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Abstract. MapReduce frameworks are widely used for the implemen-
tation of distributed algorithms. However, translating imperative algo-
rithms into these frameworks requires significant structural changes to
the algorithm. As the costs of running faulty algorithms at scale can be
severe, it is highly desirable to verify the correctness of the translation,
i.e., to prove that the MapReduce version is equivalent to the imperative
original.

We present a novel approach for proving equivalence between imperative
and MapReduce algorithms based on partitioning the equivalence proof
into a sequence of equivalence proofs between intermediate programs
with smaller differences. Our approach is based on the insight that two
kinds of sub-proofs are required: (1) uniform transformations changing
the control-flow structure that are mostly independent of the particular
context in which they are applied; and (2) context-dependent transfor-
mations that are not uniform but that preserve the overall structure and
can be proved correct using coupling invariants.

We demonstrate the feasibility of our approach by evaluating it on two
prototypical algorithms commonly used as examples inMapReduce frame-
works: k-means and PageRank. To carry out the proofs, we use the in-
teractive theorem prover Coq with partial proof automation. The results
show that our approach and its prototypical implementation based on
Coq enables equivalence proofs of non-trivial algorithms and could be
automated to a large degree.

1 Introduction

Motivation. Frameworks such as MapReduce [8], Spark [22] and Thrill [2] ad-
dress the challenges arising in the implementation of distributed algorithms by
providing a limited set of operations whose execution is automatically paral-
lelized and distributed among the nodes in a cluster. However, translating an
existing imperative algorithm into such a framework is a challenge in itself and
the original algorithmic structure is often lost during that translation since imper-
ative constructs do not translate directly to the provided primitives. Implement-
ing efficient algorithms using MapReduce frameworks can thus require significant
changes to the original algorithm.

http://arxiv.org/abs/1801.08766v1
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By proving the equivalence of the original imperative algorithm and its
MapReduce version, one can verify that no bugs have been introduced during
the translation. While such proofs do not directly provide correctness guaran-
tees for the MapReduce algorithm, they transfer correctness results from the
imperative version to the MapReduce implementation. The transferred correct-
ness properties can be formal proofs whose reach then extends to the distributed
implementation, but can also be informal arguments, e.g., if the algorithm is a
well-known, simple textbook reference implementation or if it has been success-
fully applied previously.

In this paper, we use the term “MapReduce” in a broader sense than im-
plied by the two functions “map” and “reduce”. While some frameworks such as
Hadoop’s MapReduce [21] module are programmed strictly by specifying these
two functions, the more popular and widely used distributed frameworks provide
many additional primitives for performance reasons and to make them easier to
program with. Theoretically, these additional primitives can be reduced to only
map and reduce operations [4], but this overly complicates the program descrip-
tion and is generally not used in real-world applications. In Appendix A.1, we
list the few additional primitives we consider part of the extended MapReduce
operation set.

Contribution of this paper. We present an interactive verification approach
with which a MapReduce implementation of an algorithm can be proved equiv-
alent to an imperative implementation (to the best of our knowledge this is the
first framework for the purpose of such equivalence proofs, see Sect. 6). Proofs
are conducted as chains/sequences of individual, smaller behavior-preserving
program transformations.

We came to the important insight that two kinds of sub-proofs are required:
(1) uniform transformations changing the control-flow structure that are mostly
independent of the particular context in which they are applied; and (2) context-
dependent transformations that are not uniform but that preserve the overall
structure and can be proved correct using coupling invariants. We identified and
describe a catalogue of 13 individual rules. Correctness of 10 of those rules was
proven formally using the Coq theorem prover.

Our approach has a high potential for automation. The required interaction
is designed to be as high-level as possible. The proof is guided by user-specified
intermediate programs from which the individual transformations are derived.
The rules are designed such that their side conditions can be proved automat-
ically and we describe how pattern matching can be used to allow for a more
flexible specification of intermediate steps.

We describe a workflow for integrating this approach with existing interactive
theorem provers. We have successfully implemented the approach as a prototype
within the interactive theorem prover Coq [19] and evaluated the feasibility of our
approach by applying it to the k-means and PageRank algorithms. These two are
prototypical algorithms commonly used as examples in MapReduce frameworks,
because they exhibit the most common patterns found in large-scale distributed
data processing applications. By showing that our approach can be applied to
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Fig. 1: Chain of equivalent programs is translated into formalized functional
language

these two examples, we demonstrate that it can be extended to a much larger
set of applications.

Overview of the approach. The main challenge in proving the equivalence
of an imperative and a MapReduce algorithm lies in the potentially large struc-
tural difference between two such algorithms. Existing relational verification ap-
proaches (like [11,10,15,20]) exploit the fact that the two programs versions to
be compared are structurally similar, which allows the verification to focus on
describing and proving the similarity of the implementations rather than describ-
ing what they actually compute. To deal with the complexity arising from the
large structural differences, the equivalence of imperative and MapReduce algo-
rithms is not shown in one step, but as a succession of equivalence proofs for
structurally closer program versions.

To this end, we require that the translation of the algorithm is broken down
(by the user) into a chain of intermediate programs. For each pair of neighboring
programs in this chain, the difference is comparatively small and can usually be
reduced to one isolated transformation.

The imperative algorithm, the intermediate programs, as well as the MapRe-
duce implementation, are given in a high-level imperative programming lan-
guage (IL). IL is based on a while language and supports integers, booleans, fixed
length arrays and sum and product types. It does not support recursion. Besides
the imperative language constructs, IL supports MapReduce primitives. Given
that we have stated previously that MapReduce programs tend to be of a more
functional nature, it might seem odd at first to not use a functional language
for specifying MapReduce algorithms. However, this is in accordance with the
fact that most of the existing MapReduce frameworks are not implemented as
separate languages but as frameworks built on top of imperative languages such
as Java, Scala, or C++ [22,2]. Thereby sequential parts of MapReduce algorithms
can still be implemented using imperative language features.
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Function SumArrays(xs,ys)
begin

sum ← replicate(n, 0);
for i← 0 to n− 1 do

sum[i ]← xs[i ]+ ys[i ];
end
return sum;

end

Function SumArraysZipped(xs,ys)
begin

sum ← replicate(n, 0);
zipped ← zip(xs,ys);
for i← 0 to n− 1 do

sum[i ] ← fst(zipped[i ]) +
snd(zipped[i ]);

end
return sum;

end

Fig. 2: Two IL programs which calculate the element-wise sum of two arrays.

Each program specified in the high-level imperative language is then auto-
matically translated into the formalized functional language (FFL) described in
Sect. 2. The equivalence proofs are conducted on programs in this functional lan-
guage. An overview of this process can be seen in Fig. 1. For each pair of neighbor-
ing programs in the chain, a proof obligation is generated that requires proving
their equivalence. These proof obligations are then discharged independently of
each other (using the workflow described in Sect. 4). Since, by construction, the
semantics of IL programs is the same as that of corresponding FFL programs, the
equivalence of two IL programs follows from the equivalence of their translations
to FFL. Figure 2 shows two example IL programs for calculating the element-wise
sum of two arrays.

