Nephele engine.

uses host language to construct data-flow graphs

optimizer and scheduler decide how to run them
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Flavours of Big Data Frameworks
Batch Processing

eierlegende Wollmilchsau
CC BY-SA Georg Mittenecker

Google’s MapReduce, Hadoop MapReduce ,
Apache Spark , Apache Flink (Stratosphere).

High Performance Computing (Supercomputers)
MPI

Real-time Stream Processing
Apache Storm , Apache Spark Streaming.

Interactive Cached Queries
Google’s Dremel, Powerdrill and BigQuery, Apache Drill .

Sharded (NoSQL) Databases and Data Warehouses
MongoDB , Apache Cassandra, Google BigTable, Amazon RedShift.

Graph Processing
Google’s Pregel, GraphLab , Giraph , GraphChi.

Machine Learning Frameworks and Libraries
Tensorflow , Keras , scikit-learn, Microsoft Cognitive Toolkit.
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Distributed Immutable Array (DIA)
User Programmer’s View:

DIA<T> = result of an operation (local or distributed).

Model: distributed array of items T on the cluster

Cannot access items directly, instead use transformations
and actions.

A

A. Map(·) =: B

B. Sort(·) =: C

PE0 PE1 PE2 PE3

Framework Designer’s View:

Goals: distribute work, optimize execution on cluster, add
redundancy where applicable. =⇒ build data-flow graph.

DIA<T> = chain of computation items

Let distributed operations choose “materialization”.
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User Programmer’s View:

DIA<T> = result of an operation (local or distributed).

Model: distributed array of items T on the cluster

Cannot access items directly, instead use transformations
and actions.

A

A. Map(·) =: B

B. Sort(·) =: C

PE0 PE1 PE2 PE3
A

B := A. Map()

C := B. Sort()

CFramework Designer’s View:

Goals: distribute work, optimize execution on cluster, add
redundancy where applicable. =⇒ build data-flow graph.

DIA<T> = chain of computation items

Let distributed operations choose “materialization”.



List of Primitives (Excerpt)
Local Operations (LOp): input is one item, output ≥ 0 items.
Map(), Filter(), FlatMap(), BernoulliSample(), etc.

Distributed Operations (DOp): input is a DIA, output is a DIA.

Sort() Sort a DIA using comparisons.
ReduceBy() Shuffle with Key Extractor, Hasher, and

associative Reducer.
GroupBy() Like ReduceBy, but with a general Reducer.

PrefixSum() Compute (generalized) prefix sum on DIA.
Windowk () Scan all k consecutive DIA items.

Zip() Combine equal sized DIAs index-wise.

Sources: read external data and start a DIA chain.
Generate(), ReadLines(), ReadBinary(), etc.

Actions: input is a DIA, output: ≥ 0 items on every worker.
Sum(), Min(), WriteLines(), WriteBinary(), etc.
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Local Operations (LOps)

Map(f ) : 〈A〉 → 〈B〉
f : A→ B

f f f f
Filter(f ) : 〈A〉 → 〈A〉
f : A→ {false, true}

f f f f

FlatMap〈B〉(f ) : 〈A〉 → 〈B〉
f : A→ array(B)

f f f f
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DOps: ReduceByKey

ReduceByKey(k , r) : 〈A〉 → 〈A〉
k : A→ K key extractor
r : A× A→ A reduction

k k k k k k k k k k
k7 k4 k4 k3 k9 k4 k3 k2 k4 k4

(k7) (k4) (k3) (k9) (k2)

r r
r

r
r
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DOps: GroupByKey

GroupByKey(k , g) : 〈A〉 → 〈B〉
k : A→ K key extractor
g : iterable(A)→ B group function

k k k k k k k k k k
k7 k4 k4 k3 k9 k4 k3 k2 k4 k4

g g g g g

(k7) (k4) (k3) (k9) (k2)



