panthema / 2007 / stx-btree / stx-btree-0.7 / include / stx / btree.h (Download File)
// $Id: btree.h 37 2007-04-27 12:13:27Z tb $
/** \file btree.h
 * Contains the main B+ tree implementation template class btree.
 */

/*
 * STX B+ Tree Template Classes v0.7
 * Copyright (C) 2007 Timo Bingmann
 *
 * This library is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published by the
 * Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 *
 * This library is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License
 * for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#ifndef _STX_BTREE_H_
#define _STX_BTREE_H_

// *** Required Headers from the STL

#include <functional>
#include <algorithm>
#include <istream>
#include <ostream>
#include <assert.h>

// *** Debugging Macros

#ifdef BTREE_DEBUG

#include <iostream>

/// Print out debug information to std::cout if BTREE_DEBUG is defined.
#define BTREE_PRINT(x)		do { if (debug) (std::cout << x); } while(0)

/// Assertion only if BTREE_DEBUG is defined. This is not used in verify().
#define BTREE_ASSERT(x)		do { assert(x); } while(0)

#else

/// Print out debug information to std::cout if BTREE_DEBUG is defined.
#define BTREE_PRINT(x)		do { } while(0)

/// Assertion only if BTREE_DEBUG is defined. This is not used in verify().
#define BTREE_ASSERT(x)		do { } while(0)

#endif

/// The maximum of a and b. Used in some compile-time formulas.
#define BTREE_MAX(a,b)		((a) < (b) ? (b) : (a))

/// STX - Some Template Extensions namespace
namespace stx {

/** Generates default traits for a B+ tree used as a set. It estimates leaf and
 * inner node sizes by assuming a cache line size of 256 bytes. */
template <typename _Key>
struct btree_default_set_traits
{
    /// If true, the tree will self verify it's invariants after each insert()
    /// or erase(). The header must have been compiled with BTREE_DEBUG defined.
    static const bool	selfverify = false;

    /// If true, the tree will print out debug information and a tree dump
    /// during insert() or erase() operation. The header must have been
    /// compiled with BTREE_DEBUG defined and key_type must be std::ostream
    /// printable.
    static const bool	debug = false;

    /// Number of slots in each leaf of the tree. Estimated so that each node
    /// has a size of about 256 bytes.
    static const int 	leafslots = BTREE_MAX( 8, 256 / (sizeof(_Key)) );

    /// Number of slots in each inner node of the tree. Estimated so that each node
    /// has a size of about 256 bytes.
    static const int	innerslots = BTREE_MAX( 8, 256 / (sizeof(_Key) + sizeof(void*)) );
};

/** Generates default traits for a B+ tree used as a map. It estimates leaf and
 * inner node sizes by assuming a cache line size of 256 bytes. */
template <typename _Key, typename _Data>
struct btree_default_map_traits
{
    /// If true, the tree will self verify it's invariants after each insert()
    /// or erase(). The header must have been compiled with BTREE_DEBUG defined.
    static const bool	selfverify = false;

    /// If true, the tree will print out debug information and a tree dump
    /// during insert() or erase() operation. The header must have been
    /// compiled with BTREE_DEBUG defined and key_type must be std::ostream
    /// printable.
    static const bool	debug = false;

    /// Number of slots in each leaf of the tree. Estimated so that each node
    /// has a size of about 256 bytes.
    static const int 	leafslots = BTREE_MAX( 8, 256 / (sizeof(_Key) + sizeof(_Data)) );

    /// Number of slots in each inner node of the tree. Estimated so that each node
    /// has a size of about 256 bytes.
    static const int	innerslots = BTREE_MAX( 8, 256 / (sizeof(_Key) + sizeof(void*)) );
};