The implementation of our approach based on the Coq theorem prover has
only limited proof automation and still requires a significant amount of interac-
tive proofs. We are convinced, however, that our approach can be extended such
that it becomes highly automatised and only few user interactions or none at all
are required – besides providing the intermediate programs. Further challenges
include the extension of our approach to features such as references and aliasing
which are commonly found in imperative languages.

Structure of this paper. In Sec. 2, we lay the formal groundwork for our
approach by defining the programming language used for equivalence proofs and
the notion of program equivalence used in this paper. Sec. 3 describes the two
kinds of program transformations that we have identified and the techniques for
proving equivalence using these transformations. The technical framework for
equivalence proofs and the potential for automation are described in Sec. 4 and
their its evaluation is in Sec. 5. In Sec. 6, we discuss work related to the ideas
presented in this paper. Finally, we conclude in Sec. 7 and consider possible
future work.
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2 Formal Foundations and Program Equivalence

In this section, we briefly describe the language FFL, introduce a reduction big-
step semantics for FFL and discuss the notion of equivalence for FFL programs. A
full description of the syntax and semantics of FFL can be found in Appendix A.

The primary design goal of FFL is the capability to represent both imperative
and MapReduce programs written in IL. To achieve this, we follow the work
by Radoi et al. [18] and use a simply typed lambda calculus extended by the
theories of sums, products, and arrays. Furthermore, the language also contains
the programming primitives usually found in MapReduce frameworks. We also
want to limit the number of primitives included in FFL while still retaining
expressiveness. This simplifies proving general properties of FFL and proving
the correctness of rewrite rules. We accomplish this by building upon the work
of Chen et al. [5], who describes how to reduce the large number of primitives
provided by MapReduce frameworks to a smaller core.

Two new primitives iter and fold were added to translate imperative loops
directly. Compared to transforming imperative programs into a recursive form,
this allows a translation closer to the original program formulation. The fold

operator is used to translate bounded for-each iterator loops into FFL. The eval-
uation of the expression fold f v0 xs starts with the initial loop state v0 and
iterates over each value of the array xs updating the loop state by applying f .
General while loops are translated using the iter function. iter f v0 is evaluated
by repeatedly applying f to the loop state (which is initially v0) until f returns
unit to indicate termination. Program terms incorporating iter need not evaluate
to a value since the construct allows formulating non-terminating programs.

The big-step operational reduction semantics [14] of FFL is defined as a binary
relation ⇒bs . Note that, since FFL is based on lambda calculus, programs in FFL

as well as values are FFL expressions. The semantics predicate is thus a partial,
functional relation on FFL-terms.

Definition 1. An FFL term t evaluates to an FFL term v if t ⇒bs v holds. A
term t is called stuck if there exists no v such that t ⇒bs v. Terms that evaluate
to themselves are called values.

A formal definition of the syntax of FFL is given in form of typing rules in
Fig. 12; and the semantics of FFL is shown as inference rules in Fig. 14, both
in Appendix A. The evaluation of a program t in an input state (i.e., for an
argument tuple a) resulting in a output state v (a result tuple) can be formalized
as the reduction evaluation of the application of the program to the arguments:
〈t, a〉 ⇓bs v := app(t , a) ⇒bs v .

The semantics of FFL is deterministic. This may seem odd because most
MapReduce frameworks take considerable leeway from fully deterministic execu-
tion in the name of performance. For example, some operations may be evaluated
in a non-deterministic order depending on how fast data arrives over the network
leading to non-determinism if these operations are not commutative and associa-
tive. However, non-determinism in MapReduce algorithms is usually not desired
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fold(λsum. λi.
write(sum, i, xs [i] + ys[i]),

replicate(n, 0),
range(0, n))

snd(iter(λ(i, sum).
if i < n
then inr (i+ 1,

write(sum, i, xs [i] + ys[i]))
else inl unit,

(0, replicate(n, 0))))

(a) (b)

Fig. 3: Translation of function SumArrays (see Fig. 2) into FFL using fold and
iter (where inl and inr denote the left and right injection into a sumtype).

and the problem of checking whether or not a MapReduce algorithm is determin-
istic is orthogonal to proving that it is equivalent to an imperative algorithm.
We thus consider a deterministic language model to be suitable for our purposes
and defer checking of determinism to other tools such as those developed by
Chen et al. [6,7].

Since FFL includes the potential for run-time errors such as out-of-bound
array accesses but does not include an explicit error term, the step-relation ⇒bs

is not total. The absence of an explicit error term also has the consequence that
one cannot distinguish between non-termination and runtime errors according
to the definition of program equivalence in Definition 2.

The introduction of the semantics relation allows us to define a notion of
program equivalence for FFL terms.

Definition 2. Two well-typed FFL terms s and t are called equivalent if they
(a) are of the same type τ and (b) evaluate to the same values v. We write s ∼=τ t
in this case. Using ⊢ t : τ to denote that the closed FFL term t has type τ , this
definition can be formalised as follows:

s ∼=τ t := ⊢ s : τ ∧ ⊢ t : τ ∧
∀v . (s ⇒bs v) ⇔ (t ⇒bs v)

(1)

This definition of program equivalence also enforces mutual termination [9],
i.e., the property that equivalent programs either both terminate or both diverge.
In particular, two non-terminating terms of the same type are equivalent.

Note that the generated proof obligations require proving the equivalence of
functions applied to arbitrary inputs instead of requiring proving the equivalence
of functions themselves

Example 1. Figure 3 shows two transformations of the function SumArrays (see
Fig. 2) into FFL. In Fig. 3 (a), the loop is translated using fold, and in Fig. 3 (b)
using the more general iter. In both cases, it can be observed that the local
variables i and sum become λ-bound variables of the translation of the enclosing
block, in this case the loop body.

The first translation has the initial state replicate(n, 0), an array of length n
with all values set to 0, and it iterates over the indices in the array ([0; 1; . . . ;n−
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fold(λacc. λx. f(acc, g(x)),
i,
xs)

!

fold(λacc. λy. f(acc, y),
i,
map(g, xs))

Side conditions: acc 6∈ FV (f), x 6∈ FV (f), y 6∈ FV (f), x 6∈ FV (g),acc 6∈ FV (g)

Fig. 4: Rewrite rule for separating a loop body into two functions f and g such
that the evaluation of g is independent of all other iterations and can be com-
puted in parallel. FV (g) is the set of free, unbound variables in the term g.

1]), updating the array sum in each iteration using the write function of the
McCarthy theory of arrays.

The translation in Fig. 3 (b) starts from the initial loop state (0, replicate(n, 0)).
In each iteration, an if -clause is used to check if the loop condition still evalu-
ates to true. If that is the case, the index is incremented and sum is updated,
otherwise the program exits the loop as indicated by inl unit and evaluates to the
current loop state.

3 Program Transformations

With the reduction of imperative and MapReduce implementations to the com-
mon language FFL, we are able to prove equivalence between two programs by
constructing a chain of single, isolated program transformations. We categorize
the transformations by their dependence on the surrounding context. A context-
independent transformation is an uniform transformation as it replaces only one
isolated subterm in the program by an equivalent term. This replacement has
no effects on other parts of the program and has only conditions on the re-
placed subterm. In contrast, context-dependent transformations do not replace
individual terms but require many small changes throughout different parts of
the programs.