DOps: ReduceToIndex

ReduceToIndex(i, r , n) : 〈A〉 → 〈A〉
i : A→ {0..n − 1} index extractor
r : A× A→ A reduction
n ∈ N0 result size

i i i i i i i i i i
0 1 1 2 3 1 2 4 1 1

r r
r

r
r
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DOps: GroupToIndex

GroupToIndex(i, g, n) : 〈A〉 → 〈B〉
i : A→ {0..n − 1} index extractor

g : iterable(A)→ B group function
n ∈ N0 result size

i i i i i i i i i i
0 1 1 2 3 1 2 4 1 1

g g g g g



DOps: InnerJoin

InnerJoin(k1, k2, j) : 〈A〉 × 〈B〉 → 〈C〉
k1 : A→ K key extractor for A
k2 : B → K key extractor for B

j : A× B → C join function

k1 k1 k1 k1 k1

k7 k4 k4 k3 k9

k2 k2 k2 k2 k2

k1 k3 k4 k9 k9

j
j

j j j



DOps: Sort and Merge

Sort(o) : 〈A〉 → 〈A〉
o : A× A→ {false, true}

(less) order relation

a0 a1 a2 a3 a4

a4 a3 a1 a0 a2

Merge(o) : 〈A〉 × 〈A〉 · · · → 〈A〉
o : A× A→ {false, true}

(less) order relation

a2 a4 a9

a0 a5 a6

a0 a2 a4 a5 a6 a9
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DOps: PrefixSum and ExPrefixSum

PrefixSum(s, v) : 〈A〉 → 〈A〉
s : A× A→ A sum function
v : A initial value

v a0 a1 a2 a3 a4

s
s

s
s

s

ExPrefixSum(s, v) : 〈A〉 → 〈A〉
s : A× A→ A sum function
v : A initial value

v a0 a1 a2 a3 a4

s
s

s
s
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Sample (DOp), BernoulliSample (LOp)

Sample(k) : 〈A〉 → 〈A〉
k ∈ N0 result size

BernoulliSample(p) : 〈A〉 → 〈A〉
p ∈ [0, 1] probability
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DOps: Zip and Window

Zip(z) : 〈A〉 × 〈B〉 · · · → 〈C〉
z : A× B → C

zip function

z z z z z

Window(k , w) : 〈A〉 → 〈B〉
k ∈ N window size
w : Ak → B window function

w w w w

ZipWithIndex(z) : 〈A〉 → 〈C〉
z : A× N0 → C

zip function
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Auxiliary Ops: Cache and Collapse

Cache() : 〈A〉 → 〈A〉

Materializes a DIA,
needed e.g. for caching or
random data generation.

Collapse() : 〈A, f1, f2〉 → 〈A〉

Folds local operation
lambdas f1, f2 into a DIA,

needed for iterations.
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Source DOps: Generate, -ToDIA

Generate(n, g) : 〈A〉
n ∈ N0 result size
g : {0..n − 1} → A generator

g(0) g(1) g(2) g(3) g(4)

Generate(n) : 〈N0〉
n ∈ N0 result size

0 1 2 3 4

ConcatToDIA(v) : 〈A〉
v : vector(A) input data

v [0] v [1] v [0] v [1] v [2] v [0]

PE0 PE1 PE2

EqualToDIA(v) : 〈A〉
v : vector(A) input data

v [0] v [1] v [2] v [3] v [4] v [5]

PE0, PE1, PE2
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Source DOps: ReadLines, ReadBinary

ReadLines(f ) : 〈std::string〉
f : string list of files

`0 `1 `2 `3 `4 `5

ReadBinary〈A〉(f ) : 〈A〉
f : string list of files

a0 a1 a2 a3 a4 a501011
00101

Items A are serialized in Thrill’s binary representation.

