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Abstract. We discuss how string sorting algorithms can be parallelized
on modern multi-core shared memory machines. As a synthesis of the
best sequential string sorting algorithms and successful parallel sorting
algorithms for atomic objects, we propose string sample sort. The algo-
rithm makes effective use of the memory hierarchy, uses additional word
level parallelism, and largely avoids branch mispredictions. Additionally,
we parallelize variants of multikey quicksort and radix sort that are also
useful in certain situations.

1 Introduction

Sorting is perhaps the most studied algorithmic problem in computer science.
While the most simple model for sorting assumes atomic keys, an important class
of keys are strings to be sorted lexicographically. Here, it is important to exploit
the structure of the keys to avoid costly repeated operations on the entire string.
String sorting is for example needed in database index construction, some suffix
sorting algorithms, or MapReduce tools. Although there is a correspondingly
large volume of work on sequential string sorting, there is very little work on
parallel string sorting. This is surprising since parallelism is now the only way to
get performance out of Moore’s law so that any performance critical algorithm
needs to be parallelized. We therefore started to look for practical parallel string
sorting algorithms for modern multi-core shared memory machines. Our focus
is on large inputs. This means that besides parallelization we have to take the
memory hierarchy and the high cost of branch mispredictions into account.

In Section 2 we give an overview of string sorting algorithms, acceleration
techniques and parallel atomic sample sort. We then propose our new string
sorting algorithm super scalar string sample sort (S%) in Section 3.1. The rest
of Section 3 describes two competitors and we compare them experimentally in
Section 4. For all instances except random strings, S° achieves higher speedups
on modern multi-core machines than our own parallel multikey quicksort and
radixsort implementations, which are already better than any previous ones.

We would like to thank our students Florian Drews, Michael Hamann, Chris-
tian Késer, and Sascha Denis Knopfle who implemented prototypes of our ideas.

2 Preliminaries

Our input is a set S = {s1,...,8,} of n strings with total length N. A string
is a zero-based array of |s| characters from the alphabet X = {1,...,0}. For
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the implementation, we require that strings are zero-terminated, i.e., s[|s| —1] =
0 ¢ X. Let D denote the distinguishing prefix size of S, i.e., the total number
of characters that need to be inspected in order to establish the lexicographic
ordering of §. D is a natural lower bound for the execution time of sequential
string sorting. If, moreover, sorting is based on character comparisons, we get a
lower bound of 2(D + nlogn).

Sets of strings are usually represented as arrays of pointers to the beginning
of each string. Note that this indirection means that, in general, every access to
a string incurs a cache fault even if we are scanning an array of strings. This
is a major difference to atomic sorting algorithms where scanning is very cache
efficient. Let lep(s,t) denote the length of the longest common prefix (LCP) of
s and t. In a sequence or array of strings x let lcp, (i) denote lep(z;—1, ;). Our
target machine is a shared memory system supporting p hardware threads (PEs
— processing elements) on O(p) cores.

2.1 Basic Sequential String Sorting Algorithms

Multikey quicksort [1] is a simple but effective adaptation of quicksort to strings.
When all strings in S have a common prefix of length ¢, the algorithm uses
character ¢ = s[f] of a pivot string s € S (e.g. a pseudo-median) as a splitter
character. § is then partitioned into S, S—, and S~ depending on comparisons
of the /-th character with ¢. Recursion is done on all three subproblems. The
key observation is that the strings in S— have common prefix length ¢ + 1 which
means that compared characters found to be equal with ¢ will never be considered
again. Insertion sort is used as a base case for constant size inputs. This leads
to a total execution time of O(D + nlogn). Multikey quicksort works well in
practice in particular for inputs which fit into the cache.

MSD radix sort [2,3,4] with common prefix length £ looks at the ¢-th character
producing ¢ subproblems which are then sorted recursively with common prefix
£+ 1. This is a good algorithm for large inputs and small alphabets since it uses
the maximum amount of information within a single character. For input sizes
o(c) MSD radix sort is no longer efficient and one has to switch to a different
algorithm for the base case. The running time is O(D) plus the time for solving
the base cases. Using multikey quicksort for the base case yields an algorithm
with running time O(D + nlogo). A problem with large alphabets is that one
will get many cache faults if the cache cannot support ¢ concurrent output
streams (see [5] for details).

Burstsort dynamically builds a trie data structure for the input strings. In
order to reduce the involved work and to become cache efficient, the trie is build
lazily — only when the number of strings referenced in a particular subtree of
the trie exceeds a threshold, this part is expanded. Once all strings are inserted,
the relatively small sets of strings stored at the leaves of the trie are sorted
recursively (for more details refer to [6,7,8] and the references therein).

LCP-Mergesort is an adaptation of mergesort to strings that saves and reuses
the LCPs of consecutive strings in the sorted subproblems [9].



2.2 Architecture Specific Enhancements

Caching of characters is very important for modern memory hierarchies as it
reduces the number of cache misses due to random access on strings. When
performing character lookups, a caching algorithm copies successive characters
of the string into a more convenient memory area. Subsequent sorting steps can
then avoid random access, until the cache needs to be refilled. This technique
has successfully been applied to radix sort [3], multikey quicksort [10], and in its
extreme to burstsort [7].

Super-Alphabets can be used to accelerate string sorting algorithms which
originally look only at single characters. Instead, multiple characters are grouped
as one and sorted together. However, most algorithms are very sensitive to large
alphabets, thus the group size must be chosen carefully. This approach results in
16-bit MSD radix sort and fast sorters for DNA strings. If the grouping is done
to fit many characters into a machine word, this is also called word parallelism.

Unrolling, fission and vectorization of loops are methods to exploit out-of-
order execution and super scalar parallelism now standard in modern CPUs.
The processor’s instruction scheduler analyses the machine code, detects data
dependencies and can dispatch multiple parallel operations. However, only spe-
cific, simple data independencies can be detected and thus inner loops must be
designed with care (e.g. for radix sort [4]).

2.3 (Parallel) Atomic Sample Sort

There is a huge amount of work on parallel sorting so that we can only dis-
cuss the most relevant results. Besides (multiway)-mergesort, perhaps the most
practical parallel sorting algorithms are parallelizations of radix sort (e.g. [11])
and quicksort [12] as well as sample sort [13]. Sample sort is a generalization of
quicksort working with k — 1 pivots at the same time. For small inputs sample
sort uses some sequential base case sorter. Larger inputs are split into k buckets
b1,...,br by determining k£ — 1 splitter keys x1 < --- < x_1 and then classi-
fying the input elements — element s goes to bucket ¢ if ;1 < s < x; (where
xo and zj are defined as sentinel elements — xg being smaller than all possible
input elements and xj, being larger). Splitters can be determined by drawing a
random sample of size ak — 1 from the input, sorting it, and then taking every
a-th element as a splitter. Parameter « is the oversampling factor. The buckets
are then sorted recursively and concatenated. “Traditional” parallel sample sort
chooses k = p and uses a sample big enough to assure that all buckets have ap-
proximately equal size. Sample sort is also attractive as a sequential algorithm
since it is more cache efficient than quicksort and since it is particularly easy to
avoid branch mispredictions (super scalar sample sort — S*) [14]. In this case, k
is chosen in such a way that classification and data distribution can be done in
a cache efficient way.



2.4 More Related Work

There is some work on PRAM algorithms for string sorting (e.g. [15]). By com-
bining pairs of adjacent characters into single characters, one obtains algorithms
with work O(N log N) and time O(log N/ loglog N). Compared to the sequential
algorithms this is suboptimal unless D = O(N) = O(n) and with this approach
it is unclear how to avoid work on characters outside distinguishing prefixes.
We found no publications on practical parallel string sorting. However, Ta-
kuya Akiba has implemented a parallel radix sort [16], Tommi Rantala’s library
[10] contains multiple parallel mergesorts and a parallel SIMD variant of multikey
quicksort, and Nagaraja Shamsundar [17] also parallelized Waihong Ng’s LCP-
mergesort [9]. Of all these implementations, only the radix sort by Akiba scales
fairly well to many-core architectures. For the abstract, we exclude the other
implementations and discuss their scalability issues in Appendix C.

3 Shared Memory Parallel String Sorting

Already in a sequential setting, theoretical considerations and experiments (see
Appendix B.2) indicate that the best string string sorting algorithm does not
exist. Rather, it depends at least on n, D, o, and the hardware. Therefore we
decided to parallelize several algorithms taking care that components like data
distribution, load balancing or base case sorter can be reused. Remarkably, most
algorithms in Section 2.1 can be parallelized rather easily and we will discuss
parallel versions in Sections 3.2-3.4. However, none of these parallelizations make
use of the striking new feature of modern many-core systems: many multi-core
processors with individual cache levels but relatively few and slow memory chan-
nels to shared RAM. Therefore we decided to design a new string sorting algo-
rithm based on sample sort, which exploits these properties. Preliminary result
on string sample sort have been reported in the bachelor thesis of Knépfle [18].