/** @brief Basic class implementing a base B+ tree data structure in memory.
 *
 * The base implementation of a memory B+ tree. It is based on the
 * implementation in Cormen's Introduction into Algorithms, Jan Jannink's paper
 * and other algorithm resources. Almost all STL-required function calls are
 * implemented. The asymptotic time requirements of the STL are not always
 * fulfilled in theory, however in practice this B+ tree performs better than a
 * red-black tree by using more memory. The insertion function splits the nodes
 * on the recursion unroll. Erase is largely based on Jannink's ideas.
 *
 * This class is specialized into btree_set, btree_multiset, btree_map and
 * btree_multimap using default template parameters and facade functions.
 */
template <typename _Key, typename _Data,
	  typename _Value = std::pair<_Key, _Data>,
	  typename _Compare = std::less<_Key>,
	  typename _Traits = btree_default_map_traits<_Key, _Data>,
	  bool _Duplicates = false>
class btree
{
public:
    // *** Template Parameter Types

    /// First template parameter: The key type of the B+ tree. This is stored
    /// in inner nodes and leaves
    typedef _Key			key_type;

    /// Second template parameter: The data type associated with each
    /// key. Stored in the B+ tree's leaves
    typedef _Data			data_type;

    /// Third template parameter: Composition pair of key and data types, this
    /// is required by the STL standard. The B+ tree does not store key and
    /// data together. If value_type == key_type then the B+ tree implements a
    /// set.
    typedef _Value			value_type;

    /// Fourth template parameter: Key comparison function object
    typedef _Compare			key_compare;

    /// Fifth template parameter: Traits object used to define more parameters
    /// of the B+ tree
    typedef _Traits			traits;

    /// Sixth template parameter: Allow duplicate keys in the B+ tree. Used to
    /// implement multiset and multimap.
    static const bool			allow_duplicates = _Duplicates;

public:
    // *** Constructed Types

    /// Typedef of our own type
    typedef btree<key_type, data_type, value_type,
		  key_compare, traits, allow_duplicates>	btree_self;

    /// Size type used to count keys
    typedef size_t				size_type;

    /// The pair of key_type and data_type, this may be different from value_type.
    typedef std::pair<key_type, data_type>	pair_type;

public:
    // *** Static Constant Options and Values of the B+ Tree

    /// Base B+ tree parameter: The number of key/data slots in each leaf
    static const unsigned short		leafslotmax =  traits::leafslots;

    /// Base B+ tree parameter: The number of key slots in each inner node,
    /// this can differ from slots in each leaf.
    static const unsigned short		innerslotmax =  traits::innerslots;

    /// Computed B+ tree parameter: The minimum number of key/data slots used
    /// in a leaf. If fewer slots are used, the leaf will be merged or slots
    /// shifted from it's siblings.
    static const unsigned short 	minleafslots = (leafslotmax / 2);

    /// Computed B+ tree parameter: The minimum number of key slots used
    /// in an inner node. If fewer slots are used, the inner node will be
    /// merged or slots shifted from it's siblings.
    static const unsigned short 	mininnerslots = (innerslotmax / 2);

    /// Debug parameter: Enables expensive and thorough checking of the B+ tree
    /// invariants after each insert/erase operation.
    static const bool 			selfverify = traits::selfverify;

    /// Debug parameter: Prints out lots of debug information about how the
    /// algorithms change the tree. Requires the header file to be compiled
    /// with BTREE_PRINT and the key type must be std::ostream printable.
    static const bool 			debug = traits::debug;

private:
    // *** Node Classes for In-Memory Nodes

    /// The header structure of each node in-memory. This structure is extended
    /// by inner_node or leaf_node.
    struct node
    {
	/// Level in the b-tree, if level == 0 -> leaf node
	unsigned short	level;

	/// Number of key slotuse use, so number of valid children or data
	/// pointers
	unsigned short 	slotuse;

	/// Delayed initialisation of constructed node
	inline void initialize(const unsigned short l)
	{
	    level = l;
	    slotuse = 0;
	}
	
	/// True if this is a leaf node
	inline bool isleafnode() const
	{
	    return (level == 0);
	}
    };

    /// Extended structure of a inner node in-memory. Contains only keys and no
    /// data items.
    struct inner_node : public node
    {
	/// Keys of children or data pointers
	key_type	slotkey[innerslotmax];

	/// Pointers to children
	node*		childid[innerslotmax+1];

	/// Set variables to initial values
	inline void initialize(const unsigned short l)
	{
	    node::initialize(l);
	}

	/// True if the node's slots are full
	inline bool isfull() const
	{
	    return (node::slotuse == innerslotmax);
	}