For example, consider the IL programs in Fig. 2. In the left IL program, the
loop iterates over two separate arrays xs and ys of the same length. In the right IL
program, the loop iterates over a single array that represents the zipped version
of xs and ys. Inspection of the FFL versions from Fig. 3 shows that this program
transformation requires two changes to individual subterms: (a) the initial loop
state, and (b) adaption of the read and write references.

We use two complementary techniques for proving the correctness of a trans-
formation depending on whether it is context-independent or context-dependent:
The equivalence of programs related by context-independent transformations is
proven using rewrite rules (Sect. 3.1) while the equivalence of programs related by
context-dependent transformation is shown using coupling predicates (Sect. 3.2).

3.1 Handling Context-Independent Transformations Using Rewrite

Rules

Intermediate programs are mostly linked by uniform context-independent trans-
formations on isolated subterms. Instead of performing and proving these local
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transformations manually, we can capture them into generalized rewrite rules.
That equivalence is preserved when these generalized rewrite rules are applied,
needs to be proven only once. By maintaining and using a collection of local
transformations that have been proven correct, we can lower proof complexity
and later increase the computer assistance and automation.

A rewrite rule describes a bidirectional program transformation that allows
the replacement of a subterm within a program. It is composed of two patterns
and a set of side conditions which are sufficient for the transformation to preserve
program equivalence. A pattern is an FFL term containing metavariables.

To apply a rewrite rule on a program, we have to identify a subterm of the
program that (a) matches the first pattern and (b) satisfies the side conditions.
The transformed program is obtained by the instantiation of the other pattern
with the matched metavariables. Since the sets of bound metavariables in the two
patterns can be different, some metavariables may not be uniquely instantiated,
leading to a degree of freedom in the translation. We will discuss the practical
implications of this in Sect. 4.3.

While there is no hard limit on the complexity of the side conditions that
can be part of rewrite rules, it is desirable to use side conditions that are simple
and easy to check. This prevents the application of rewrite rules from producing
auxiliary complex proofs due to complex side conditions. In our experiments we
only encountered the following three different kinds of side conditions:

1. Two arrays xs and ys have the same length, i.e., length(xs) ∼=int length(ys).

2. t is not stuck.

3. x 6∈ FV (t) where FV (t) is the set of free variables in the term t.

Sect. 4.3 discusses how these side conditions could be discharged automatically.

To illustrate the kind of rewrite rules used in the equivalence proofs described
in this paper, we present two of the most commonly used rewrite rules in detail.
To demonstrate the feasibility of formal correctness proofs for rewrite rules, we
have proven the correctness of most (10 out of 13 rules) of our rules in Coq. A
full listing of all rewrite rules can be found in Appendix B.

The first rule, shown in Fig. 4, decomposes the loop body of a fold expression
into two separate functions f and g, where g is independent of other iterations.
Thus, g can be computed in parallel using a map operation. This rewrite rule
illustrates that rewrite rules used in proofs can often also function as guidelines
for parallelizing and distributing imperative algorithms.

The second rule, shown in Fig. 5, is similar to the previous rule in that it tries
to separate independent parts of the loop body so that they can be executed in
parallel. However, in this case, the part that is extracted is only independent of
other iterations that access different indices. The group operation can be used
to group all accesses to the same index. Using map one can then calculate the
new values for each index in xs in parallel and update ys with those new values.
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fold(λacc. λ(i, x).
write(acc, i, f(i, x, acc[i])),
ys,
xs)

!

fold(λacc. λ(i, v).write(acc, i, v),
ys,
map(λ(i, vs).

(i, fold(λx′. λx. f(i, x, x′), ys[i], vs)),
group(xs)))

Side conditions: acc 6∈ FV (f), x 6∈ FV (f), x ′ 6∈ FV (f), i 6∈ FV (f), vs 6∈ FV (f)

Fig. 5: Rewrite rule for grouping loop iterations which access the same index of
an array.

C(i0, i
′

0)

∧ (∀i, i′, j. C(i , i ′) =⇒ C(f(i, xs[j]), f ′(i′, xs′[j])))

=⇒ C(fold(f, i0, xs), fold(f
′, i′0, xs

′))

Fig. 6: Coupling invariant rule for fold for a coupling predicate C. Free variables
are implicitly universally quantified.

3.2 Handling Context-Dependent Transformations Using Coupling

Predicates

While context-independent transformations are nicely handled using rewrite
rules, context-dependent transformations can usually not be captured by pat-
terns and simple side conditions. Coupling predicates provide a flexible and ef-
fective solution to proving the correctness of context-dependent transformations
– at the cost of requiring more user interactions than rewrite rules. The use of
coupling predicates is based on the observation that analyzing two loops in lock-
step and proving that a relational property, i.e., the coupling predicate, holds
after each iteration is sufficient to prove that it holds after the execution of both
loops. Fig. 6 shows the corresponding coupling invariant rule for fold. For the
purpose of presentation, we ignore the distinction between syntactic terms and
the values to which they evaluate. Besides this rule for fold, there is a similar
rule for iter.

One compelling example for using coupling predicates is given in the begin-
ning of this section. The presented program transformation is provable equivalent
with the coupling invariant rule from Fig. 2. If these arrays are part of the ac-
cumulator in a fold or iter, capturing this transformation by a rule patterns
is not possible: While the transformation of the initial accumulator value can
be captured using patterns, this is not sufficient since all references to the ac-
cumulator in the loop body also need to be updated. These references can be
nested arbitrarily deep inside the loop body and there can be arbitrarily many
references. This makes it impossible to capture them by a single pattern which
can only bind a fixed number of variables and thereby only make a fixed number
of transformations. To make matters worse, it is not even sufficient to just trans-
form the loop itself since the loops are not equivalent: the right loop evaluates to
two separate arrays while the other evaluates to an array of tuples. It is thus nec-
essary to prove the equivalence of the enclosing terms under the assumption that
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the loop in one program evaluates to a tuple of two arrays pair(xs , ys) while the
other loop evaluates to zip(xs, ys). This assumption can then be proven correct
using the coupling predicate stating that this holds after each iteration.

Another commonly found transformation is the removal of unused elements
from a tuple representing the loop accumulator. As it was the case for the previ-
ous transformation, the loops themselves are not equivalent and it is necessary to
prove enclosing terms equivalent using the assumption that the values present
in both loop accumulators are equivalent. As before, this assumption can be
proven correct using a coupling predicate which states that this holds after each
iteration.

4 Transformation Application Strategy

Splitting the translation into a chain of intermediate programs and translat-
ing these into FFL leaves us with the problem of proving neighboring programs
equivalent. In order to reduce the amount of user interaction required to conduct
these basic equivalence proofs, we define an iterative heuristic search strategy
to identify the locations within the programs on which the program transforma-
tions described in Sect. 3 will be applied. Alg. 1 depicts this search strategy as
pseudocode. First, we use the structural difference operation (Diff, see Sect. 4.1)
to identify subterms P ′ and Q′ whose equivalence implies the equivalence of the
full programs P and Q. Second, we start an iterative bottom-up process in which
we try to prove the equivalence of the subterms P ′, Q′ and their enclosing terms
(ProveEquivalent), until we reached the top level programs P and Q. During
the bottom-up process, the subterms P ′ and Q′ may be found to be equivalent
only in some cases but not in others. But that is fine as long as we are able to
prove that the cases in which they are non-equivalent are not relevant in the
context in which P ′ and Q′ occur. Thus, we extract the premises under which
P ′ and Q′ are equivalent, and bubble them up to the equivalence proof for the
parent terms (AddMissingPremises, Widen, see Sec. 4.2) If we arrive at the
top-level terms and cannot prove those equivalent, the proof fails.