Both either read from a common distributed file system (DFS), or
concatenate from all PEs with the “local-storage” flag.
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Actions: WriteLines, WriteBinary

WriteLines(f ) : 〈std::string〉 → void
f : string path/file pattern

`0 `1 `2 `3 `4 `5

WriteBinary(f ) : 〈A〉 → void
f : string path/file pattern

a0 a1 a2 a3 a4 a5 01011
00101

01011
00101

01011
00101

Items A are serialized with Thrill’s binary representation.

Each PE writes one or more files to the DFS or local disk.
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Actions: Size, Print, and more
Size() : 〈A〉 → N0

4

Print(t) : 〈A〉 → void
t : string variable name

Execute() : 〈A〉 → void

Sum(s) : 〈A〉 → A
s : A× A→ A sum function

a0 a1 a2 a3
3∑

i=0
ai

also: Min() and Max().

AllGather() : 〈A〉 → vector(A)

a0 a1 a2 a3

[ a0, a1, a2, a3 ]

Gather(t) : 〈A〉 → vector(A)
t ∈ N0 target worker

AllReduce(s) : 〈A〉 → vector(A)
s : A× A→ A sum function

a0 a1 a2 a3

s(s(s(a0, a1), a2), a3)
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Playing with DIA Operations
How to get from the illustrated DIA operation to C++ code:

Many operations have multiple variants and more parameters.

The Doxygen documentation contains a very technical but
complete list of DIA operations:
https://project-thrill.org/docs/master/group__dia__api.html
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Playing with DIA Operations
How to get your first DIA object:

Use thrill::Run() to auto-detect the cluster setup and launch
worker threads.

Initial DIAs are created from Source operations. These require
the thrill::Context as first parameter.

1 #include <thrill/thrill.hpp>
2

3 void program(thrill::Context& ctx) {
4 auto lines = ReadLines(ctx, "/etc/hosts");
5 lines.Print("lines");
6 }
7 int main(int argc, char* argv[]) {
8 return thrill::Run(program);
9 }
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Playing with DIA Operations

Applying operations to DIA objects:

DIA objects have many operations like .Sum() as methods, but
there are also free functions like Zip() and ReadLines().

Generally use auto instead of DIA<T>:

1 void program(thrill::Context& ctx) {
2 auto lines = ReadLines(ctx, "/etc/hosts");
3 std::cout << "lines: " << lines.Size() << std::endl;
4 }

Or use chaining of operations:

1 void program(thrill::Context& ctx) {
2 size_t num_lines = ReadLines(ctx, "/etc/hosts").Size();
3 std::cout << "lines: " << num_lines << std::endl;
4 }
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Playing with DIA Operations
More advanced uses of DIA objects:

DIA<T> objects are only handles to actual graphs nodes in the
DIA data-flow. This means they are copied as references.

It is straight-forward to have functions with DIAs as parameters
and return type. Again, prefer templates and the auto keyword.

1 template <typename InputDIA>
2 auto LinesToLower(const InputDIA& input_dia) {
3 return input_dia.Map(
4 [](const std::string& line) {
5 return tlx::to_lower(line);
6 });
7 }
8 void program(thrill::Context& ctx) {
9 auto lines = ReadLines(ctx, "/etc/hosts");

10 std::cout << "lines: " << LinesToLower(lines).Size() << "\n";
11 }
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Playing with DIA Operations
Use C++11 lambdas for functor parameters.

1 using Pair = std::pair<std::string, size_t>;
2 void program(thrill::Context& ctx) {
3 ReadLines(ctx, "/etc/hosts")
4 .FlatMap<Pair>(
5 // flatmap lambda: split and emit each word
6 [](const std::string& line, auto emit) {
7 tlx::split_view(' ', line, [&](tlx::string_view sv) {
8 emit(Pair(sv.to_string(), 1)); });
9 })

10 .ReduceByKey(
11 // key extractor: the word string
12 [](const Pair& p) { return p.first; },
13 // commutative reduction: add counters
14 [](const Pair& a, const Pair& b) {
15 return Pair(a.first, a.second + b.second);
16 })
17 .Execute();
18 }



Context Methods for Synchronization
The Context object also has many useful methods:

ctx.my_rank() – rank of current worker thread.