3.1 String Sample Sort

In order to adapt the atomic sample sort from Section 2.3 to strings, we have
to devise an efficient classification algorithm. Also, in order to approach total
work O(D + nlogn) we have to use the information gained during classification
in the recursive calls. This can be done by observing that

V1<i<k:Vs,teb;:lep(s,t) > lep, (i) . (1)

Another issue is that we have to reconcile the parallelization and load balancing
perspective from traditional parallel sample sort with the cache efficiency per-
spective of super scalar sample sort. We do this by using dynamic load balancing
which includes parallel execution of recursive calls as in parallel quicksort.

In Appendix A.1 we outline a variant of string sample sort that uses a trie
data structure and a number of further tricks to enable good asymptotic perfor-
mance. However, we view this approach as somewhat risky for a first reasonable
implementation. Hence, in the following, we present a more pragmatic imple-
mentation.
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Fig. 1. Ternary search tree for v = 3 splitters.

Super Scalar String Sample Sort (S®) — A Pragmatic Solution. We
adapt the implicit binary search tree approach used in S* [14] to strings. Rather
than using arbitrarily long splitters as in trie sample sort, or all characters of
the alphabet as in radix sort, we design the splitter keys to consist of as many
characters as fit into a machine word. In the following let w denote the number of
characters fitting into one machine word (for 8-bit characters and 64-bit machine
words we would have w = 8). We choose v = 2¢ — 1 splitters zq,...,Ty—1
from a sorted sample to construct a perfect binary search tree, which is used
to classify a set of strings based on the next w characters at common prefix
{. The main disadvantage compared to trie sample sort is that we may have
many input strings whose next w characters are identical. For these strings, the
classification does not reveal much information. We make the best out of such
inputs by explicitly defining equality buckets for strings whose next w characters
exactly match z;. For equality buckets, we can increase the common prefix length
by w in the recursive calls, i.e., these characters will never be inspected again.
In total, we have k = 2v+1 different buckets by, .. ., by, for a ternary search tree
(see Figure 1). Testing for equality can either be implemented by explicit equality
tests at each node of the search tree (which saves time when most elements end
up in a few large equality buckets) or by going down the search tree all the way to
a bucket b; (i even) doing only <-comparisons, followed by a single equality test
with x i unless ¢ = 2v. This allows us to completely unroll the loop descending
the search tree. We can then also unroll the loop over the elements, interleaving
independent tree descents. Like in [14], this is an important optimization since
it allows the instruction scheduler in a super scalar processor to parallelize the
operations by drawing data dependencies apart. The strings in the “< zy” and
“> x,—1” buckets by and by, keep common prefix length ¢. For other even buckets
b; the common prefix length is increased by lep, (%).

An analysis similar to the one of multikey quicksort yields the following
asymptotic running time bound.

Lemma 1. String sample sort with implicit binary trees and word parallelism
can be implemented to Tun in time O(% logv 4 nlog n)

Implementation Details. Goal of S® is to have a common classification data
structure that fits into the cache of all cores. Using this data structure, all PEs
can independently classify a subset of the strings into buckets in parallel. As



most commonly done in radix sort, we first classify strings, counting how many
fall into each bucket, then calculate a prefix sum and redistribute the string
pointers accordingly. To avoid traversing the tree twice, the bucket index of each
string is stored in an oracle. Additionally, to make higher use of super scalar
parallelism, we even separate the classification loop from the counting loop [4].

Like in S*, the binary tree of splitters is stored in level-order as an array,
allowing efficient traversal using ¢ := 2 4 {0, 1}, without branch mispredictions.
We noticed that predicated instructions CMOVA were more efficient than flag
arithmetic involving SETA.

To perform the equality check after traversal without extra indirections, the
splitters are additionally stored in order. Another idea is to keep track of the last
<-branch during traversal; this however was slower and requires an extra register.
A third variant is to check for equality after each comparison, which requires only
an additional JE instruction and no extra CMP. The branch misprediction cost is
counter-balanced by skipping the rest of the tree. An interesting observation is
that, when breaking the tree traversal at array index ¢, then the corresponding
equality bucket b; can be calculated from ¢ using only bit operations (note that
¢ is an index in level-order, while j is in-order). Thus in this third variant, no
additional in-order splitter array is needed.

The sample is drawn pseudo-randomly with an oversampling factor a = 2
to keep it in cache when sorting with STL’s introsort and building the search
tree. Instead of using the straight-forward equidistant method to draw splitters
from the sample, we use a simple recursive scheme that tries to avoid using
the same splitter multiple times: Select the middle sample m of a range a..b
(initially the whole sample) as the middle splitter Z. Find new boundaries b’ and
a’ by scanning left and right from m skipping samples equal to Z. Recurse on
a..b/ and a’..b. The splitter tree selected by this heuristic was never slower than
equidistant selection, but slightly faster for inputs with many equal common
prefixes. It is used in all our experiments. The LCP of two consecutive splitters
is calculated without a loop using two instructions: XOR and BSR to count the
number of leading zero bits in the result.

For current 64-bit machines with 256 KiB L2 cache, we use v = 8191. Note
that the limiting data structure which must fit into L2 cache is not the splitter
tree, which is only 64 KiB for this v, but is the bucket counter array containing
2v 4+ 1 counters, each 8 bytes long. We did not look into methods to reduce this
array’s size, because the search tree must also be stored both in level-order and
in in-order.

Parallelization of S®. Parallel S° (pS®) is composed of four sub-algorithms for
differently sized subsets of strings. For string sets S with |S| > %, a fully parallel
version of S® is run, for large sizes % > |S| > t,, a sequential version of S° is
used, for sizes t,, > |S| > t; the fastest sequential algorithm for medium-size
inputs (caching multikey quicksort from Section 3.3) is called, which internally

uses insertion sort when |S| < ¢;.



The fully parallel version of S uses p’ = (‘%l] threads for a subset S. It
consists of four stages: selecting samples and generating a splitter tree, parallel
classification and counting, global prefix sum, and redistribution into buckets.
Selecting the sample and constructing the search tree are done sequentially,
as these steps have negligible run time. Classification is done independently,
dividing the string set evenly among the p’ threads. The prefix sum is done
sequentially once all threads finish counting.

In the sequential version of S we permute the string pointer array in-place by
walking cycles of the permutation [2]. Compared to out-of-place redistribution
into buckets, the in-place algorithm uses less input/output streams and requires
no extra space. The more complex instruction set seems to have only little nega-
tive impact, as today, memory access is the main bottleneck. However, for fully
parallel S?, an in-place permutation cannot be done in this manner. We therefore
resort to out-of-place redistribution, using an extra string pointer array of size
n. The string pointers are not copied back immediately. Instead, the role of the
extra array and original array are swapped for the recursion.

All work in parallel S° is dynamically load balanced via a central job queue.
Dynamic load balancing is very important and probably unavoidable for par-
allel string sorting, because any algorithm must adapt to the input string set’s
characteristics. We use the lock-free queue implementation from Intel’s Thread
Building Blocks (TBB) and threads initiated by OpenMP to create a light-weight
thread pool.

To make work balancing most efficient, we modified all sequential sub-algo-
rithms of parallel S° to use an explicit recursion stack. The traditional way to
implement dynamic load balancing would be to use work stealing among the
sequentially working threads. This would require the operations on the local re-
cursion stacks to be synchronized or atomic. However, for our application fast
stack operations are crucial for performance as they are very frequent. We there-
fore choose a different method: voluntary work sharing. If the global job queue
is empty and a thread is idle, then a global atomic boolean flag is set to indicate
that other threads should share their work. These then free the bottom level of
their local recursion stack (containing the largest subproblems) and enqueue this
level as separate, independent jobs. This method avoids costly atomic operations
on the local stack, replacing it by a faster (not necessarily synchronized) boolean
flag check. The short wait of an idle thread for new work does not occur often,
because the largest recursive subproblems are shared. Furthermore, the global
job queue never gets large because most subproblems are kept on local stacks.

3.2 Parallel Radix Sort

Radix sort is very similar to sample sort, except that classification is much
faster and easier. Hence, we can use the same parallelization toolkit as with
S°. Again, we use three sub-algorithms for differently sized subproblems: fully
parallel radix sort for the original string set and large subsets, a sequential radix
sort for medium-sized subsets and insertion sort for base cases. Fully parallel
radix sort consists of a counting phase, global prefix sum and a redistribution



step. Like in S°, the redistribution is done out-of-place by copying pointers into a
shadow array. We experimented with 8-bit and 16-bit radixes for the full parallel
step. Smaller recursive subproblems are processed independently by sequential
radix sort (with in-place permuting), and here we found 8-bit radixes to be faster
than 16-bit sorting. Our parallel radix sort implementation uses the same work
balancing method as parallel S°.