4.1 Using Congruence Rules to Simplify Proofs

While the difference between neighboring programs in the chain – which are
more closely related – tends to be small, the size of these programs can still
be large. This complicates interactive proofs for the user, and can also slow
down automated proofs. To reduce the complexity, we prove the equivalence of
subterms and then use congruence rules to derive the equivalence of the full
programs. A concrete example of a congruence rule is shown in Fig. 7a.

We have found that a simple structural comparison (Diff in Alg. 1) is well
suited for finding smaller subterms whose equivalence implies the equivalence of
the full programs. Diff computes the smallest two subterms such that replacing
them by placeholders results in identical terms. An example of Diff can be seen
in Fig. 7b.
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input :Two FFL terms P and Q
output : true if P and Q could be proven equivalent
Premises ← {};
(P ′,Q′) ← Diff(P ,Q);
repeat

equivalent? ← ProveEquivalent(P ′ ,Q′,Premises);
if equivalent? then

return true;
else

Premises ← AddMissingPremises(Premises);
(P ′, Q′)← Widen(P ′,Q′);

end

until P ′ = P and Q′ = Q;
return false;

Alg 1. Strategy for individual equivalence proofs between a pair of FFL programs.

xs ∼=[α] ys i ∼=Int j

read(xs, i) ∼=α read(ys, i)

Fig. 7a: Congruence rule for read

Diff(fold(λ(x, y). x+ y, 0, xs),
fold(λ(x, y). y + x, 0, xs))

= (λ(x, y). x+ y, λ(x, y). y + x)

Fig. 7b: Example of applying Diff

4.2 Missing Premises and Widening

During the iterative bottom-up process in Alg. 1, P ′ and Q′ may turn out to
be non-equivalent in some cases. The strategy then tries to extract required
contextual conditions (premises) that are sufficient to ensure equivalence of P ′

and Q′ (AddMissingPremises). In the next step, we try to prove the equivalence
of enclosing terms (Widen), which contain P ′ and Q′ as subterms. Additionally,
in the widening-step, we take care of the generated premises. These have either
to be shown to always hold in the context of Widen(P ′, Q′) or in the context of
further widening.

These two steps – premise extraction and widening – are commonly required
to prove the equivalence of loop bodies. The example in Fig. 8 illustrates this.
Applying Diff instantiates P ′ and Q′ with the two loop bodies, as they are

sum ← 0;
for i← 0 to n− 1 do

sum ← sum + xs[i ];
xs ← F’(xs,ys);

end

sum ← 0;
for i← 0 to n− 1 do

zipped ← zip(xs,ys);
sum ← sum + fst(zipped[i ]);
xs ← F(zipped);

end

Fig. 8: Two potentially equivalent IL programs operating on two separate arrays
(left) and the result of applying zip to these arrays (right). xs, ys are arrays of
length n. F and F’ return arrays of the length of their input.
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the topmost non-equal subterms. A coupling invariant implying that the two
loops are started in equivalent is not sufficient to ensure equivalent loop states
after execution since zip is only defined for arrays of the same length. Thus,
the coupling invariant needs to include the premise that xs and ys are of equal
length.

In some cases, additional premises sufficient for proving equivalence can be
found by working backward from missing assumption in failed proofs. In the
example above, proving that the program states are equivalent at the end of
each loop iteration assuming that they are equivalent at the beginning will fail
due to the missing premise that xs and ys have the same length. We thus add
this premise and try to prove the loop bodies equivalent using that premise. If
that is successful, we widen the context to enclosing terms. In the outer context,
we attempt to prove that the additional premises are satisfied and derive the
equivalence of the full loops based on proved coupling invariant.

4.3 Potential for Automation of Proofs using Rewrite Rules

Since equivalence proofs using rewrite rules are particularly common but also
quite repetitive, this section is devoted to their potential for proof automation.
A graphical overview of the individual steps can be found in Fig. 9.

1. We perform an approximate matching procedure to generate candidate pro-
grams which match the patterns in the rewrite rule.

2. We attempt to prove that these candidates are equivalent to the input pro-
grams or otherwise we reject them.

3. We prove that the side conditions hold for these candidates.

By the correctness of the rewrite rule, the candidates are equivalent.

4.3.1 Matching of Rewrite Rules While automatic rewriting systems have
been used in the related context of automatically translating imperative algo-
rithms to MapReduce algorithms [18], the specific ways in which rewrite rules
are used in our approach brings new challenges as well as simplifications.

The challenge lies in the fact that the intermediate programs often do not
match the patterns found in rewrite rules directly. There are two typical solutions:
normal forms and generalization of patterns. Both are not applicable here. First,
there is no suitable normal form of FFL programs. Additionally, both programs
are defined by the user, so we cannot assume a specific program structure. Second,
the formulation of generalized rewrite rules for matching the large variety of user-
defined programs is difficult to obtain and also their correctness proofs are harder
to obtain.

The benefit of the programs A,A′ (resp. B,B′) being provided by the user
is that this can reduce ambiguities. In particular, the schematic variables in
the two patterns usually overlap to a large degree, but not fully. The matching
of the program A against the corresponding pattern can lead to unassigned
metavariables, which we need to instantiate with correct choices to prove the
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① Generate candidates by
approximate matching

A B

Rewrite RuleA′ B′

② Prove equivalence ② Prove equivalence

③ Prove sideconditions

Fig. 9: Workflow for equivalence proofs using rewrite rules. The user has to pro-
vide the programs A,A′, B,B′ and also the rewrite rule. The equivalence proofs
③ are computer-aided in Coq.

equivalence. Now, we have the benefit, that the target program A′ is also defined
by the user. So, we can obtain missing assignments by matching the other pattern
against the other program.

To find the intermediate programs which match the patterns in rewrite rules,
an approximate match procedure is used to find assignments for schematic vari-
ables in patterns. The approximate matching is an extension of the classical
pattern with the background knowledge and heuristic of easy-to-prove differ-
ences. Applying these assignments to patterns yields candidates for the interme-
diate program. Once two candidates that match the patterns in a rewrite rule
have been identified, it is necessary to prove that (a) the candidates are equiva-
lent to the programs used as the input of the approximate matching procedure,
and (b) the side conditions hold and the equivalence of the candidates follows
thereby from the correctness of the rewrite rule..

While we have only implemented rudimentary partial automation of the
equivalence proof construction, analyzing the Coq proofs produced in our ex-
periments has shown that these proofs can be reduced to the correctness of a
small number of simple transformations. Proving the correctness of these trans-
formations automatically is feasible and could drastically reduce the need for
user interaction.

During our evaluation, one of the most prevalent transformations is call-by-
name beta-reduction or lambda abstraction depending on the direction of the
transformation for proving the equivalence (② in Fig. 9). Call-by-name beta-
reduction refers to the beta-reduction found in programming languages with
lazy semantics, which contrary to call-by-value beta-reduction does not evaluate
the argument before applying substitution. Since we are working in a call-by-
value setting, call-by-name beta-reduction does not always produce an equivalent
program. However, the resulting program is equivalent if, for each case where the
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argument would have been evaluated in the original program, all occurrences in
the new program will also be evaluated.