	/// True if few used entries, less than half full
	inline bool isfew() const
	{
	    return (node::slotuse <= mininnerslots);
	}

	/// True if node has too few entries
	inline bool isunderflow() const
	{
	    return (node::slotuse < mininnerslots);
	}
    };

    /// Extended structure of a leaf node in memory. Contains pairs of keys and
    /// data items. Key and data slots are kept in separate arrays, because the
    /// key array is traversed very often compared to accessing the data items.
    struct leaf_node : public node
    {
	/// Double linked list pointers to traverse the leaves
	leaf_node	*prevleaf;

	/// Double linked list pointers to traverse the leaves
	leaf_node	*nextleaf;

	/// Keys of children or data pointers
	key_type	slotkey[leafslotmax];

	/// Array of data
	data_type	slotdata[leafslotmax];

	/// Set variables to initial values
	inline void initialize()
	{
	    node::initialize(0);
	    prevleaf = nextleaf = NULL;
	}

	/// True if the node's slots are full
	inline bool isfull() const
	{
	    return (node::slotuse == leafslotmax);
	}

	/// True if few used entries, less than half full
	inline bool isfew() const
	{
	    return (node::slotuse <= minleafslots);
	}

	/// True if node has too few entries
	inline bool isunderflow() const
	{
	    return (node::slotuse < minleafslots);
	}
    };

private:
    // *** Template Magic to Convert a pair or key/data types to a value_type

    /// \internal For sets the second pair_type is an empty struct, so the
    /// value_type should only be the first.
    template <typename value_type, typename pair_type>
    struct btree_pair_to_value
    {
	/// Convert a fake pair type to just the first component
	inline value_type operator()(pair_type& p) const {
	    return p.first;
	}
	/// Convert a fake pair type to just the first component
	inline value_type operator()(const pair_type& p) const {
	    return p.first;
	}
    };

    /// \internal For maps value_type is the same as the pair_type
    template <typename value_type>
    struct btree_pair_to_value<value_type, value_type>
    {
	/// Identity "convert" a real pair type to just the first component
	inline value_type operator()(pair_type& p) const {
	    return p;
	}
	/// Identity "convert" a real pair type to just the first component
	inline value_type operator()(const pair_type& p) const {
	    return p;
	}
    };

    /// Using template specialization select the correct converter used by the
    /// iterators
    typedef btree_pair_to_value<value_type, pair_type> pair_to_value_type;

public:
    // *** Iterators and Reverse Iterators

    class iterator;
    class const_iterator;

    /// STL-like iterator object for B+ tree items. The iterator points to a
    /// specific slot number in a leaf.
    class iterator
    {
    public:
	// *** Types

	/// The key type of the btree. Returned by key().
	typedef typename btree::key_type		key_type;

	/// The data type of the btree. Returned by data().
	typedef typename btree::data_type		data_type;

	/// The value type of the btree. Returned by operator*().
	typedef typename btree::value_type		value_type;

	/// The pair type of the btree.
	typedef typename btree::pair_type		pair_type;

	/// Reference to the value_type. Required by the reverse_iterator.
	typedef value_type&		reference;

	/// Pointer to the value_type. Required by the reverse_iterator.
	typedef value_type*		pointer;

	/// STL-magic iterator category
	typedef std::bidirectional_iterator_tag iterator_category;

	/// STL-magic
	typedef ptrdiff_t               difference_type;

	/// Our own type
	typedef iterator		self;

    private:
	// *** Members

	/// The currently referenced leaf node of the tree
	typename btree::leaf_node*	currnode;

	/// Current key/data slot referenced
	unsigned short	currslot;
    
	/// Friendly to the const_iterator, so it may access the two data items directly
	friend class btree<key_type, data_type, value_type, key_compare, traits, allow_duplicates>::const_iterator;
	
	/// Evil! A temporary value_type to STL-correctly deliver operator* and
	/// operator->
	mutable value_type		temp_value;

    public:
	// *** Methods

	/// Constructor of a mutable iterator
	inline iterator(typename btree::leaf_node *l, unsigned short s)
	    : currnode(l), currslot(s)
	{ }