1 if (ctx.my_rank() == 0)
2 std::cout << "lines: " << num_lines << '\n';

also: host_rank(), num_hosts(), num_workers().

y = ctx.net.Broadcast(x, 0);
MPI-style broadcast of x from worker 0 as y on all.

y = ctx.net.PrefixSum(x);
MPI-style prefix-sum of x with result y. also: ExPrefixSum.

y = ctx.net.AllReduce(x);
MPI-style all-reduce of x with result y. also: Reduce.

ctx.net.Barrier();
MPI-style synchronization barrier
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Serializing Objects in DIAs
Thrill needs serialization methods for objects in DIAs.

automatically supported are:

All plain old data types (PODs) (except pointers),
which are plain integers, characters, doubles, and
fixed-length structs containing such.

std::string, std::pair, std::tuple, std::vector, and
std::array, if the contained type is serializable.

otherwise, add a serialize() method:
(see also cereal’s docs: https://uscilab.github.io/cereal/)

1 #include <thrill/data/serialization_cereal.hpp>
2 struct Item {
3 std::string string;
4 size_t value;
5 template <typename Archive>
6 void serialize(Archive& ar) {
7 ar(string, value);
8 }
9 };

https://uscilab.github.io/cereal/


Warning: Collective Execution!

Thrill programs are built from
parallel, collectively synchronized operations.

All distributed operations must be
performed by all workers
in the same order!
Thrill’s implicit synchronized
collective execution depends on it!

The following does not work (why?):

1 auto lines = ReadLines(ctx, "/etc/hosts");
2 if (ctx.my_rank() == 0)
3 std::cout << "lines: " << lines.Size() << std::endl;
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Tutorial: Playing with DIAs

Hands-on Tutorial Part

Objective:
Write and run some simple programs using DIA operations.

Some Ideas/Tasks:

Read a text file, sort the lines, and write the result.

Read a text file, transform all lines to lower case, and write them.

Read a text file and calculate the average line length.

Read a binary file as characters and count how many of each
character occurs. Tip: use ReduceToIndex.

Calculate the top 100 words in a text file and output all lines in
which they occur.
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Execution on Cluster

host host host host

workers

network

Compile program into one binary, running on all hosts.

Collective coordination of work on compute hosts, like MPI.

Control flow is decided on by using C++ statements.

Runs on MPI HPC clusters and on Amazon’s EC2 cloud.
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Example: WordCount in Thrill
1 using Pair = std::pair<std::string, size_t>;
2 void WordCount(Context& ctx, std::string input, std::string output) {
3 auto word_pairs = ReadLines(ctx, input) // DIA<std::string>
4 .FlatMap<Pair>(
5 // flatmap lambda: split and emit each word
6 [](const std::string& line, auto emit) {
7 tlx::split_view(' ', line, [&](tlx::string_view sv) {
8 emit(Pair(sv.to_string(), 1)); });
9 }); // DIA<Pair>

10 word_pairs.ReduceByKey(
11 // key extractor: the word string
12 [](const Pair& p) { return p.first; },
13 // commutative reduction: add counters
14 [](const Pair& a, const Pair& b) {
15 return Pair(a.first, a.second + b.second);
16 }) // DIA<Pair>
17 .Map([](const Pair& p) {
18 return p.first + ": " + std::to_string(p.second); })
19 .WriteLines(output); // DIA<std::string>
20 }



Mapping Data-Flow Nodes to Cluster

A := ReadBinary()

B := A. PrefixSum()

C := B. Map()D

E := Zip(C, D)

E . WriteLines()

DIA data-flow Worker 0

A := ReadBinary[0, n
2 )