Most other transformations are special cases of constant-folding, e.g., reduc-
ing expressions such as fst(pair(a, b)) to a. Constant-folding does not produce
an equivalent program in general if the terms that are being folded are inside
the body of a lambda. A sufficient criterion for the resulting program to be
equivalent is that the terms being folded are always evaluated.

4.3.2 Proving Side Conditions In Sect. 3.1 we listed the three different
kinds of side conditions used in our rewrite rules. The first of those, x 6∈ FV (t),
is purely syntactical and can easily be checked automatically. While proving
that a term is not stuck can be difficult in general, in our experiments this
could usually be reduced to the term being a value, which again is a syntactical
condition. The third kind of side condition states that two arrays have the same
length. This can usually be proven recursively by reduction to operations that
produce arrays of a specific length, e.g.,

∀n, a, b. length(replicate(n, a)) = length(replicate(n, b)) ,

or to length-preserving operations such as map. Note that it can be necessary
to strengthen loop invariants to carry this fact through a loop as explained in
Sect. 4.2.

5 Evaluation and Case Study

To demonstrate the feasibility of our approach, we have created a toolchain.
The user to specifies a sequence of intermediate programs in a simple imperative
language. These programs are then automatically translated into a formalization
of the previously described functional programming language FFL in Coq. In
addition to generating proof obligations, our toolchain reduces these obligations
using the mentioned structural comparison Diff, and it applies congruence rules
to reconstruct an equivalence proof of the full programs.

Using this toolchain, we have proven the equivalence of imperative and
MapReduces implementations of the PageRank algorithm [3] and the k-means [16]
algorithm in Coq. Fig. 10 shows the imperative and the MapReduce implemen-
tation of PageRank that we have used in our experiments.

While we have created the imperative implementations ot the two algorithms
ourselves, the MapReduce versions are very close to the implementations accom-
panying the Thrill [2] framework. This reinforces our claim that FFL is capable of
representing MapReduce algorithms and is thereby suitable for this approach. In
total, the formalization of FFL, the rewrite rules, and proofs of various properties,
encompasses about 8000 lines of Coq code. The equivalence proofs of PageRank
and k-means each require about 3700 lines of Coq proofs. That includes the auto-
matically generated translation of the chain of equivalent programs (for k-means
this chain consists of 9 programs while for PageRank it consists of 6 programs),
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Function PageRank(links, numLinks, n)
begin

ranks ←
Replicate(numLinks, 1

numLinks
);

for i = 1 to n do
ranks’ ← Replicate(numLinks, 0);
for p = 0 to numLinks− 1 do

contrib ←
ranks[p]

Length(links[p])
;

foreach q← links[p] do
ranks’[q] ←

ranks’[q] + contrib;

end

end
for p = 0 to numLinks− 1 do

ranks[p] ←

Dampen(ranks’[p], numLinks);
end

end

return ranks;

end

Function PageRank(links, numLinks, n)
begin

ranks ←
Replicate(numLinks, 1

numLinks
);

for i = 1 to n do
outRanks ← Zip(links,ranks);
contribs ←

FlatMap(
λ(ls, r).

Map(λl.(l, r
Length(ls)

), ls),

outRanks);
rankUpdates ←

Reduce(+, 0, contribs);
ranks’ ← Replicate(numLinks, 0);
foreach (l, r)← rankUpdates do

ranks’[l] ← r;
end
ranks ←

Map(λr. Dampen(r, numLinks),

ranks’);

end
return ranks;

end

Fig. 10: Imperative (left) and MapReduce (right) versions of the PageRank al-
gorithm (the function Replicate(n,v) creates an array of length n with all
elements set to v; and Dampen is an arbitrary function).

which take up large parts of these proofs. The proofs rely on the rewrite rules
which we have formalized in Coq as well as coupling predicates.

6 Related Work

A common approach to relational verification and program equivalence is the use
of product programs [1]. Product programs combine the states of two programs
and interleave their behavior in a single program. RVT [11] proves the equiva-
lence of C programs by combining them in a product program. By assuming that
the program states are equal after each loop iteration, RVT avoids the need for
user-specified or inferred loop invariants and coupling predicates.

Hawblitzel et al. [13] use a similar technique for handling recursive func-
tion calls. Felsing et al. [10] demonstrate that coupling predicates for proving
the equivalence of two programs can often be inferred automatically. While the
structure of imperative and MapReduce algorithms tends to be quite different,
splitting the translation into intermediate steps yields programs which are of-
ten structurally similar. We have found that in this case, techniques such as
coupling predicates arise naturally and are useful for selected parts of an equiv-
alence proof.

Radoi et al. [18] describe an automatic translation of imperative algorithms
to MapReduce algorithms based on rewrite rules. While the rewrite rules are
very similar to the ones used in our approach, we complement rewrite rules by
coupling predicates. Furthermore we are able to prove equivalence for algorithms
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for which the automatic translation from Radoi et al. is not capable of producing
efficient MapReduce algorithms. The objective of verification imposes different
constraints than the automated translation – in particular both programs are
provided by the user, so there is less flexibility needed in the formulation of
rewrite rules.

Chen et al. [5] and Radoi et al. [18] describe languages and sequential seman-
tics for MapReduce algorithms. Chen et al. describe an executable sequential
specification in the Haskell programming language focusing on capturing non-
determinism correctly. Radoi et al. use a language based on a lambda calculus
as the common representation for the previously described translation from im-
perative to MapReduce algorithms. While this language closely resembles the
language used in our approach, it lacks support for representing some impera-
tive constructs such as arbitrary while-loops.

Grossman et al. [12] verify the equivalence of a restricted subset of Spark pro-
grams by reducing the problem of checking program equivalence to the validity
of formulas in a decidable fragment of first-order logic. While this approach is
fully automatic, it limits programs to Presburger arithmetic and requires that
they are synchronized in some way.

To the best of our knowledge, we are the first to propose a framework for
proving equivalence of MapReduce and imperative programs.

7 Conclusion

We have presented a new approach for proving the equivalence of imperative
and MapReduce algorithms. This approach relies on splitting the transformation
into a chain of intermediate programs. The individual equivalence proofs are
then categorized in context-independent and context-dependent transformations.
Equivalence proofs for context-independent transformations are handled using
rewrite rules, while equivalence proofs for context-dependent transformations are
based on coupling predicates. We have demonstrated the feasibility of end-to-end
equivalence proofs using this approach by applying it two well-known non-trivial
algorithms.