	/// Dereference the iterator, this is not a value_type& because key and
	/// value are not stored together
	inline reference operator*() const
	{
	    temp_value = pair_to_value_type()( pair_type(currnode->slotkey[currslot],
							 currnode->slotdata[currslot]) );
	    return temp_value;
	}

	/// Dereference the iterator. Do not use this if possible, use key()
	/// and data() instead. The B+ tree does not stored key and data
	/// together.
	inline pointer operator->() const
	{
	    temp_value = pair_to_value_type()( pair_type(currnode->slotkey[currslot],
							 currnode->slotdata[currslot]) );
	    return &temp_value;
	}

	/// Key of the current slot
	inline const key_type& key() const
	{
	    return currnode->slotkey[currslot];
	}

	/// Writable reference to the current data object
	inline data_type& data() const
	{
	    return currnode->slotdata[currslot];
	}

	/// Prefix++ advance the iterator to the next slot
	inline self& operator++()
	{
	    if (currslot + 1 < currnode->slotuse) {
		++currslot;
	    }
	    else if (currnode->nextleaf != NULL) {
		currnode = currnode->nextleaf;
		currslot = 0;
	    }
	    else {
		// this is end()
		currslot = currnode->slotuse;
	    }

	    return *this;
	}

	/// Postfix++ advance the iterator to the next slot
	inline self operator++(int)
	{
	    self tmp = *this;	// copy ourselves

	    if (currslot + 1 < currnode->slotuse) {
		++currslot;
	    }
	    else if (currnode->nextleaf != NULL) {
		currnode = currnode->nextleaf;
		currslot = 0;
	    }
	    else {
		// this is end()
		currslot = currnode->slotuse;
	    }

	    return tmp;
	}

	/// Prefix-- backstep the iterator to the last slot
	inline self& operator--()
	{
	    if (currslot > 0) {
		--currslot;
	    }
	    else if (currnode->prevleaf != NULL) {
		currnode = currnode->prevleaf;
		currslot = currnode->slotuse - 1;
	    }
	    else {
		// this is begin()
		currslot = 0;
	    }

	    return *this;
	}

	/// Postfix-- backstep the iterator to the last slot
	inline self operator--(int)
	{
	    self tmp = *this;	// copy ourselves

	    if (currslot > 0) {
		--currslot;
	    }
	    else if (currnode->prevleaf != NULL) {
		currnode = currnode->prevleaf;
		currslot = currnode->slotuse - 1;
	    }
	    else {
		// this is begin()
		currslot = 0;
	    }

	    return tmp;
	}

	/// Equality of iterators
	inline bool operator==(const self& x) const
	{
	    return (x.currnode == currnode) && (x.currslot == currslot);
	}

	/// Inequality of iterators
	inline bool operator!=(const self& x) const
	{
	    return (x.currnode != currnode) || (x.currslot != currslot);
	}    
    };

    /// STL-like read-only iterator object for B+ tree items. The iterator
    /// points to a specific slot number in a leaf.
    class const_iterator
    {
    public:
	// *** Types

	/// The key type of the btree. Returned by key().
	typedef typename btree::key_type		key_type;

	/// The data type of the btree. Returned by data().
	typedef typename btree::data_type		data_type;

	/// The value type of the btree. Returned by operator*().
	typedef typename btree::value_type		value_type;

	/// The pair type of the btree.
	typedef typename btree::pair_type		pair_type;

	/// Reference to the value_type. Required by the reverse_iterator.
	typedef const value_type&	reference;

	/// Pointer to the value_type. Required by the reverse_iterator.
	typedef const value_type*	pointer;

	/// STL-magic iterator category
	typedef std::bidirectional_iterator_tag iterator_category;

	/// STL-magic
	typedef ptrdiff_t         	difference_type;

	/// Our own type
	typedef const_iterator		self;

    private:
	// *** Members

	/// The currently referenced leaf node of the tree
	const typename btree::leaf_node*	currnode;

	/// Current key/data slot referenced
	unsigned short	currslot;
    