3.3 Parallel Caching Multikey Quicksort

Our preliminary experiments with sequential string sorting algorithms (see Ap-
pendix B.2) showed a surprise winner: an enhanced variant of multikey quicksort
by Tommi Rantala [10] often outperformed more complex algorithms. This vari-
ant employs both caching of characters and uses a super-alphabet of w = 8
characters, exactly as many as fit into a machine word. The string pointer array
is augmented with w cache bytes for each string, and a string subset is partitioned
by a whole machine word as splitter. Key to the algorithm’s good performance,
is that the cached characters are reused for the recursive subproblems S and
S~, which greatly reduces the number of string accesses to at most [%1 +n in
total.

In light of this variant’s good performance, we designed a parallelized ver-
sion. We use three sub-algorithms: fully parallel caching multikey quicksort, the
original sequential caching variant (with explicit recursion stack) for medium
and small subproblems, and insertion sort as base case. For the fully parallel
sub-algorithm, we generalized a block-wise processing technique from (two-way)
parallel atomic quicksort [12] to three-way partitioning. The input array is viewed
as a sequence of blocks containing B string pointers together with their w cache
characters. Each thread holds exactly three blocks and performs ternary parti-
tioning by a globally selected pivot. When all items in a block are classified as <,
= or >, then the block is added to the corresponding output set S, S—, or S-.
This continues as long as unpartitioned blocks are available. If no more input
blocks are available, an extra empty memory block is allocated and a second
phase starts. The second partitioning phase ends with fully classified blocks,
which might be only partially filled. Per fully parallel partitioning step there
can be at most 3p’ partially filled blocks. The output sets S, S—, and S~ are
processed recursively with threads divided as evenly among them as possible.
The cached characters are updated only for the S— set.

In our implementation we use atomic compare-and-swap operations for block-
wise processing of the initial string pointer array and Intel TBB’s lock-free queue
for sets of blocks, both as output sets and input sets for recursive steps. When a
partition reaches the threshold for sequential processing, then a continuous array
of string pointers plus cache characters is allocated and the block set is copied
into it. On this continuous array, the usual ternary partitioning scheme of mul-
tikey quicksort is applied sequentially. Like in the other parallelized algorithms,
we use dynamic load balancing and free the bottom level when re-balancing is
required. We empirically determined B = 128 Ki as a good block size.



3.4 Burstsort and LCP-Mergesort

Burstsort is one of the fastest string sorting algorithms and cache-efficient for
many inputs, but it looks difficult to parallelize it. Keeping a common burst
trie would require prohibitively many synchronized operations, while building
independent burst tries on each PE would lead to the question how to merge
multiple tries of different structure.

One would like to generalize LCP-mergesort to a parallel p-way LCP-aware
merging algorithm. This looks promising in general but we leave this for future
work since LCP-mergesort is not really the best sequential algorithm in our
experiments.

4 Experimental Results

We implemented parallel S°, multikey quicksort and radixsort in C++ and com-
pare them with Akiba’s radix sort [16]. We also integrated many sequential im-
plementations into our test framework, and compiled all programs using gcc 4.6.3
with optimizations -03 -march=native. In Appendix B.2 we discuss the per-
formance of sequential string sorters. Our implementations and test framework
are available from http://tbingmann.de/2013/parallel-string-sorting.

We used several platforms for experiments, and summarized their properties
in Table 2 in the appendix. Results we report in the abstract stem from the
largest machine, IntelE5, which has four 8-core Intel Xeon E5-4640 processors
containing a total of 32 cores and supporting p = 64 hardware threads, and
from a consumer-grade Intel i7 920 with four cores and p = 8 hardware threads.
Turbo-mode was disabled on IntelE5. We selected the following datasets, all with
8-bit alphabets. More characteristics of these instances are shown in Table 1.

URLs contains all URLs found on a set of web pages which were crawled
breadth-first from the author’s institute website. They include the protocol
name.

Random from [6] are strings of length [0,20) over the ASCII alphabet
[33,127), with both length and characters chosen uniform at random.

GOV2 is a TREC test collection consisting of 25 million HTML pages, PDF
and Word documents retrieved from websites under the .gov top-level domain.
We consider the whole concatenated corpus for line-based string sorting.

Wikipedia is an XML dump of the most recent version of all pages in the
English Wikipedia, which was obtained from http://dumps.wikimedia.org/;
our dump is dated enwiki-20120601. Since the XML data is not line-based, we
perform suffiz sorting on this input.

We also include the three largest inputs Ranjan Sinha [6] tested burstsort
on: a set of URLs excluding the protocol name, a sequence of genomic strings of
length 9 over a DN A alphabet, and a list of non-duplicate English words called
NoDup. The “largest” among these is NoDup with only 382 MiB, which is why
we consider these inputs more as reference datasets than as our target.

The test framework sets up a separate run environment for each test run.
The program’s memory is locked into RAM, and to isolate heap fragmentation,
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Table 1. Characteristics of the selected input instances.

Name n N L (D) o avg. |s]|
URLs 111G 70.7 Gi 93.56% 84 68.4
Random 0 0 - 94 10.5
GOV2 11.3G 425 Gi 84.7% 255 40.3
Wikipedia 833G in(n+1) (79.56T) 213 i(n+1)
Sinha URLSs 10M 304 Mi 97.5% 114 31.9
Sinha DNA 31.6M 302 Mi 100 % 4 10.0
Sinha NoDup | 31.6 M 382 Mi 73.4% 62 12.7

it was very important to fork() a child process for each run. We use the largest
prefix [0, 2%) of our inputs which can be processed with the available RAM. We
determined t,, = 64 Ki and ¢; = 64 as good thresholds to switch sub-algorithms.
Figure 2 shows a selection of the detailed parallel measurements from Ap-
pendix C. For large instances we show results on IntelE5 (median of 1-3 repeti-
tions) and for small instances on Inteli7 (of ten repetitions). The plots show the
speedup of our implementations and Akiba’s radix sort over the best sequential
algorithm from Appendix B.2. We included pS®-Unroll, which interleaves three
unrolled descents of the search tree, pS®-Equal, which unrolls a single descent
testing equality at each node, our parallel multikey quicksort (pMKQS), and
radix sort with 8-bit and 16-bit fully parallel steps. On all platforms, our par-
allel implementations yield good speedups, limited by memory bandwidth, not
processing power. On IntelE5 for all four test instances, pMKQS is fastest for
a small number of threads. But for higher numbers, pS® becomes more efficient
than pMKQS, because it utilizes memory bandwidth better. On all instances,
except Random, pS® yields the highest speedup for both the number of physical
cores and hardware threads. On Random, our 16-bit parallel radix sort achieves
a slightly higher speedup. Akiba’s radix sort does not parallelize recursive sorting
steps (only the top-level is parallelized) and only performs simple load balancing.
This can be seen most pronounced on URLs and GOV2. On Inteli7, pS® is con-
sistently faster than pMKQS for Sinha’s smaller datasets, achieving speedups
of 3.8-4.5, which is higher than the three memory channels on this platform.
On IntelE5, the highest speedup of 19.2 is gained with pS® for suffix sorting
Wikipedia, again higher than the 4 x 4 memory channels. For all test instances,
except URLs, the fully parallel sub-algorithm of pS® was run only 1-4 times, thus
most of the speedup is gained in the sequential S° steps. The pS®-Equal variant
handles URL instances better, as many equal matches occur here. However, for
all other inputs, interleaving tree descents fares better. Overall, pS®-Unroll is
currently the best parallel string sorting implementation on these platforms.

5 Conclusions and Future Work

We have demonstrated that string sorting can be parallelized successfully on
modern multi-core shared memory machines. In particular, our new string sam-
ple sort algorithm combines favorable features of some of the best sequential
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algorithms — robust multiway divide-and-conquer from burstsort, efficient data
distribution from radix sort, asymptotic guarantees similar to multikey quick-
sort, and word parallelism from cached multikey quicksort.

Implementing some of the refinements discussed in Appendix A.2 are likely to
yield further improvements for string sample sort. To improve scalability on large
machines, we may also have to look at NUMA (non uniform memory access)
effects more explicitly. Developing a parallel multiway LCP-aware mergesort
might then become interesting.
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A More on String Sample Sort

A.1 Trie Sample Sort — A Theoretical Solution.

We would like to design a classification algorithm here that fulfills two conflicting
goals. On the one hand, we would like to classify the input strings into the k
buckets defined by the splitters exactly, regardless how long the substrings are
that need to be inspected. The classifier from S° falls short of this goal since it
looks only at a fixed number of input characters which may only allow a very
rough classification if the splitters have long common prefixes. On the other
hand, we do not want to repeatedly inspect long common substrings in recursive
calls. In the following, we outline such an algorithm. Since the parallelization is
analogous to S°, we focus on the amount of work needed by the algorithm.