While we have hinted at the potential for automating this approach, imple-
menting automation is left as future work. In particular, it would be interesting
to explore whether existing tools for relational verification using coupling pred-
icates can be used or if new tools are necessary. Further future work includes
extending the approach presented here to support the full expressiveness pro-
vided by languages which are used to implement imperative and MapReduce
algorithms.
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language-agnostic semantic diff tool for imperative programs. In: Pro-
ceedings of the 24th International Conference on Computer Aided Veri-
fication. pp. 712–717. CAV’12, Springer-Verlag, Berlin, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-31424-7_54

16. Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information
Theory 28(2), 129–137 (1982), https://doi.org/10.1109/TIT.1982.1056489

17. McCarthy, J.: A basis for a mathematical theory of computation1). In: Braffort,
P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, Studies in
Logic and the Foundations of Mathematics, vol. 35, pp. 33 – 70. Elsevier (1963),
http://www.sciencedirect.com/science/article/pii/S0049237X08720184

https://doi.org/10.1109/BigData.2016.7840603
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1007/978-3-662-46681-0_9
http://arxiv.org/abs/1605.01497
http://doi.acm.org/10.1145/1327452.1327492
http://dx.doi.org/10.1007/s10703-015-0234-3
http://doi.acm.org/10.1145/2642937.2642987
http://doi.acm.org/10.1145/1629911.1630034
https://doi.org/10.1007/978-3-319-63390-9_15
https://www.microsoft.com/en-us/research/publication/mutual-summaries-unifying-program-comparison-techniques/
http://dx.doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1109/TIT.1982.1056489
http://www.sciencedirect.com/science/article/pii/S0049237X08720184


18 Beckert, Bingmann, Kiefer, Sanders, Ulbrich, Weigl

18. Radoi, C., Fink, S.J., Rabbah, R., Sridharan, M.: Translating imper-
ative code to mapreduce. SIGPLAN Not. 49(10), 909–927 (Oct 2014),
http://doi.acm.org/10.1145/2714064.2660228

19. development team, T.C.: The Coq proof assistant reference manual. LogiCal
Project (2004), http://coq.inria.fr, version 8.6

20. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine
programs using widening to handle recurrences. ACM Trans. Program. Lang. Syst.
34(3), 11:1–11:35 (Nov 2012), http://doi.acm.org/10.1145/2362389.2362390

21. White, T.: Hadoop: The definitive guide. O’Reilly Media, Inc. (2012)
22. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.:

Spark: Cluster computing with working sets. In: Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing. pp.
10–10. HotCloud’10, USENIX Association, Berkeley, CA, USA (2010),
http://dl.acm.org/citation.cfm?id=1863103.1863113

http://doi.acm.org/10.1145/2714064.2660228
http://coq.inria.fr
http://doi.acm.org/10.1145/2362389.2362390
http://dl.acm.org/citation.cfm?id=1863103.1863113


Equivalence of Imperative and MapReduce Algorithms 19

A Syntax and Semantics of FFL

A.1 Syntax

The programming language FFL is used in our approach to represent the imper-
ative input program, the target MapReduce implementations, and intermediate
programs in which both programming paradigms appear in combination. FFL is
designed to accommodate both functional and imperative concepts. It bases on

1. simply typed lambda calculus with the following theories:
2. direct sums and products,
3. (mathematical) integers,
4. McCarthy’s theory of arrays [17],
5. iterating primitives to represent imperative loops,
6. and primitives found in MapReduce frameworks.

Fig. 11 shows an exhaustive list of the constructors of FFL. These can be
classified according to the six categories mentioned above.

Simply typed lambda calculus

– variables x, function abstraction λx. e and application app(e1, e2)
– if e1 then et else ef
– Boolean literals bool(b) for b ∈ {true, false}

Direct sums and products

– introduction pair(e1, e2) and elimination forms fst(e), snd(e) of binary
product types

– introduction inl(e), inr(e), and elimination forms

case e of inl(l) 7→ el; inr(r) 7→ er

of binary sum types

b := true | false
i := . . . | −2 | −1 | 0 | 1 | 2 | . . .
e := x
| app(e, e) | λx. e
| int(i) | bool(b) | list[e, . . . , e]
| add(e, e) | sub(e, e) | mul(e, e)
| gt(e, e) | lt(e, e)
| unit | pair(e, e)
| fst(e) | snd(e)
| inl(e) | inr(e) | case e of inl(l) 7→ e; inr(r) 7→ e
| iter(e, e) | fold(e, e, e) | if e then e else e
| read(e, e) | write(e, e, e) | readAtKey(e, e) | writeAtKey(e, e, e)
| replicate(e, e) | range(e, e) | length(e)
| map(e, e) | group(e) | zip(e, e) | concat(e)

Fig. 11: Grammar for terms e of FFL.
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– unit, the single inhabitant of Unit

Theory of integers

– integer literals int(i) for i ∈ Z

– comparison of integers gt(e1, e2,), lt(e1, e2,)
– binary operations on integers add(e1, e2), sub(e1, e2), mul(e1, e2)

Theory of arrays

– array literals list[e1, . . . , en]
– array read read(e1, e2)
– array write write(e1, e2, e3)
– replicate(e1, e2) which produces an array of the specified length e1 con-

taining the same element e2 at each index,
– range(e1, e2) which produces an array containing all elements in the range

from e1 to e2 and
– length(e) which returns the length of array e.

Iteration functions

– iter(e1, e2) and
– fold(e1, e2, e3)

MapReduce primitives

– map(f, xs) which applies a function f to all elements in the array xs
– zip(xs , ys) which combines two arrays xs, ys of the same length into an

array containing pairs of elements of xs and ys
– concat(xss) which flattens an array of arrays by concatenating the arrays
– operations which operate on arrays of key-value pairs: readAtKey(xs, k)

returns the value associated with a key
– writeAtKey(xs, k, v) sets the value associated with a key, and group(xs)

produces an array that associates each key in the original array with all
values associated with it

– readAtKey and writeAtKey operate on the first pair with a matching key;
for group the order of the keys in the resulting array matches the order of
their first occurences in the input and the order of the values associated
with each key matches their order in the input array

Fig. 12 lists the typing rules for FFL. The set of expressions derivable using
the given rules is the set of well-typed programs in FFL. Γ denotes the context
(type assignment for free variables) under which the rules apply. The following
type constructors are used in the figure.

Type Terms of this type

Int/Bool integers/booleans
α× β pairs of terms of type α and β
α+ β elements of type α or β (direct sum)
α → β functions from terms of type α to terms of type β
[α] arrays of terms of type α
Unit unit
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Γ, x : τ ⊢ x : τ

Γ ⊢ f : α→ β Γ ⊢ t : α

Γ ⊢ app(f, t) : β

Γ, x : α ⊢ e : β

Γ ⊢ λx. e : α→ β

Γ ⊢ t1 : τ . . . Γ ⊢ tn : τ

Γ ⊢ list[t1, . . . , tn] : [τ ]

b ∈ {true, false}

Γ ⊢ bool(b) : Bool

i ∈ Z

Γ ⊢ int(i) : Int

Γ ⊢ a : Int Γ ⊢ b : Int
Γ ⊢ add(a, b) : Int

Γ ⊢ a : Int Γ ⊢ b : Int
Γ ⊢ sub(a, b) : Int

Γ ⊢ a : Int Γ ⊢ b : Int
Γ ⊢ mul(a, b) : Int

Γ ⊢ a : Int Γ ⊢ b : Int
Γ ⊢ gt(a, b) : Bool

Γ ⊢ a : Int Γ ⊢ b : Int
Γ ⊢ lt(a, b) : Bool

Γ ⊢ b : Bool Γ ⊢ et : τ Γ ⊢ ef : τ

Γ ⊢ if b then et else ef : τ Γ ⊢ unit : Unit

Γ ⊢ ts : [τ ]