	/// Evil! A temporary value_type to STL-correctly deliver operator* and
	/// operator->
	mutable value_type		temp_value;

    public:
	// *** Methods

	/// Constructor of a const iterator
	inline const_iterator(const typename btree::leaf_node *l, unsigned short s)
	    : currnode(l), currslot(s)
	{ }

	/// Copy-constructor from a mutable const iterator
	inline const_iterator(const iterator &it)
	    : currnode(it.currnode), currslot(it.currslot)
	{ }

	/// Dereference the iterator. Do not use this if possible, use key()
	/// and data() instead. The B+ tree does not stored key and data
	/// together.
	inline reference operator*() const
	{
	    temp_value = pair_to_value_type()( pair_type(currnode->slotkey[currslot],
							 currnode->slotdata[currslot]) );
	    return temp_value;
	}

	/// Dereference the iterator. Do not use this if possible, use key()
	/// and data() instead. The B+ tree does not stored key and data
	/// together.
	inline pointer operator->() const
	{
	    temp_value = pair_to_value_type()( pair_type(currnode->slotkey[currslot],
							 currnode->slotdata[currslot]) );
	    return &temp_value;
	}

	/// Key of the current slot
	inline const key_type& key() const
	{
	    return currnode->slotkey[currslot];
	}

	/// Read-only reference to the current data object
	inline const data_type& data() const
	{
	    return currnode->slotdata[currslot];
	}

	/// Prefix++ advance the iterator to the next slot
	inline self& operator++()
	{
	    if (currslot + 1 < currnode->slotuse) {
		++currslot;
	    }
	    else if (currnode->nextleaf != NULL) {
		currnode = currnode->nextleaf;
		currslot = 0;
	    }
	    else {
		// this is end()
		currslot = currnode->slotuse;
	    }

	    return *this;
	}

	/// Postfix++ advance the iterator to the next slot
	inline self operator++(int)
	{
	    self tmp = *this;	// copy ourselves

	    if (currslot + 1 < currnode->slotuse) {
		++currslot;
	    }
	    else if (currnode->nextleaf != NULL) {
		currnode = currnode->nextleaf;
		currslot = 0;
	    }
	    else {
		// this is end()
		currslot = currnode->slotuse;
	    }

	    return tmp;
	}

	/// Prefix-- backstep the iterator to the last slot
	inline self& operator--()
	{
	    if (currslot > 0) {
		--currslot;
	    }
	    else if (currnode->prevleaf != NULL) {
		currnode = currnode->prevleaf;
		currslot = currnode->slotuse - 1;
	    }
	    else {
		// this is begin()
		currslot = 0;
	    }

	    return *this;
	}

	/// Postfix-- backstep the iterator to the last slot
	inline self operator--(int)
	{
	    self tmp = *this;	// copy ourselves

	    if (currslot > 0) {
		--currslot;
	    }
	    else if (currnode->prevleaf != NULL) {
		currnode = currnode->prevleaf;
		currslot = currnode->slotuse - 1;
	    }
	    else {
		// this is begin()
		currslot = 0;
	    }

	    return tmp;
	}

	/// Equality of iterators
	inline bool operator==(const self& x) const
	{
	    return (x.currnode == currnode) && (x.currslot == currslot);
	}

	/// Inequality of iterators
	inline bool operator!=(const self& x) const
	{
	    return (x.currnode != currnode) || (x.currslot != currslot);
	}    
    };

    /// create mutable reverse iterator by using STL magic
    typedef std::reverse_iterator<iterator>       reverse_iterator;

    /// create constant reverse iterator by using STL magic
    typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

public:
    // *** Small Statistics Structure

    /** A small struct containing basic statistics about the B+ tree. It can be
     * fetched using get_stats(). */
    struct tree_stats
    {
	/// Number of items in the B+ tree
	size_type	itemcount;

	/// Number of leaves in the B+ tree
	size_type	leaves;

	/// Number of inner nodes in the B+ tree
	size_type	innernodes;

	/// Base B+ tree parameter: The number of key/data slots in each leaf
	static const unsigned short	leafslots = btree_self::leafslotmax;

	/// Base B+ tree parameter: The number of key slots in each inner node.
	static const unsigned short	innerslots = btree_self::innerslotmax;