Our starting point is to use a Patricia trie as a classification data structure,
adapting a technique for String B-Trees [19]: When classifying s using blind
search, it suffices to check the first character for each trie edge traversed. When
the search has reached a leaf, we can compare s with the splitter associated with
the leaf. The first mismatch tells us in which bucket s has to be placed. When the
mismatched character of s is smaller than the label character, then the output
bucket is associated with the splitter in the leftmost leaf of the current sub-trie.
If the character is larger, then the output bucket is associated with the splitter
following the rightmost leaf of the current sub-trie. Pointers to these buckets can
be precomputed and stored for each trie edge. The advantage of this approach
over an ordinary trie is that only a single access to a splitter key is needed and
all the other information needed fits into a cache of size O(k).

However, we have the problem that the tries might be very deep (up to £2(k))
in the worst case. This will destroy the desired time bounds if the classification
frequently runs all the way down the trie and later finds a mismatch high up
in the trie (in a character ignored by the blind search). Going beyond [19], we
therefore augment the trie edges with a hash signature of the entire substring as-
sociated with this edge — not just its first character. We can then stop traversing
a trie as soon as there is a mismatch in the hash signature. We will still some-
times miss the first opportunity to stop traversing the trie, but the expected
cost for finding the first mismatch is proportional to the actual common prefix
length.

We also have to explain how to handle the case when there is a mismatch for
the first character in a trie-edge label. In this case, we have to locate the next
character of s among the first characters of all edge labels. Using hashing and
van Emde Boas trees, this can be done in expected time O(loglog o) [20] using
space proportional to the degree of the current trie-node.

When a string s is located into bucket i, we find lcp(s, ;) equal characters. In
light of the analysis of multikey quicksort, this is unfortunate since only lep, (7)
of those will not be considered again. We address this problem by changing the
splitter keys. Rather than using the complete input strings, we only use their
distinguishing prefixes. This does not get rid of all cases where characters of s
will have to be reinspected later. However, this now only happens when bucket
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¢ + 1 has common prefix length at least lep(s,z;). In an amortized analysis,
and assuming that buckets have about equal size, we can therefore charge the
comparisons of characters s[lep,(%)..lep(s, ;)] to characters in bucket ¢ + 1. We
did not yet do a rigorous analysis taking the probabilistic nature of bucket sizes
into account. However, we conjecture that an expected time bound of

O(D + nlog; n - loglog o)

can be shown for trie sample sort. Choosing a small fixed k£ we can then ob-
tain an algorithm that is reasonably cache efficient. Choosing k = +/n could
reduce the number of recursion levels to O(loglogn) leading to expected work
O(D + nloglogn - loglog o).

A.2 Practical Refinements

Multipass data distribution: There are two constraints for the maximum sensible
value for k: The cache size needed for the classification data structure and the
resources needed for data distribution. Already in the plain external memory
model these two constraints differ (k = O(M) versus k = O(M/B)). In practice,
things are even more complicated since multiple cache levels, cache replacement
policy, TLBs, etc. play a role. Anyway, we can increase the value of k to the
value required for classification by doing the data distribution in multiple passes
(usually two). Note that this fits very well with our approach to compute oracles
even for single pass data distribution. This approach can be viewed as LSD radix
sort using the oracles as keys. Initial experiments indicate that this could indeed
lead to some performance improvements.

Alphabet compression: When we know that only ¢’ < o different values from
X appear in the input, we can compress characters into [logo’] bits. For the
pragmatic solution, this allows us to pack more characters into a single machine
word. For example, for DNA input, we might pack 32 characters into a single 64
bit machine word. Note that this compression can be done on the fly without
changing the input/output format and the compression overhead is amortized
over log k key comparisons.

Jump tables: In the pragmatic solution, the a most significant bits of a key are
often already sufficient to define a path in the search tree of length up to a. We
can exploit this by precomputing a jump table of size 2% storing a pointer to the
end of this path. During element classification, a lookup in this jump table can
replace the traversal of the path. This might reduce the gap to radix sort for
easy instances.

Using tries in practice: The success of burstsort indicates that traversing tries
can be made efficient. Thus, we might also be able to use a tuned trie based
implementation in practice. One ingredient to such an implementation could be
the word parallelism used in the pragmatic solution — we define the trie over an
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enlarged alphabet. This reduces the number of required hash table accesses by
a factor of w. The tuned van Emde Boas trees from [21] suggest that this data
structure might work in practice.

Adaptivity: By inspecting the sample, we can adaptively tune the algorithm.
For example, when noticing that already a lot of information' can be gained
from a few most significant bits in the sample keys, the algorithm might decide
to switch to radix sort. On the other hand, when even the w most significant
characters do not give a lot of information, then a trie based implementation can
be used. Again, this trie can be adapted to the input, for example, using hash
tables for low degree trie nodes and arrays for high degree nodes.

B More Experimental Results

B.1 Experimental Setup

We tested our implementations and those by other authors on five different
test platforms. All platforms run Linux and their main properties are listed in
Table 2.

As described in Section 4, we isolate runs of different algorithms using fol-
lowing methods: before each run, the program fork()s into a child process. The
string data is loaded before the fork(), allocating exactly the matching amount
of RAM, and shared read-only with the child processes. The program’s memory
is locked into RAM using mlockall(). Before the algorithm is called, the string
pointer array is generated inside the child process by scanning the string data for
NUL characters (thus flushing caches and TLB entries). Time measurement is
done with clock_gettime() and encompasses only the sorting algorithm. Because
many algorithms have a deep recursion stack for our large inputs, we increased
the stack size limit to 64 MiB. We took no special precautions of pinning threads
to specific cores, and used the regular Linux task scheduling system as is.

The output of each string sorting algorithm was verified by first checking
that the output pointer list is a permutation of the input set, and then checking
that strings are in non-descending order.

Methodologically we have to discuss, whether measuring only the algorithms
run time is a good decision. The issue is that deallocation and defragmentation in
both heap allocators and kernel page tables is done lazily. This was most notable
when running two algorithms consecutively. The fork() process isolation was
done to exclude both variables from the experimental results, however, for use
in a real program context these costs cannot not be ignored. We currently do not
know how to invoke the lazy cleanup procedures to regenerate a pristine memory
environment. These issues must be discussed in greater detail in future work for
sound results with big data in RAM. We also did not look into HugePages (yet),
which may or may not yield a performance boost.

! The entropy %ZZ log ﬁ can be used to define the amount of information gained
by a set of splitters. The bucket sizes b; can be estimated using their size within the
sample.
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Table 2. Hard- and software characteristics of experimental platforms

Name |Processor Clock| Sockets x |[Cache: L1 L2 L3|RAM
[GHz]|Cores x HT [KiB] [KiB]| [MiB]|[GiB]

IntelE5 |Intel Xeon E5-4640 2.4 4x8x2 32 x 32|32 x 2564 x 20| 512
AMD48{AMD Opteron 6168 1.9] 4x12 48 x 64|48 x 512| 8 x 6| 256
AMD16{AMD Opteron 8350 2.0 4x4 16 x 64(16 x 512| 4 x 2 64
Inteli7 |Intel Core i7 920 2.67 1x4x2 4 x 32| 4x256| 1x8 12
IntelX5 [Intel Xeon X5355 2.67 2x4x1 8 x 32(4 x 4096 16
Name |Codename |Memory Channels|1nterconnect |Linux/ Kernel Version

IntelE5 |Sandy Bridge|4 x DDR3-1600 |2 x 8.0 GT/s QPI|Ubuntu 12.04/3.2.0-38
AMDA48|Magny-Cours |4 x DDR3-667 4 x 3.2 GHz HT |Ubuntu 12.04/3.2.0-38
AMD16|Barcelona 2 x DDR2-533 3 x 1.0 GHz HT |Ubuntu 10.04/2.6.32-45
Inteli7 |Bloomfield |3 x DDR3-800 1 x 4.8 GT/s QPI|openSUSE 11.3/2.6.34
IntelX5 |Clovertown |2 x DDR2-667 1 x 1.3 GHz FSB |Ubuntu 12.04/3.2.0-38

B.2 Performance of Sequential Algorithms

We collected many sequential string sorting algorithms in our test framework.

The algorithm library by Tommi Rantala [10] contains 37 versions of radix
sort (in-place, out-of-place, and one-pass with various dynamic memory allo-
cation schemes), 26 variants of multikey quicksort (with caching, block-based,
different dynamic memory allocation and SIMD instructions), 10 different fun-
nelsorts, 38 implementations of burstsort (again with different dynamic memory
managements), and 29 mergesorts (with losertree and LCP caching variants). In
total these are 140 original implementation variants, all of high quality.