Γ ⊢ length(ts) : Int

Γ ⊢ a : α Γ ⊢ b : β

Γ ⊢ pair(a, b) : α× β

Γ ⊢ p : α× β

Γ ⊢ fst(p) : α

Γ ⊢ p : α× β

Γ ⊢ snd(p) : β

Γ ⊢ a : α
Γ ⊢ inl(a) : α+ β

Γ ⊢ b : β

Γ ⊢ inr(b) : α+ β

Γ ⊢ e : α+ β Γ, l : α ⊢ a : τ Γ, r : β ⊢ b : τ

Γ ⊢ case e of inl(l) 7→ a; inr(r) 7→ b : τ

Γ ⊢ f : α× β → α Γ ⊢ e : α Γ ⊢ ts : [β]

Γ ⊢ fold(f, e, ts) : α

Γ ⊢ f : α→ Unit + α Γ ⊢ e : α

Γ ⊢ iter(f, e) : α

Γ ⊢ ts : [τ ] Γ ⊢ i : Int

Γ ⊢ read(ts, i) : τ

Γ ⊢ ts : [τ ] Γ ⊢ i : Int Γ ⊢ v : τ

Γ ⊢ write(ts , i, v) : [τ ]

Γ ⊢ ts : [α× β] Γ ⊢ k : α

Γ ⊢ readAtKey(ts, k) : unit+ β

Γ ⊢ ts : [α× β] Γ ⊢ k : α Γ ⊢ t : β

Γ ⊢ writeAtKey(ts, k, t) : [α× β]

Γ ⊢ n : Int Γ ⊢ t : α
Γ ⊢ replicate(n, t) : [α]

Γ ⊢ l : Int Γ ⊢ r : Int Γ ⊢ s : Int
Γ ⊢ range(l, r) : [Int]

Γ ⊢ f : α→ β Γ ⊢ ts : [α]

Γ ⊢ map(f, ts) : [β]

Γ ⊢ ts : [α× β]

Γ ⊢ group(ts) : [α× [β]]

Γ ⊢ as : [α] Γ ⊢ bs : [β]

Γ ⊢ zip(as, bs) : [α× β]

Γ ⊢ tss : [[α]]

Γ ⊢ concat(tss) : [α]

Fig. 12: Typing rules for FFL.
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A.2 Semantics

The semantics of FFL is given as a reduction big-step semantics formalized as
a binary predicate ⇒bs on well-typed and closed FFL terms. The values (terms
which evaluate to themselves) in FFL are: λ-abstractions, literals, and sums and
products of values. Fig. 14 lists the evaluation rules for most constructs and
Fig. 13 shows those for the key-value operations in FFL.

xs ⇒bs [(k1 , v1 ), . . . , (kj , vj ), . . . , (kn , vn )] ∀1 ≤ i < j, ki 6= k kj = k

readAtKey(xs , k)⇒bs inr(v)

xs ⇒bs [(k1 , v1 ), . . . , (kn , vn )] ∀1 ≤ i ≤ n, ki 6= k

readAtKey(xs, k)⇒bs inl(unit)

xs ⇒bs [(k1 , v1 ), . . . , (kj , vj ), . . . , (kn , vn )] ∀1 ≤ i < j, ki 6= k kj = k

writeAtKey(xs , k , v)⇒bs [(k1 , v1 ), . . . , (kj , v), . . . , (kn , vn)]

xs ⇒bs [(k1 , v1 ), . . . , (kn , vn )] ∀1 ≤ i ≤ n, ki 6= k

writeAtKey(xs , k , v)⇒bs [(k1 , v1 ), . . . , (kn , vn ), (k , v)]

xs ⇒bs []

group(xs)⇒bs []

xs ⇒bs [(k1 , v1 ), . . . , (kn , vn )]
group([(k1, v1), . . . , (kn−1, vn−1)])⇒bs

[(k′

1, vs1), . . . , (k
′

m, vsm)]
∀1 ≤ i ≤ m, kn 6= k′

i

group(xs)⇒bs [(k ′

1 , vs1 ), . . . , (k
′

m , vsm ), (kn , [vn ])]

.

xs ⇒bs

[(k1, v1), . . . , (kn, vn)]

group([(k1, v1), . . . , (kn, vn)])⇒bs

[(k′

1, vs1), . . . , (kj , [v
′

1, . . . , v
′

n]), . . . , (k
′

n, vsn)]
∀1 ≤ i < j, k′

n 6= ki kj = k

group(xs)⇒bs [(k ′

1 , vs1 ), . . . , (k , [v
′

1 , . . . , v
′

n , vn ]), . . . , (kn , [vn ])]

Fig. 13: Semantics of key-value operations in FFL (for readability, we use
the shorthands [t1, . . . , tn] for list literals list[t1, . . . , tn], and (t1, t2) for pairs
pair(t1, t2)).
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f ⇒bs λx . b t ⇒bs t ′ [t ′/x ]b ⇒bs v

app(f , t)⇒bs v λx . e ⇒bs λx . e

bool(b)⇒bs bool(b) int(i)⇒bs int(i)

t1 ⇒bs t ′1 . . . tn ⇒bs t ′n

list[t1 , . . . , tn ]⇒bs list[t ′1 , . . . , t
′

n ]

ts ⇒bs list[t1 , . . . , tn ]

length(ts)⇒bs int(n)

b ⇒bs bool(true) et ⇒bs et′

if b then et else ef ⇒bs et′

b ⇒bs bool(false) ef ⇒bs ef ′

if b then et else ef ⇒bs ef ′

a ⇒bs int(i) b ⇒bs int(j )

add(a, b)⇒bs int(i + j )

a ⇒bs int(i) b ⇒bs int(j )

sub(a, b)⇒bs int(i − j )

a ⇒bs int(i) b ⇒bs int(j )

mul(a, b)⇒bs int(i · j )

a ⇒bs int(i) b ⇒bs int(j )

gt(a, b)⇒bs bool(i > j )

a ⇒bs int(i) b ⇒bs int(j )

lt(a, b)⇒bs bool(i < j )

unit⇒bs unit

a ⇒bs a ′ b ⇒bs b′

pair(a, b)⇒bs pair(a ′, b′)

p ⇒bs pair(a, b)

fst(p)⇒bs a

p ⇒bs pair(a, b)

fst(p)⇒bs b

a ⇒bs a ′

inl(a)⇒bs inl(a ′)

b ⇒bs b′

inr(b)⇒bs inr(b′)

e ⇒bs inl(v) [v/l ]a ⇒bs a ′

case e of inl(l) 7→ a; inr(r) 7→ b ⇒bs a ′

e ⇒bs inr(v) [v/r ]b ⇒bs b′

case e of inl(l) 7→ a; inr(r) 7→ b ⇒bs b′

i ⇒bs int(i ′) ts ⇒bs list[t1 , . . . , ti′ , . . . , tn ]

read(ts , i)⇒bs ti′

i ⇒bs int(i ′) ts ⇒bs list[t1 , . . . , ti′ , . . . , tn ] t ⇒bs t ′

write(ts , i , t)⇒bs list[t1 , . . . , t
′, . . . , tn ]

acc ⇒bs acc′ app(f , acc′)⇒bs inl(unit)