()
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calculate global prefixsum

post-op: read, add partial sum

C := B. Map()D[0, m
2 )
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align arrays (exchange)

post-op: zip lambda

E . WriteLines[0, `
2 )

()

Worker 1

A := ReadBinary[ n
2 ,n)()

pre-op: local sum, store

calculate global prefixsum

post-op: read, add partial sum

C := B. Map() D[m
2 ,m)
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post-op: zip lambda

E . WriteLines[ `
2 ,`)()
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Tutorial: Running Thrill on a Cluster

Supported Network Systems and Launchers:

single multi-core machine

cluster with ssh access and TCP/IP network

MPI as startup system and transport network

Goal is to launch a Thrill binary on all hosts and
pass information on how to contact the others.

Thrill reads environment variables for configuration.
(Configuration files would have to be copied to all hosts.)
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Tutorial: On One Multi-Core Machine

This is the default startup mode for easy development.
You have already used it:
Thrill: running locally with 2 test hosts and 4 workers per host

in a local tcp network.

Default local settings are to split the cores on the machine into
two virtual hosts, which communicate via local TCP sockets.

Options to change the default settings:

THRILL_LOCAL: number of virtual hosts

THRILL_WORKERS_PER_HOST: workers per host
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Tutorial: Running via ssh

Mode for plain Linux machines connected via TCP/IP.

a) Install ssh keys on all machines for password-less login.

b) use thrill/run/ssh/invoke.sh script with

-h "host1 host2 host3" (host list)

-u u1234 (optional: remote user)

thrill-binary (binary and arguments)

two setups:

with a common file system (NFS, ceph, Lustre, etc)
⇒ simply call the binary

without common file system (stand-alone machines).
⇒ add -c to copy the binary to all hosts.
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Tutorial: Running via MPI

For running on HPC clusters, Thrill can use MPI directly.
MPI is auto-detected, no configuration is needed.

Check that cmake finds the MPI libraries when compiling:
-- Found MPI_C: /usr/lib64/libmpi.so (found version "3.1")
-- Found MPI_CXX: /usr/lib64/libmpi_cxx.so (found version "3.1")
-- Found MPI: TRUE (found version "3.1")

Run with mpirun:
mpirun -H "host1,host2" thrill-binary

On HPC clusters: use SLURM to launch with MPI,
use only one task per host.
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Tutorial: Environment Variables

THRILL_RAM e.g. =16GiB
override the maximum amount of RAM used by Thrill

THRILL_WORKERS_PER_HOST
override the number of workers per host

THRILL_LOG e.g. =out (see next section)
write log and profile to JSON file, e.g. “out-host-123.json”.

Environment variables can be set

directly: “THRILL_RAM=16GiB program”

with invoke.sh: “THRILL_RAM=16GiB invoke.sh program”

or by mpirun: “mpirun -x THRILL_RAM=16GiB program”
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Tutorial: Logging and Profiling

Thrill contains a built-in logging
and profiling mechanism.

To activate: set the environment variable
THRILL_LOG=abc.

Thrill writes logs to abc-host0.json in a JSON format.

Use the included tool json2profile to generate HTML graphs.
For example1:
$ cd ~/thrill/build/examples/page_rank/
$ THRILL_LOG=ourlog ./page_rank_run --generate 10000000
$ ls -la ourlog*
(this should show ourlog-host0.json and ourlog-host1.json)
$ ~/thrill/build/misc/json2profile ourlog*.json > profile.html

And then visit profile.html with a browser.
1(adapt paths if in tutorial-project)
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Tutorial: Example Profile
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Tutorial: Output DIA Data-Flow Graph

The DIA data-flow graph can also be extracted and
automatically drawn with dot from the JSON log file:
$ ~/thrill/misc/json2graphviz.py ourlog-host-0.json > page_rank.dot
$ dot -Tps -o page_rank.ps page_rank.dot
or
$ dot -Tsvg -o page_rank.svg page_rank.dot