The other main source of string sorting implementations are the publications
of Ranjan Sinha. We included the original burstsort implementations (one with
dynamically growing arrays and one with linked lists), and 9 versions of copy-
burstsort. The original copy-burstsort code was written for 32-bit machines, and
we modified it to work with 64-bit pointers.

We also incorporated the implementations of CRadix sort and LCP-Merge-
sort by Waihong Ng, and the original multikey quicksort code by Bentley and
Sedgewick.

Of the 203 different sequential string sorting variants, we selected the twelve
implementations listed in Table 3 to represent both the fastest ones in a pre-
liminary test and each of the basic algorithms from Section 2.1. The twelve
algorithms were run on all our five test platforms on small portions of the test
instances described in Section 4. Tables 4 and 5 show the results, with the fastest
algorithm’s time highlighted with bold text.

Cells in the tables without value indicate a program error, out-of-memory
exceptions or extremely long runtime. This was always the case for the copy-
burstsort variants on the GOV2 and Wikipedia inputs, because they perform
excessive caching of characters. On Inteli7, some implementations required more
memory than the available 12 GiB to sort the 4 GiB prefixes of Random and
URLs.

17



Table 3. Description of selected sequential algorithms

Name Description and Author

mkqgs Original multikey quicksort by Bentley and Sedgewick [1].
mkqgs_cache8 |Modified multikey quicksort with caching of eight characters by
Tommi Rantala [10], slightly improved.

radix8_CI 8-bit in-place radix sort by Tommi Rantala [4].

radix16_CI Adaptive 16-/8-bit in-place radix sort by Tommi Rantala [4].
radixR_CE7 Adaptive 16-/8-bit out-of-place radix sort by Tommi Rantala [4],
version CE7 (preallocated swap array, unrolling, sorted-check).
CRadix Cache efficient radix sort by Waihong Ng [3], unmodified.
LCPMergesort |LCP-mergesort by Waihong Ng [9], unmodified.

Seq-S®-Unroll [Sequential Super Scalar String Sample Sort with interleaved loop
over strings, unrolled tree traversal and radix sort as base sorter.
Seq-S®-Equal  [Sequential Super Scalar String Sample Sort with equality check,
unrolled tree traversal and radix sort as base sorter.

burstsortA Burstsort using dynamic arrays by Ranjan Sinha [6], from [10].
fbC-burstsort |Copy-Burstsort with “free bursts” by Ranjan Sinha [7], heavily
repaired and modified to work with 64-bit pointers.
sCPL-burstsort | Copy-Burstsort with sampling, pointers and only limited copying
depth by Ranjan Sinha [7], also heavily repaired.

Over all run instances and platforms, multikey quicksort with caching of
eight characters was fastest on 18 pairs, winning the most tests. It was fastest
on all platforms for both URL list and GOV?2 prefixes, except URL on IntelX5,
and on all large instances on AMD48 and AMD16. However, for the NoDup
input, short strings with large alphabet, the highly tuned radix sort radixR_-CE7
consistently outperformed mkgs_cache8 on all platforms by a small margin. The
copy-burstsort variant fbC_burstsort was most efficient on all platforms for DNA|
which are short strings with small alphabet. For Random strings and Wikipedia
suffixes, mkgs_cache8 or radixR_-CE7 was fastest, depending on the platforms
memory bandwidth and sequential processing speed. Our own sequential imple-
mentations of S® were never the fastest, but they consistently fall in the middle
field, without any outliers.

We also measured the peak memory usage of the sequential implementations
using a heap and stack profiling tool? for the selected sequential test instances.
The bottom of Table 4 shows the results in MiB, excluding the string data array
and the string pointer array (we only have 64-bit systems, so pointers are eight
bytes). We must note that the profiler considers allocated virtual memory, which
may not be identical to the amount of physical memory actually used. From the
table we plainly see, that the more caching an implementation does, the higher
its peak memory allocation. However, the memory usage of fbC_burstsort is ex-
treme, even if one considers that the implementation can deallocate and recreate
the string data from the burst trie. The lower memory usage of fbC_burstsort
for Random is due to the high percentage of characters stored implicitly in the

2 http://tbingmann.de/2013/malloc_count/, by one of the authors.
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trie structure. The sCPL_burstsort and burstsortA variants bring the memory
requirement down somewhat, but they are still high. Some radixsort variants
and most notable mkqs_cache8 are also not particularly memory conservative,
again due to caching. Our S° implementation fares well in this comparison be-
cause it does no caching and permutes the string pointers in-place (Note that
radixsort is used for small string subsets in sequential S°. This is due to the de-
velopment history: we finished sequential S® before focusing on caching multikey
quicksort). For sorting with little extra memory, plain multikey quicksort is still
a good choice.

C More Results on Parallel String Sorting

In this section we report on experiments run on all platforms shown in Table 2,
which contains a wide variety of multi-core machines of different age. The results
in Figures 3—7 show that each parallel algorithm’s speedup depends highly on
hardware characteristics like processor speed, RAM and cache performance?,
and the interconnection between sockets. However, except for Random input,
our implementations of pS® is the string sorting algorithm with highest speedup
across all platforms.

We included two further parallel algorithm implementations in the tests on
Inteli7 and IntelX5: pMKQS-SIMD is a multikey quicksort implementation from
Rantala’s library, which uses SIMD instructions to perform vectorized classifica-
tion against a single pivot. We improved the code to use OpenMP tasks for recur-
sive sorting steps. The second implementation is a parallel 2-way LCP-mergesort
also by Rantala, which we also augmented with OpenMP tasks. However, only
recursive merges are run in parallel, the largest merge is performed sequentially.
The implementation uses insertion sort for |S| < 32, all other sorting is done via
merging. N. Shamsundar’s parallel LCP-mergesort also uses only 2-way merges,
and is omitted from the graphs because Rantala’s version is consistently faster.

IntelE5 (Figure 3) is the newest machine, and most results have already been
discussed in Section 4. The lower three plots show that on this platform, parallel
sorting becomes less efficient for small inputs (around 300 MiB). Compared to
the following results, we also notice that parallel multikey quicksort is relatively
fast; apparently the Sandy Bridge processor architecture optimizes sequential
memory processing very well.

AMD/8 (Figure 4) is a many-core machine with high core count, but rela-
tively slow RAM and a slower interconnect. Qualitatively, the results look similar
to the IntelE5 platform, albeit with reduced speedups.

AMD16 (Figure 5) is an older many-core architecture with the slowest RAM
speed and interconnect in our experiment. However, on this machine random
access and processing power (in cache) seems to be most “balanced” for S°.

Inteli7 (Figure 6) is a consumer-grade, single socket machine with fast RAM
and cache hierarchy. All sorting algorithms profit from faster random access,

3 See http://tbingmann.de/2013/pmbw/ for parallel memory bandwidth experiments

19


http://tbingmann.de/2013/pmbw/

but the gain is highest for radix sorts. Both of the additional implementation
pMKQS-SIMD and pMergesort-2way do not show any good speedup, probably
because they are already pretty slow in sequential.

IntelX5 (Figure 7) is the oldest architecture, and shows the slowest absolute
speedups. Nevertheless, the S® variants yield the best gains, even for Random
input on this platform.

We included the absolute running times of all our speedup experiments in
Tables 6-12 for reference and to show that our parallel implementations scale
well both for very large instances on many-core platforms and also for small
inputs on machines with fewer cores.
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Table 4. Run time of sequential algorithms on IntelE5 and AMDA48 in seconds, and
peak memory usage of algorithms on IntelE5

Our Datasets Sinha’s

URLs Random GOV2 Wikipedia| URLs DNA NoDup
n 66 M  409M 80.2M 256 Mi 10M 31.5M 31.6M
N 4Gi 4Gi 4Gi 32Pi 304Mi 302Mi 382 Mi
% (D) 92.6% 43.0% 69.7% (13.6G) 97.5% 100% 73.4%

IntelE5
mkqs 36.8 212 34.7 128 5.64 11.0 10.9
mkqgs_cache8 16.6 67.8 17.1 79.2 2.03 4.64 6.05
radix8_CI 48.1 56.8 40.0 91.7 6.09 6.75 6.19
radix16_CI 36.9 1.4 40.0 88.1 5.42 5.26 5.84
radixR_CE7 374 51.6 34.7 73.5 4.80 4.64 4.95
Seq-S®-Unroll 31.9 120 33.0 105 4.86 7.01 7.68
Seq-S®-Equal 31.4 187 349 121 498 757  8.20
CRadix 55.5 57.7 414 111 6.77 10.1 8.55
LCPMergesort 25.4 266 37.6 165 4.94 14.3 16.8
burstsort A 29.6 127 30.7 125 5.64 8.49 8.53
fbC_burstsort 72.0 72.9 11.2 3.88 15.3
sCPL_burstsort 46.8 119 10.9 13.9 24.0
AMD48

mkqgs 98.1 395 88.8 226 11.0 20.8 19.7
mkqgs_cache8 34.8 95.9 33.0 114 3.47 7.05 8.76
radix8_CI 92.7 99.4 71.9 135 9.79 10.9 9.51
radix16_CI 73.8 135 61.9 134 8.77 9.17 9.45
radixR_CE7 85.2 98.6 66.5 120 8.27 8.31 7.66
Seq-S°-Unroll 54.9 203 54.5 163 7.66 11.1 11.7
Seq-S®-Equal 60.9 228 58.5 177 8.06 11.5 12.2
CRadix 99.3 85.0 76.0 147 8.02 12.4 11.1
LCPMergesort 47.1 452 73.3 232 7.33 20.7 24.5
burstsortA 47.1 190 56.2 205 8.52 13.3 13.3
fbC_burstsort 98.3 113 17.4 5.85 21.8
sCPL_burstsort 74.4 203 19.9 24.7 37.0