	/// Zero initialized
	inline tree_stats()
	    : itemcount(0),
	      leaves(0), innernodes(0)
	{
	}

	/// Return the total number of nodes
	inline size_type nodes() const
	{
	    return innernodes + leaves;
	}

	/// Return the average fill of leaves
	inline double avgfill_leaves() const
	{
	    return static_cast<double>(itemcount) / (leaves * leafslots);
	}
    };

private:
    // *** Tree Object Data Members

    /// Pointer to the B+ tree's root node, either leaf or inner node
    node*	root;

    /// Pointer to first leaf in the double linked leaf chain
    leaf_node	*headleaf;

    /// Pointer to last leaf in the double linked leaf chain
    leaf_node	*tailleaf;

    /// Other small statistics about the B+ tree
    tree_stats	stats;

    /// Key comparison object. More comparison functions are generated from
    /// this < relation.
    key_compare	key_less;

public:
    // *** Constructors and Destructor

    /// Default constructor initializing an empty B+ tree with the standard key
    /// comparison function
    inline btree()
	: root(NULL), headleaf(NULL), tailleaf(NULL)
    {
    }

    /// Constructor initializing an empty B+ tree with a special key
    /// comparison object
    inline btree(const key_compare &kcf)
	: root(NULL), headleaf(NULL), tailleaf(NULL),
	  key_less(kcf)
    {
    }

    /// Constructor initializing a B+ tree with the range [first,last)
    template <class InputIterator>
    inline btree(InputIterator first, InputIterator last)
	: root(NULL), headleaf(NULL), tailleaf(NULL)
    {
	insert(first, last);
    }

    /// Constructor initializing a B+ tree with the range [first,last) and a
    /// special key comparison object
    template <class InputIterator>
    inline btree(InputIterator first, InputIterator last, const key_compare &kcf)
	: root(NULL), headleaf(NULL), tailleaf(NULL),
	  key_less(kcf)
    {
	insert(first, last);
    }

    /// Frees up all used B+ tree memory pages
    inline ~btree()
    {
	clear();
    }

    /// Fast swapping of two identical B+ tree objects.
    void swap(btree_self& from)
    {
	std::swap(root, from.root);
	std::swap(headleaf, from.headleaf);
	std::swap(tailleaf, from.tailleaf);
	std::swap(stats, from.stats);
	std::swap(key_less, from.key_less);
    }

public:
    // *** Key and Value Comparison Function Objects

    /// Function class to compare value_type objects. Required by the STL
    class value_compare
    {
    protected:
	/// Key comparison function from the template parameter
	key_compare	key_comp;
 
	/// Constructor called from btree::value_comp()
	inline value_compare(key_compare kc)
	    : key_comp(kc)
	{ }

	/// Friendly to the btree class so it may call the constructor
	friend class btree<key_type, data_type, value_type, key_compare, traits, allow_duplicates>;
 
    public:
	/// Function call "less"-operator resulting in true if x < y.
	inline bool operator()(const value_type& x, const value_type& y) const
	{
	    return key_comp(x.first, y.first);
	}
    };

    /// Constant access to the key comparison object sorting the B+ tree
    inline key_compare key_comp() const
    {
	return key_less;
    }

    /// Constant access to a constructed value_type comparison object. Required
    /// by the STL
    inline value_compare value_comp() const
    {
	return value_compare(key_less);
    }

private:
    // *** Convenient Key Comparison Functions Generated From key_less

    /// True if a <= b ? constructed from key_less()
    inline bool key_lessequal(const key_type &a, const key_type b) const
    {
	return !key_less(b, a);
    }

    /// True if a > b ? constructed from key_less()
    inline bool key_greater(const key_type &a, const key_type &b) const
    {
	return key_less(b, a);
    }

    /// True if a >= b ? constructed from key_less()
    inline bool key_greaterequal(const key_type &a, const key_type b) const
    {
	return !key_less(a, b);
    }