3 The Thrill Framework

Thrill’s DIA Abstraction and List of Operations
Tutorial: Playing with DIA Operations
Execution of Collective Operations in Thrill
Tutorial: Running Thrill on a Cluster
Tutorial: Logging and Profiling
Going Deeper into Thrill
Tutorial: First Steps towards k-Means
Conclusion
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Layers of Thrill

api: High-level User Interface
DIA<T>, Map, FlatMap, Filter, Reduce, Sort, Merge, ...

core: Internal Algorithms
reducing hash tables (bucket and linear
probing), multiway merge, bit encoding

vfs: Data FS
local, S3,
HDFS

data: Data Layer
Block, File, BlockQueue,
Reader, Writer, Multiplexer,
Streams, BlockPool (paging)

net: Network Layer
(Binomial Tree) Broadcast,
Reduce, AllReduce, Async-
Send/Recv, Dispatcher
Backends:foxxll: Async File I/O

borrowed from STXXL
common and tlx: Tools
Logger, Delegates, Math, ...

mem: Memory Limitation
Allocators, Counting

tcpmock mpi



File – Variable-Length C++ Item Store

Block Block
Block Block

ByteBlock ByteBlock ByteBlock ByteBlock

Item 0 Item 1Item 2 Item 3 Item 4 Item 5

begin endfirst

num_items=2

begin endfirst

num_items=1

File
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Readers and Writers

File
. . .

Writer
. . .

Reader

Writers fill Blocks with items and push them into Sinks.

Readers load Blocks from Sources and deserialize items.

Example Code:
1 data::File file = ctx.GetFile();
2 auto writer = file.GetWriter();
3 writer.Put<Type>(type);
4 writer.Close();
5 auto reader = file.GetReader(/∗ consume ∗/ false);
6 while (reader.HasNext())
7 std::cout << reader.Next<Type>();
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Thrill’s Communication Abstraction

PE0 PE1

tim
e

File

File

Stream

Collectives:
Broadcast, Reduce,
Prefixsum, etc.
for small items File

File

Stream

Collectives:
Broadcast, Reduce,
Prefixsum, etc.
for small items

File

File

File

File
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Stream – Async Big Data All-to-All

worker 0 worker 1 worker 2 worker 3
sink

loopback

buffer

reader

writer

Host 0 Host 1

Streams are matched across hosts by ids in allocation order.
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Thrill’s Data Processing Pipelines

File
Reader:
deserialize

Map

each
item

Writer:
serialize

Stream

MixStream

samples

File

CatStream
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Thrill’s Current Sample Sort
PE0 PE1

samples

File

array Θ(M)

sorted

sorted

local sort

sorted

sorted

sorted

samples

File

array Θ(M)

sorted

sorted

local sort

sorted

sorted

sorted
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Optimization: Consume and Keep

Goal: Optimize peak DIA memory usage.

When can the data of a DIA be safely freed?

1 When all handles DIA<T> go out of scope.
2 By manually calling .Dispose() on a handle.
3 While processing operations using consumption and .Keep():

A

M

B

For example: the contents of DIA A is
consumed during execution of the
A→ M → B data processing path.

Advantage: reduces the maximum required
DIA data memory to about N +O(B) items
(depending on the operation).
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Optimization: Consume and Keep
Step 1: Enable DIA consumption.

Default setting: never automatically consume DIA contents.
(makes it easier for new users and when writing algorithms)

To enable consumption: ctx.enable_consume();
⇒ all DIAs assume to be read at most once,
hence are consumed by the first executed operation.

Step 2: Add .Keep() where needed.

Each DIA object has a consumption counter, initially 1. To
increment the counter call .Keep() before an operation.

Also available: .KeepForever().