Memory usage of sequential algorithms (on IntelE5) in MiB,

excluding input and string pointer array

mkqs 0.134 0.003 1.66 0.141  0.015 0.003 0.004
mkgs_cache8 1002 6242 1225 4096 153 483 483
radix8_CI 62.7 390 77.6 256 9.55 30.2 30.2
radix16_CI 126 781 155 513 20.1 61.3 61.3
radixR_-CE7 669 3902 786 2567 111 303 303
Seq-S®-Unroll 129 781 155 513 20.3 60.8 60.9
Seq-S°-Equal 131 781 156 513 20.8 60.8 61.0
CRadix 752 4681 919 3072 114 362 362
LCPMergesort 1002 6242 1225 4096 153 483 483
burstsort A 1466 7384 1437 5809 200 531 792
fbC_burstsort 31962 6200 2875 436 4182
sCPL_burstsort 9971 7262 1577 1697 6108
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Table 5. Run time of sequential algorithms on AMD16, Inteli7, and IntelX5 in seconds

Our Datasets Sinha’s
URLs Random GOV2 Wikipedia| URLs DNA NoDup
n 66M 409M 80.2M 256 Mi 10M 31.5M 31.6M
N 4 Gi 4 Gi 4 Gi 32Pi 304Mi 302Mi 382Mi
% (D) 92.6% 43.0% 69.7% (13.6G) 97.5% 100% 73.4%
AMDI16
mkqs 121 561 96.3 272 14.5 26.7 25.0
mkqgs_cache8 43.1 110 37.5 135 4.74 9.03 10.5
radix8_CI 101 156 76.7 148 11.2 13.0 11.1
radix16_CI 81.6 200 67.1 146 10.2 11.4 10.8
radixR_CET7 89.8 155 73.8 136 10.1 10.6 9.32
Seq—SS-Unroll 62.3 288 57.1 195 8.50 12.3 12.5
Seq-S°-Equal 67.5 313 61.0 211 9.00 124  12.9
CRadix 120 122 82.1 181 11.0 18.1 14.0
LCPMergesort 61.7 681 92.3 292 11.6 32.4 33.1
burstsortA 49.7 289 62.4 252 9.88 17.0 16.8
fbC_burstsort 124 171 25.1 6.22 29.7
sCPL_burstsort 83.7 307 29.0 41.0 55.2
Inteli7
mkqs 33.8 185 30.8 111 5.03 9.33 9.59
mkqs_cache8 16.2 16.0 73.6 1.95 4.32 5.65
radix8_CI 40.3 50.1 33.6 76.0 5.14 5.58 5.28
radix16_CI 32.0 69.2 29.3 74.6 4.59 4.72 5.16
radixR_CE7 32.8 46.3 30.2 62.4 4.04 3.83 4.03
Seq—S5-Unroll 27.2 113 27.8 91.7 4.14 6.09 6.83
Seq—SS-Equal 26.9 133 28.7 101 4.26 6.38 7.12
CRadix 46.6 145 35.7 91.4 5.59 8.19 6.87
LCPMergesort, 23.4 33.3 142 4.37 12.4 14.6
burstsortA 23.1 25.2 106 4.62 6.79 717
fbC_burstsort 9.77 3.23 13.0
sCPL_burstsort 9.84 12.0 20.0
IntelX5
mkqgs 78.0 323 55.1 151 7.53 13.9 14.0
mkqgs_cache8 31.1 84.2 25.9 97.0 3.50 6.73 7.75
radix8_CI 70.7 103 49.2 93.6 5.95 7.38 7.00
radix16_CI 54.3 113 41.6 89.6 5.22 6.38 6.66
radixR_CET7 60.2 107 44.8 86.0 5.35 6.21 6.19
Seq-S®-Unroll 38.4 162 34.6 111 4.38 7.87 7.96
Seq-S°-Equal 38.5 191 35.9 125 464 830 875
CRadix 80.2 92.3 57.7 145 8.86 13.0 11.1
LCPMergesort 37.5 459 56.9 238 7.99 22.6 24.7
burstsortA 29.0 215 34.1 155 5.88 9.97 10.8
fbC_burstsort 87.2 17.3 4.84 21.3
sCPL _burstsort 50.7 205 20.3 26.5 37.8
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Table 6. Absolute run time of parallel and best sequential algorithms on IntelE5 in
seconds, median of 1-3 runs

PEs 1 2 4 8 12 16 24 32 48 64
URLs (complete), n = 1.11 G, N = 70.7 Gi, % =935%

mkgs_cache8| 537

pS®-Unroll 839 375 192 113 804 66.8 59.7 54.0 531 544
pS®-Equal 774 338 180 104 76.3 61.3 519 51.8 54.6 53.6
pMKQS 637 298 138 89.1 774 61.7 688 64.6 57.0 61.3
pRS-8bit 2017 881 480 309 254 249 223 232 243 238
pRS-16bit 2031 787 428 274 214 188 180 18 182 183
pRS-Akiba 889 1322 1450 894 1515 945 737 739 1403 1283
Random, n =3.27G, N =32Gi, 2 =449%

mkqgs_cache8| 755

pS®-Unroll 1868 948 489 267 191 150 109 91.0 87.5 823
pS°-Equal 2669 1082 648 347 249 197 136 107 953 88.2

pMKQS 826 379 208 136 120 113 105 104 114 115
pRS-8bit 957 611 362 197 146 119 989 98.6 99.1 91.6
pRS-16bit 926 565 330 183 133 107 86.1 87.3 92.7 99.2

pRS-Akiba 861 653 440 319 278 256 241 235 235 236
GOV2,n=31G, N =128Gi, £ =827%

mkgs_cache8| 1164

pS®-Unroll 1686 753 395 255 200 168 134 120 113 106
pS®-Equal 1854 837 404 253 214 180 133 122 118 110
pMKQS 1236 647 350 234 191 172 146 132 137 135
pRS-8bit 3493 1853 959 574 525 427 398 380 387 354
pRS-16bit 4193 1807 928 569 515 423 377 331 329 328
pRS-Akiba | 2573 1223 1055 1020 1111 1139 945 1054 1161 1106
Wikipedia,n =4G, D =249G

mkqgs_cache8| 2467

pS®-Unroll 3178 1399 688 373 275 225 172 145 125 120
pS®-Equal 4272 1727 826 448 330 254 190 152 133 124
pMKQS 2373 1277 630 363 269 236 203 184 154 168
pRS-8bit 3071 1801 930 512 364 292 222 193 187 182
pRS-16bit 3563 1743 883 485 349 286 218 189 184 222
pRS-Akiba | 2671 1305 727 429 329 275 229 212 280 288
Sinha NoDup (complete), n = 31.6 M, N = 382 Mi, % =734%
radixR_-CE7 | 6.35

pS®-Unroll 740 3.76 218 1.26 1.01 0913 0.830 0.817 0.844 0.937
pS®-Equal 7.67 3.84 221 1.29 0.989 0.956 0.842 0.808 0.860 0.981
pMKQS 6.72 381 228 146 119 1.11 1.03 1.10 1.17 1.32
pRS-8bit 6.53 399 234 148 125 120 130 1.13 123 1.37
pRS-16bit 6.53 3.56 207 131 114 1.06 1.07 1.06 1.20 1.35
pRS-Akiba 6.26 3.82 238 163 143 130 120 1.26 137 1.51
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Table 7. Absolute run time of parallel and best sequential algorithms on AMDA48 in
seconds, median of 1-3 runs