    /// True if a == b ? constructed from key_less(). This requires the <
    /// relation to be a total order, otherwise the B+ tree cannot be sorted.
    inline bool key_equal(const key_type &a, const key_type &b) const
    {
	return !key_less(a, b) && !key_less(b, a);
    }

private:
    // *** Node Object Allocation and Deallocation Functions

    /// Allocate and initialize a leaf node
    inline leaf_node* allocate_leaf()
    {
	leaf_node* n = new leaf_node;
	n->initialize();
	stats.leaves++;
	return n;
    }

    /// Allocate and initialize an inner node
    inline inner_node* allocate_inner(unsigned short l)
    {
	inner_node* n = new inner_node;
	n->initialize(l);
	stats.innernodes++;
	return n;
    }
    
    /// Correctly free either inner or leaf node, destructs all contained key
    /// and value objects
    inline void free_node(node *n)
    {
	if (n->isleafnode()) {
	    delete static_cast<leaf_node*>(n);
	    stats.leaves--;
	}
	else {
	    delete static_cast<inner_node*>(n);
	    stats.innernodes--;
	}
    }

public:
    // *** Fast Destruction of the B+ Tree

    /// Frees all key/data pairs and all nodes of the tree
    void clear()
    {
	if (root)
	{
	    clear_recursive(root);
	    free_node(root);

	    root = NULL;
	    headleaf = tailleaf = NULL;

	    stats = tree_stats();
	}

	BTREE_ASSERT(stats.itemcount == 0);
    }

private:
    /// Recursively free up nodes
    void clear_recursive(node *n)
    {
	if (n->isleafnode())
	{
	    leaf_node *leafnode = static_cast<leaf_node*>(n);

	    for (unsigned int slot = 0; slot < leafnode->slotuse; ++slot)
	    {
		// data objects are deleted by leaf_node's destructor
	    }
	}
	else
	{
	    inner_node *innernode = static_cast<inner_node*>(n);

	    for (unsigned short slot = 0; slot < innernode->slotuse + 1; ++slot)
	    {
		clear_recursive(innernode->childid[slot]);
		free_node(innernode->childid[slot]);
	    }
	}
    }

public:
    // *** STL Iterator Construction Functions

    /// Constructs a read/data-write iterator that points to the first slot in
    /// the first leaf of the B+ tree.
    inline iterator begin()
    {
	return iterator(headleaf, 0);
    }

    /// Constructs a read/data-write iterator that points to the first invalid
    /// slot in the last leaf of the B+ tree.
    inline iterator end()
    {
	return iterator(tailleaf, tailleaf->slotuse);
    }

    /// Constructs a read-only constant iterator that points to the first slot
    /// in the first leaf of the B+ tree.
    inline const_iterator begin() const
    {
	return const_iterator(headleaf, 0);
    }

    /// Constructs a read-only constant iterator that points to the first
    /// invalid slot in the last leaf of the B+ tree.
    inline const_iterator end() const
    {
	return const_iterator(tailleaf, tailleaf->slotuse);
    }

    /// Constructs a read/data-write reverse iterator that points to the first
    /// invalid slot in the last leaf of the B+ tree. Uses STL magic.
    inline reverse_iterator rbegin()
    {
	return reverse_iterator(end());
    }

    /// Constructs a read/data-write reverse iterator that points to the first
    /// slot in the first leaf of the B+ tree. Uses STL magic.
    inline reverse_iterator rend()
    {
	return reverse_iterator(begin());
    }

    /// Constructs a read-only reverse iterator that points to the first
    /// invalid slot in the last leaf of the B+ tree. Uses STL magic.
    inline const_reverse_iterator rbegin() const
    {
	return const_reverse_iterator(end());
    }

    /// Constructs a read-only reverse iterator that points to the first slot
    /// in the first leaf of the B+ tree. Uses STL magic.
    inline const_reverse_iterator rend() const
    {
	return const_reverse_iterator(begin());
    }

private:
    // *** B+ Tree Node Binary Search Functions

    /// Searches for the first key in the node n less or equal to key. Uses
    /// binary search with an optional linear self-verification. This is a
    /// template function, because the slotkey array is located at different
    /// places in leaf_node and inner_node.
    template <typename node_type>
    inline int find_lower(const node_type *n, const key_type& key) const
    {
	if (n->slotuse == 0) return 0;

	int lo = 0,
	    hi = n->slotuse - 1;

	while(lo < hi)
	{
	    int mid = (lo + hi) / 2;

	    if (key_lessequal(key, n->slotkey[mid])) {
		hi = mid - 1;
	    }
	    else {
		lo = mid + 1;
	    }
	}

	if (hi < 0 || key_less(n->slotkey[hi], key))
	    hi++;