To find where .Keep() is needed, you can also simply run the
Thrill program. It will print error messages when DIA operations
are executed but the required data is already consumed.
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Example: Consume and Keep
Example Code: ReadLines

Size Sort
1 auto lines = ReadLines(ctx, "/etc/hosts");
2 size_t line_count = lines.Size();
3 auto sorted_lines = lines.Sort();

DIA lines is used twice: first by Size(), and then by Sort().

When executing the action Size(), the DIA node for Sort()
has not been added yet.

⇒ add .Keep() before the Size().

Further Improvement: Action Futures
1 auto lines = ReadLines(ctx, "/etc/hosts");
2 auto size_future = lines.SizeFuture();
3 auto sorted_lines = lines.Sort();
4 size_t line_count = size_future.get();
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Memory Allocation Areas in Thrill

DIA ByteBlocks

DIA operations

free C++ heap

Total RAM

M1

M2

M3

Default heap allocations for
user and Thrill internals.

e.g.: std::string buffers

Sort buffers or hash tables
of DIA operations.

DIA data serialized into
ByteBuffers

Pin ByteBlocks in memory.

1
3

1
3

1
3

external
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Memory Distribution in Stages

DOp A

Post-Op A

Pre-Op B

DOp B

Pre-Op C

DOp C

LOp

I need 2 MiB.

I want as much
as possible.

I want as much
as possible.

The Stage Executor
queries all DOp’s
participating parts
for their memory
requirements.

It then distributes
M2 memory fairly,
e.g. Post-Op A gets
2 MiB, and Post-Op
B and C each get
(M2 − 2 MiB)/2.
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Pipelined Data Flow Processing

DOp A

Post-Op A

Pre-Op B

DOp B

LOp f

T1

T2

Stages are processed by “pipelining” or
“chaining” steps.

Post-Op A generates items of type T1 by
reading from a File or Stream, on-the-fly, etc.

DOps states: New, Executed, Disposed.

When “executed” a DOp can emit a steam of
items to new children nodes: “PushData()”.
⇒ can dynamically attach function chains to
DOps at run time.

A stage includes all processing possible by
streaming data out of a DOp’s Post-Op.
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Pipelined Data Flow Construction

DOp A

Post-Op A

Pre-Op B

DOp B

Pre-Op C

DOp C

LOp f LOp f

DIA<T1>

DIA<T1,f>

T1

T2

T1

T2

The handle of a DOp which
returns T1 is of type DIA<T1>.

LOps are stored using
template parameters: adding f
returns a handle DIA<T1,f>.

The chain is closed by adding
the Pre-Op of a DOp or Action.

This function chain is folded
and added to a DOp as a child.
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Data Flow Construction: Collapse

DOp A

Post-Op A

LOp f

Collapse

Pre-Op B

DOp B

Pre-Op C

DOp C

DIA<T1>

DIA<T1,f>

DIA<T2>

T1

T2

T2 T2

The function chain can be
folded explicitly, by adding a
Collapse() node.

This is rarely required, e.g. to
avoid running f twice, to return
a DIA<T2> from a function, or
in iterative loops.

Collapse is a special auxiliary
node type. Others are Cache,
and Union.
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ReduceByKey Implementation

PE0 PE1 PE2
0 0 0u u u

0 1u
3

2u
3

3u
3
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3 The Thrill Framework

Thrill’s DIA Abstraction and List of Operations
Tutorial: Playing with DIA Operations
Execution of Collective Operations in Thrill
Tutorial: Running Thrill on a Cluster
Tutorial: Logging and Profiling
Going Deeper into Thrill
Tutorial: First Steps towards k-Means
Conclusion
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Tutorial: First Steps towards k -Means

Goal of this tutorial part is to implement
the k -means clustering algorithm.

The algorithm works as follows:

1 Given are a set of d-dimensional points and a target number of
clusters k .

2 Select k initial cluster center points at random.
3 Then attempt to improve the centers by iteratively calculating

new centers. This is done by classifying all points and
associating them with their nearest center, and then taking the
mean of all points associated to one cluster as the new center.