PEs 1 2 3 6 9 12 18 24 36 42 48
URLs (complete), n = 1.11 G, N = 70.7 Gi, % =935%
mkqgs_cache8| 693
pS®-Unroll | 1077 546 368 209 138 108 80.0 68.6 63.3 59.0 61.8
pS®-Equal 994 534 349 191 133 103 782 70.7 64.1 64.0 63.0
pMKQS 78 413 300 162 119 102 84.3 82.6 76.2 83.7 81.2
pRS-8bit 2466 1356 960 490 381 331 250 312 292 281 229
pRS-16bit 2630 1200 867 469 335 283 225 204 254 255 174
pRS-Akiba | 1742 1928 1699 1912 1738 1863 1763 1717 1728 1817 1663
Random, n =3.27G, N =32Gi, 2 =449%
mkqgs_cache8| 894
pS®-Unroll | 2402 1204 863 465 331 259 186 149 131 130 118
pS*-Equal 2492 1132 810 449 317 246 189 148 141 131 140
pMKQS 1036 527 342 222 172 152 149 152 144 146
pRS-8bit 1236 737 543 304 218 171 155 148 136 163 127
pRS-16bit 1249 714 535 313 234 179 150 137 138 140 144
pRS-Akiba | 1307 886 722 481 419 380 350 327 316 333 327
GOV2, n=182G, N=64Gi, 2 =77.0%
mkgs_cache8| 681
pS®-Unroll 996 486 323 177 131 117 928 81.2 71.7 68.2 589
pS®-Equal 901 437 289 157 124 111 929 751 624 61.6 64.2
pMKQS 745 383 269 154 122 106 88.7 93.0 86.3 77.1 74.2
pRS-8bit 2035 989 660 357 301 269 212 181 163 188 184
pRS-16bit 1991 939 637 345 283 248 194 171 152 170 171
pRS-Akiba | 1515 760 592 609 583 569 595 580 551 584 594
Wikipedia,n =4G, D =249 G
mkgs_cache8| 2895
pS®-Unroll | 3740 1660 1149 615 430 334 241 208 200 191 201
pS®-Equal 4158 1714 1242 688 478 373 278 214 188 199 247
pMKQS 3122 1638 1040 597 432 358 289 244 222 220 249
pRS-8bit 5036 2486 1661 926 603 485 422 402 395 580 414
pRS-16bit 5032 2396 1629 852 582 487 400 388 381 388 394
pRS-Akiba | 3806 2046 1474 809 611 527 457 451 490 595 450
Sinha NoDup (complete), n = 31.6 M, N = 382 Mi, % =734%
radixR_CE6 | 8.06
pS®-Unroll 11.8 537 3.82 218 1.71 136 1.17 1.13 1.28 1.36 1.42
pS*-Equal 11.0 4.67 3.32 187 156 1.19 1.11 1.14 1.26 1.36 1.38
pMKQS 9.42 5.12 3775 240 194 1.68 148 142 144 1.52 1.61
pRS-8bit 9.95 5.15 3.59 223 180 1.75 1.84 191 198 215 223
pRS-16bit 9.88 4.68 3.29 2.01 1.70 1.72 1.84 2.04 240 259 2.74
pRS-Akiba 10.2 583 4.23 274 227 211 216 2.26 234 235 2.38
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Table 8. Absolute run time of parallel and best sequential algorithms on AMDI16 in
seconds, median of 1-3 runs

PEs 1 2 4 6 8 12 16
URLs, n =500M, N =32Gi, £ =954%
mkqs_cache8 427
pS®-Unroll 544 278 155 110 86.9 69.1 58.2
pS°-Equal 489 255 143 98.4 83.0 64.0 57.0
pMKQS 441 228 117 88.8 74.5 68.1 62.0
pRS-8bit 1210 659 372 296 269 262 245
pRS-16bit 1210 612 335 271 232 233 205
pRS-Akiba 987 967 995 963 962 963 993
Random, n =1.64G, N = 16Gi, Z = 44.0%
mkqgs_cache8 486
pS®-Unroll 1411 666 370 256 200 146 120
pS°-Equal 1376 675 358 248 195 141 117
pMKQS 818 660 457 248 290
pRS-8bit 754 424 226 166 136 109 101
pRS-16bit 754 426 231 166 138 111 100
pRS-Akiba 1176 622 373 294 256 219 202
GOV2,n=654M, N =32Gi, £ =733%
mkqs_cache8 390
pS®-Unroll 526 258 138 97.7 84.7 67.9 56.8
pS’-Equal 469 234 124 88.3 78.3 63.7 53.4
pMKQS 451 260 147 129 86.7 71.6 75.2
pRS-8bit 927 482 253 191 165 158 146
pRS-16bit 924 451 247 186 158 145 131
pRS-Akiba 761 386 302 297 296 307 308
Wikipedia, n = 1.50Gi, D =90 G
mkqs_cache8 1214
pS®-Unroll 1605 696 353 249 196 147 129
pS°-Equal 1834 755 382 265 206 155 132
pMKQS 1495 1190 647 518 404 238 257
pRS-8bit 2011 985 501 356 281 223 211
pRS-16bit 1975 938 479 338 270 237 202
pRS-Akiba 1580 842 460 344 288 241 231
Sinha NoDup (complete), n = 31.6 M, N = 382 Mi, % =734%
radixR_-CE7 9.51
pS®-Unroll 14.4 6.31 3.52 2.55 2.05 1.65 1.54
pS°-Equal 12.3 5.23 2.94 2.13 1.80 1.49 1.45
pMKQS 11.7 6.15 3.62 2.82 2.49 2.20 2.10
pRS-8bit 11.6 6.01 3.31 2.54 2.26 2.08 2.19
pRS-16bit 11.7 5.43 3.01 2.31 2.00 1.88 1.93
pRS-Akiba 12.1 6.80 4.05 3.19 2.76 2.46 2.40
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Table 9. Absolute run time of parallel and best sequential algorithms on Inteli7 in
seconds, median of ten runs, larger test instances

PEs 1 2 3 4 5 6 7 8
URLs, n =65.7TM, N =4Gi, 2 =927%

mkqs_cache8 16.2

pS®-Unroll 18.9 9.81 6.95 5.57 5.12 4.84 4.57 4.56
pS°-Equal 18.0 9.04 6.44 5.28 4.88 4.53 4.32 4.24
pMKQS 17.1 9.28 6.90 5.86 5.69 5.55 5.45 5.40
pRS-8bit 40.7 22.3 17.1 14.5 14.3 13.9 13.8 13.7
pRS-16bit 40.7 20.0 15.1 12.7 12.3 12.1 11.9 11.9
pRS-Akiba 34.3 34.1 34.1 34.0 34.1 34.1 34.1 34.1
pMergesort 33.9 18.6 18.6 14.5 11.1 114 11.1 10.8

pMKQS-SIMD| 345 203 161 14.3 142 141 142 143
Random, n =205 M, N =2Gi, £ =42.1%

radixR_CE7 20.0

pS®-Unroll 441 179 123  11.0 9.8% 932 844 8.80
pS®-Equal 475 195 134 120 109 9.67 9.09  9.24
pMKQS 364 203 132 108 994 944 9.00 855
pRS-8bit 245 129 941 802 7.72 746 729 @ 7.21
pRS-16bit 245 124 9.04 833 770 772 723  7.52
pRS-Akiba 232 151 126 114 112 110 109 108
pMergesort 104  61.6 615 537 425 425 43.0 424

pMKQS-SIMD| 130 748 57.0 48.9 489 487 488 487
GOV2, n=80M, N =4Gi, £ =69.8%

mkqgs_cache8 16.0

pS®-Unroll 16.5 7.62 5.73 4.18 4.20 4.02 3.92 4.01
pS®-Equal 17.3 7.80 5.88 4.27 4.29 4.14 3.96 3.95
pMKQS 17.0 9.19 6.67 5.63 5.20 4.92 4.74 4.73
pRS-8bit 33.7 17.3 12.6 9.98 9.58 9.22 9.20 9.78
pRS-16bit 33.7 16.6 11.9 9.37 8.89 8.66 8.98 8.13
pRS-Akiba 29.1 15.5 13.8 13.7 13.8 15.0 14.4 15.1
pMergesort 34.8 20.1 20.1 17.7 15.0 13.4 13.7 12.8

pMKQS-SIMD 34.9 20.2 15.6 13.4 13.4 13.2 13.1 13.2
Wikipedia, n =2G, D =13.8G

radixR_CE7 62.7

pS°-Unroll 78.6 32.9 244 17.6 17.5 16.0 14.9 14.2
pS°-Equal 84.3 35.6 26.6 19.0 18.9 17.3 16.0 14.6
pMKQS 83.4 41.3 29.0 23.5 20.9 19.3 17.9 17.4
pRS-8bit 76.7 37.4 26.0 20.0 18.6 17.2 16.1 15.2
pRS-16bit 76.7 35.7 25.0 18.9 17.7 16.4 15.3 14.5
pRS-Akiba 66.6 35.7 25.5 20.4 19.1 18.0 17.1 16.3
pMergesort 133 76.6 77.0 69.7 62.4 52.8 51.2 49.2

pMKQS-SIMD 137 7.2 58.2 49.5 48.5 47.8 47.3 46.9
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Table 10. Absolute run time of parallel and best sequential algorithms on Inteli7 in
seconds, median of ten runs, smaller test instances