iter(f , acc)⇒bs acc′
app(f , acc) ⇒bs inr(acc′) iter(f , acc′)⇒bs v

iter(f , acc)⇒bs v

f ⇒bs λf . b acc ⇒bs acc′ ts ⇒bs list[]

fold(f , acc, ts)⇒bs acc′

ts ⇒bs list[t1 , t2 , . . . , tn ] app(f , pair(acc, t1 ))⇒bs acc′ fold(f , acc′, list[t2 , . . . , tn ])⇒bs v

fold(f , acc, ts)⇒bs v

n ⇒bs int(i) t ⇒bs v

replicate(n, v)⇒bs list[v, . . . , v
︸ ︷︷ ︸

i

]

l ⇒bs int(l ′) h ⇒bs int(h ′)

range(l ,h)⇒bs list[int(l ′), int(l ′ + 1 ), . . . , int(h ′ − 1 )]

ts ⇒bs list[t1 , . . . , tn ] app(f , t1 )⇒bs t ′1 . . . app(f , tn )⇒bs t ′n

map(f , ts)⇒bs list[t ′1 , . . . , t
′

n ]

as ⇒bs list[a1 , . . . , an ] bs ⇒bs list[b1 , . . . , bn ]

zip(as , bs)⇒bs list[pair(a1 , b1 ), . . . , pair(an , bn )]

tss ⇒bs list[list[t1 ,1 , . . . , t1 ,n ], . . . , list[tm,1 , . . . , tm,n′ ]]

concat(tss)⇒bs list[t1 ,1 , . . . , t1 ,n , . . . , tm,1 , . . . , tm,n′ ]

Fig. 14: Big-step semantics of FFL.
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B Rewrite Rules

Below we list all rewrite rules that we have identified. Rule 1 has been explained
previously and deals with extracting parts of the loop body that are indepen-
dent of other iterations into a map expression which allows computing them in
parallel. Rules 2 and 3 group accesses to the same index of an array or the same
key in an array of key-value pairs. Accesses to different indices/keys can then
be computed in parallel. Rule 4 fuses two consecutive applications of map into a
single application. Rule 5 deals with loops that update an array that they also
read from by writing to a separate array instead. Rule 6 flattens nested fold

expressions over an array of arrays into a single fold expression over the con-
catenated arrays. Rules 7 and 8 transform specific kinds of iter to fold and
fold to map. Rules 9 and 10 transform fold and map expressions over an index
range to fold and map expressions that operate directly on the values stored at
these indices. Rule 11 commutes writing back updates to an array with applying
a function to all result values. Finally, Rules 12 and 13 commute array reads
with zip and map.

1. Extract independent part of loop body to map.

fold(λacc. λx. f(acc, g(x)),
acc,
xs)

!

fold(λacc. λy. f(acc, y),
acc,
map(g, xs))

Side conditions: acc 6∈ FV (f), x 6∈ FV (f), y 6∈ FV (f),
x 6∈ FV (g), acc 6∈ FV (g), g is not stuck

2. Group accesses to the same index of an array.

fold(λacc. λ(i, x).
write(acc, i, f(i, x, acc[i])),
ys,
xs)

!

fold(λacc. λ(i, v).write(acc, i, v),
ys ,
map(λ(i, vs).

(i, fold(λx′. λx. f(i, x, x′),
read(ys, i),
vs)),

group(xs)))

Side conditions:

acc 6∈ FV (f), x 6∈ FV (f), x ′ 6∈ FV (f), i 6∈ FV (f), vs 6∈ FV (f)

3. Group accesses to the same key.

fold(λacc. λ(k, v).
writeAtKey(acc,

k,
f(k,
v,
readAtKey(acc, k))),

m,
xs)

!

fold(λacc. λ(k, v).
writeAtKey(acc, k, v),
m,
map(λ(k, vs).

(k, fold(λv′. λv. f(k, v, v′),
readAtKey(m, k),
vs)),

group(xs)))

Side conditions:

acc 6∈ FV (f), v 6∈ FV (f), v ′ 6∈ FV (f), k 6∈ FV (f), vs 6∈ FV (f)
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4. Fuse consecutive calls to map into a single call of map.

map(f,map(g, xs)) ! map(λx. app(f, app(g, x)), xs)

Side conditions: x 6∈ FV (f), x 6∈ FV (g), f is not stuck, g is not stuck

5. Separate arrays that are read from and written to.

fold(λ(xs′, i).
write(xs′,

i,
app(f,

(i, read(xs′, i))),
xs,
range(0, length(xs)))

!

fold(λ(ys′, i).
write(ys′,

i,
app(f,

(i, read(xs, i))),
ys
range(0, length(xs)))

Side conditions:

length(xs) = length(ys), xs′ 6∈ FV (f), i 6∈ FV (f), ys′ 6∈ FV (xs), i 6∈ FV (xs)

6. Flatten fold over array of arrays.

fold(λ(acc′, xs). fold(f, acc′, xs), acc, xss) ! fold(f, acc, concat(xss))

Side conditions: f is not stuck, acc 6∈ FV (f), xs 6∈ FV (f)

7. Transform iter to fold.

fst(iter(λ(acc, i). if i < max
then inr(app(f, (acc, i)),

i+ 1)
else inl(unit),

(acc0,min)))

! fold(f,
acc0,
range(min,max))

Side conditions:

f is not stuck, acc 6∈ FV (f), i 6∈ FV (f), i 6∈ FV (max), acc 6∈ FV (max)

8. Transform fold to map.

fold(λ(ys′, i). twrite(ys′,
i,
app(f, read(xs, i))),

ys,
range(0, length(xs)))

! map(f, xs)

Side conditions:

ys′ 6∈ FV (f), i 6∈ FV (f), ys′ 6∈ FV (xs), i 6∈ FV (xs), f is not stuck

9. fold over the values in an array instead of over the index range.

fold(λ(acc, i).app(f, (acc, read(xs, i))),
i,
range(i, length(xs)))

! fold(f, i, xs)

Side conditions:

i 6∈ FV (xs), acc 6∈ FV (xs), i 6∈ FV (f), acc 6∈ FV (f), f is not stuck

10. map over the values in an array instead of over the index range.

map(λi.app(f, read(xs, i)),
range(i, length(xs)))

! map(f, xs)

Side conditions: i 6∈ FV (xs), i 6∈ FV (f), f is not stuck
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11. Commute writing back updates to an array and applying map to

the result.
map(f,

fold(λ(xs′, (i, x)).write(xs′, i, x),
xs,
ys))

!

fold(λ(xs′, (i, x)).write(xs′, i, x),
map(f, xs),
map(λ(i, x). (i, app(f, x)),

ys))

Side conditions: i 6∈ FV (f), x 6∈ FV (f)

12. Commute read and zip.

a) fst(read(zip(xs, ys), i)) ! read(xs, i)

Side conditions: length(xs) = length(ys), ys is not stuck

b) snd(read(zip(xs, ys), i)) ! read(ys, i)

Side conditions: length(xs) = length(ys), xs is not stuck

13. Commute read and map.

a) read(map(f, xs), i) ! app(f, read(xs, i))

b) readAtKey(map(λ(k, v).
(k, app(f, v)),
xs),

k)

! app(f, readAtKey(xs, k))
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