4 This will be repeated a constant number of iterations.
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Tutorial: k -Means Iterations (pre 1)
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Tutorial: k -Means Iterations (post 1)
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Tutorial: k -Means Iterations (pre 2)
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Tutorial: k -Means Iterations (post 2)
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Tutorial: k -Means Iterations (pre 3)
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Tutorial: k -Means Iterations (post 3)
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Tutorial: k -Means Iterations (pre 4)
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Tutorial: k -Means Iterations (post 4)
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Tutorial: k -Means Iterations (pre 5)
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Tutorial: k -Means Iterations (post 5)
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Tutorial: k -Means Iterations (pre 6)
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Tutorial: k -Means Iterations (post 6)
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Tutorial: k -Means Iterations (pre 7)
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Tutorial: k -Means Iterations (post 7)
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Tutorial: k -Means Iterations (pre 8)
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Tutorial: k -Means Iterations (post 8)
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Tutorial: k -Means Iterations (stop)
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k -Means: Printable 2D-Points

Step 1: Make a 2D struct “Point” and generate random points.

Use the following Point struct with ostream operator:

1 //! A 2−dimensional point with double precision
2 struct Point {
3 //! point coordinates
4 double x, y;
5 };
6 //! make ostream−able for Print()
7 std::ostream& operator << (std::ostream& os, const Point& p) {
8 return os << '(' << p.x << ',' << p.y << ')';
9 }

Use Generate to make random points, Print, and Cache them.

Use the script points2svg.py to display the “(x,y)” lines.
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k -Means: Map to Random Centers

Step 2: Map points to randomly selected centers.

Use Sample to select random initial centers, Print them.

Map each Point to its closest center.

Maybe add a distance method to your Point and refactor.

What should the Map output for the next step?
What is the next step?
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k -Means: Calculate Better Centers

Step 3: Calculate better centers by reducing all points.

Next step is to use ReduceByKey or ReduceToIndex to calculate
the mean of all points associated with a center.

Key idea: make a second struct PointTarget containing Point
and new target center id.

Reduce all structs with same target center id and calculate the
vector sum and the number of points associated.

To do this, create a third struct PointSumCount containing Point,
vector sum, and a counter.

Maybe add add and scalar multiplication operators to Point.
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k -Means: Iterate!

Step 4: Iterate the process 10 times.

Collect the new centers on all hosts with AllGather.

Add a for loop for iteration.

Bonus Step 5: Add input and output to/from text files.

Bonus Step 6: Instead of 10 iterations, calculate the distance that
centers moved and break if below a threshold.

Bonus Step 7: Calculate the “error” of the centers, which is the total
distance of all points to their cluster center.

Bonus Step 7: Run your program on the cluster with a large dataset.
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Thoughts on the Architecture
Thrill’s Sweet Spot

C++ toolkit for implementing distributed algorithms quickly.

Platform to engineer and evaluate distributed primitives.

Efficient processing of small items and pipelining of primitives.

Platform for implementing on-the-fly compiled queries?

Open Questions

Compile-time optimization only – no run-time algorithm
selection or (statistical) knowledge about the data.

Assumes h identical hosts constantly running, (the old MPI/HPC
way, Hadoop/Spark do block-level scheduling).

Memory management

Malleability, predictability, and scalability to 1 million cores
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Future Work and Ideas

Ideas for Future Work:

Beyond DIA<T>? Graph<V,E>? DenseMatrix<T>?

Distributed rank()/select() and other stringology algorithms.

Malleability and fault tolerance.

Predictability of algorithm execution on platforms.

Communication efficient distributed operations for Thrill.

Distributed functional programming language on top of Thrill.

Thank you for your attention!

More Information at https://project-thrill.org
and https://panthema.net/thrill

https://project-thrill.org
https://panthema.net/thrill
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