PEs 1 2 3 4 5 6 7 8
Sinha URLSs (complete), n = 10M, N =304 Mi, 2 =975%
mkqs_cache8 1.96

pS®-Unroll 2.04 0936 0.716 0.520 0.544 0.506 0.479 0.465
pS*-Equal 2.10 0.967 0.756 0.535 0.531 0.527 0.499 0.457
pMKQS 2.05 1.11  0.799 0.657 0.629 0.608 0.598 0.592
pRS-8bit 5.20 2.46 1.73 1.37 1.32 1.28 1.24 1.22
pRS-16bit 5.19 2.22 1.55 1.22 1.19 1.15 1.12 1.09
pRS-Akiba 4.21 3.58 3.37 3.25 3.27 3.25 3.24 3.23
pMergesort 4.22 2.41 2.42 2.13 2.00 1.62 1.67 1.66

pMKQS-SIMD 4.16 2.41 1.87 1.64 1.66 1.67 1.68 1.70
Sinha DNA (complete), n = 31.6 M, N = 302Mi, £ =100%
radixR_-CE6 3.84

pS®-Unroll 4.41 1.63 1.15 0.912 1.01  0.968 0.864 0.844
pS°-Equal 4.76 1.81 1.26  0.999 1.04 0.981 0.947 0.847
pMKQS 4.67 2.49 1.82 1.51 1.43 1.38 1.36 1.35
pRS-8bit 5.70 2.98 2.18 1.72 1.68 1.66 1.62 1.60
pRS-16bit 5.70 2.76 1.98 1.61 1.60 1.56 1.53 1.50
pRS-Akiba 3.89 2.25 1.70 1.46 1.50 1.48 1.49 1.45
pMergesort 11.7 6.54 6.57 5.60 4.62 4.20 4.22 4.16

pMKQS-SIMD 11.3 6.67 5.27 4.67 4.75 4.79 4.84 4.88
Sinha NoDup (complete), n = 31.6 M, N = 382Mi, Z =73.4%
radixR_-CE6 4.06

pS°-Unroll 6.35 2.47 1.70 1.31 1.39 1.26 1.13 1.08
pS°-Equal 6.75 2.68 1.84 1.42 1.43 1.30 1.24 1.11
pMKQS 5.99 3.13 2.25 1.80 1.67 1.57 1.50 1.44
pRS-8bit 5.41 2.71 1.90 1.51 1.45 1.37 1.30 1.26
pRS-16bit 5.41 2.47 1.72 1.36 1.31 1.23 1.17 1.12
pRS-Akiba 4.92 2.73 2.00 1.65 1.59 1.52 1.46 1.41
pMergesort 14.0 7.98 7.99 6.75 6.49 5.32 5.37 5.28

pMKQS-SIMD 14.6 8.34 6.35 5.43 5.43 5.42 5.39 5.38
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Table 11. Absolute run time of parallel and best sequential algorithms on IntelX5 in
seconds, median of ten runs, larger test instances

PEs 1 2 3 4 5 6 7 8
URLs, n =65.7TM, N =4Gi, 2 =927%

mkqs_cache8 64.1

pS®-Unroll 62.3 32.8 25.6 22.0 20.6 19.2 18.8 19.0
pS°-Equal 60.4 32.2 25.4 21.8 20.5 19.2 18.8 19.0
pMKQS 67.3 36.7 30.7 27.2 26.9 26.9 26.9 26.7
pRS-8bit 146 89.1 80.5 74.1 73.6 72.8 74.4 75.0
pRS-16bit 146 78.0 69.0 63.9 62.6 62.4 63.9 62.1
pRS-Akiba 120 118 118 118 118 118 118 117
pMergesort 91.3 53.2 53.1 44.6 37.7 38.4 40.4 42.8

pMKQS-SIMD 155 94.3 85.9 80.3 79.9 79.7 79.3 80.2
Random, n =307M, N =3Gi, £ =42.8%

mkqs_cache8 61.2

pS®-Unroll 98.0 48.9 39.2 30.2 29.3 27.0 25.3 23.6
pS°-Equal 106 52.9 42.4 31.9 30.7 28.0 26.4 24.0
pMKQS 68.2 39.7 31.2 27.1 27.3 26.7 27.2 26.6
pRS-8bit 76.8 45.4 37.3 32.0 30.1 28.5 27.7 27.0
pRS-16bit 76.9 42.5 34.9 28.7 27.6 26.0 25.0 24.3
pRS-Akiba 78.7 48.5 40.3 35.7 33.5 31.9 31.1 30.5
pMergesort 301 188 182 177 157 158 169 172

pMKQS-SIMD| 469 282 253 237 232 231 228 226
GOV2,n=166M, N =8Gi, 2 =706%

mkqgs_cache8 55.7

pS5-Unroll 52.4 28.2 21.3 17.8 15.8 15.4 14.9 15.5
pSS-Equal 54.2 28.8 21.8 18.1 15.8 15.4 15.2 15.7
pMKQS 59.4 33.1 27.2 24.3 23.6 23.3 23.7 23.6
pRS-8bit 111 60.6 49.5 44.2 44.4 45.5 44.6 44.5
pRS-16bit 111 58.4  46.0  40.4 38.4  40.6 39.6 39.4
pRS-Akiba 93.2 51.4 47.3 48.3 48.5 49.8 51.5 52.8
pMergesort 125 77.2 77.2 73.0 64.6 66.3 69.4 71.8

pMKQS-SIMD 168 100 90.2 84.6 83.2 82.1 81.9 82.0
Wikipedia, n =2G, D =13.8G

83.7
pS®-Unroll 99.9 485 377 291 277 258 244 229
pS°-Equal 109  51.2 401  30.3 290 267 253 234
pPMKQS 102 552 444 377 361 353 346 345
pRS-8bit 91.6 50.1 387 319 301 288 27.7  27.2
pRS-16bit 91.8 485 377 306 289 277 263  25.2
pRS-Akiba 84.7 474 368 311 291 283 273 27.0
pMergesort 193 125 128 120 116 120 138 161

pMKQS-SIMD 263 156 138 127 126 126 126 126
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Table 12. Absolute run time of parallel and best sequential algorithms on IntelX5 in
seconds, median of ten runs, smaller test instances

PEs 1 2 3 4 5 6 7 8
Sinha URLSs (complete), n = 10M, N =304 Mi, 2 =975%
mkqs_cache8 3.34

pS®-Unroll 3.22 1.69 1.38 1.09 1.03 1.02  0.989 0.947
pS>-Equal 3.28 1.72 1.41 1.10 1.02 1.04 0.999 0.940
pMKQS 3.59 2.00 1.64 1.44 1.42 1.42 1.43 1.46
pRS-8bit 5.75 3.21 2.67 2.36 2.30 2.25 2.23 2.23
pRS-16bit 5.74 2.86 2.36 2.05 2.00 1.97 1.95 1.94
pRS-Akiba 5.09 4.34 4.18 4.08 4.07 4.07 4.07 4.07
pMergesort 6.48 4.10 3.76 3.92 3.55 3.69 3.86 4.32

pMKQS-SIMD 9.52 5.88 5.47 5.23 5.22 5.24 5.27 5.29
Sinha DNA (complete), n = 31.6 M, N = 302Mi, £ =100%
radixR_CE7 6.08

pS5-Unroll 5.71 2.85 2.22 1.85 1.74 1.59 1.66 1.47
pS°-Equal 6.07 3.04 2.34 1.94 1.80 1.69 1.74 1.50
pMKQS 7.36 4.19 3.66 3.28 3.28 3.26 3.28 3.32
pRS-8bit 7.46 4.42 3.97 3.53 3.53 3.52 3.52 3.54
pRS-16bit 7.47 4.27 3.69 3.32 3.29 3.28 3.30 3.28
pRS-Akiba 5.98 3.77 3.51 3.20 3.21 3.20 3.19 3.18
pMergesort 18.4 10.9 10.7 9.56 8.30 8.42 8.68 9.04

pMKQS-SIMD 27.0 16.8 15.7 14.9 14.9 14.9 15.0 15.0
Sinha NoDup (complete), n = 31.6 M, N = 382Mi, Z =73.4%
radixR_-CE7 6.06

pS?-Unroll 758 380 2.80 226 203 1.84 186  1.67
pS®-Equal 794 398 291 234 208 190 193 1.69
pMKQS 837 450 381 325 315 314 3.10 3.09
pRS-8bit 7.19 416 337 292 279 268 266 261
pRS-16bit 7.19 368 293 249 236 223 223 215
pRS-Akiba 7.03 407 327 282 268 260 254 252
pMergesort 208 129 118 11.8 104 106 11.0 115

pMKQS-SIMD 30.1 18.0 16.1 15.0 14.9 14.9 14.9 15.1
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