	BTREE_PRINT("btree::find_lower: on " << n << " key " << key << " -> (" << lo << ") " << hi << ", ");

	// verify result using simple linear search
	if (selfverify)
	{
	    int i = n->slotuse - 1;
	    while(i >= 0 && key_lessequal(key, n->slotkey[i]))
		i--;
	    i++;

	    BTREE_PRINT("testfind: " << i << std::endl);
	    BTREE_ASSERT(i == hi);
	}
	else {
	    BTREE_PRINT(std::endl);
	}
	
	return hi;
    }

    /// Searches for the first key in the node n greater than key. Uses binary
    /// search with an optional linear self-verification. This is a template
    /// function, because the slotkey array is located at different places in
    /// leaf_node and inner_node.
    template <typename node_type>
    inline int find_upper(const node_type *n, const key_type& key) const
    {
	if (n->slotuse == 0) return 0;

	int lo = 0,
	    hi = n->slotuse - 1;

	while(lo < hi)
	{
	    int mid = (lo + hi) / 2;

	    if (key_less(key, n->slotkey[mid])) {
		hi = mid - 1;
	    }
	    else {
		lo = mid + 1;
	    }
	}

	if (hi < 0 || key_lessequal(n->slotkey[hi], key))
	    hi++;

	BTREE_PRINT("btree::find_upper: on " << n << " key " << key << " -> (" << lo << ") " << hi << ", ");

	// verify result using simple linear search
	if (selfverify)
	{
	    int i = n->slotuse - 1;
	    while(i >= 0 && key_less(key, n->slotkey[i]))
		i--;
	    i++;

	    BTREE_PRINT("btree::find_upper testfind: " << i << std::endl);
	    BTREE_ASSERT(i == hi);
	}
	else {
	    BTREE_PRINT(std::endl);
	}
	
	return hi;
    }

public:
    // *** Access Functions to the Item Count

    /// Return the number of key/data pairs in the B+ tree
    inline size_type size() const
    {
	return stats.itemcount;
    }

    /// Returns true if there is at least one key/data pair in the B+ tree
    inline bool empty() const
    {
	return (size() == size_type(0));
    }
    
    /// Returns the largest possible size of the B+ Tree. This is just a
    /// function required by the STL standard, the B+ Tree can hold more items.
    inline size_type max_size() const
    {
	return size_type(-1);
    }

    /// Return a const reference to the current statistics.
    inline const struct tree_stats& get_stats() const
    {
	return stats;
    }

public:
    // *** Standard Access Functions Querying the Tree by Descending to a Leaf

    /// Non-STL function checking whether a key is in the B+ tree. The same as
    /// (find(k) != end()) or (count() != 0).
    bool exists(const key_type &key) const
    {
	const node *n = root;

	if (!n) return false;

	while(!n->isleafnode())
	{
	    const inner_node *inner = static_cast<const inner_node*>(n);
	    int slot = find_lower(inner, key);

	    n = inner->childid[slot];
	}

	const leaf_node *leaf = static_cast<const leaf_node*>(n);

	int slot = find_lower(leaf, key);
	return key_equal(key, leaf->slotkey[slot]);
    }

    /// Tries to locate a key in the B+ tree and returns an iterator to the
    /// key/data slot if found. If unsuccessful it returns end().
    iterator find(const key_type &key)
    {
	node *n = root;
	if (!n) return end();

	while(!n->isleafnode())
	{
	    const inner_node *inner = static_cast<const inner_node*>(n);
	    int slot = find_lower(inner, key);

	    n = inner->childid[slot];
	}

	leaf_node *leaf = static_cast<leaf_node*>(n);

	int slot = find_lower(leaf, key);
	return key_equal(key, leaf->slotkey[slot]) ? iterator(leaf, slot) : end();
    }

    /// Tries to locate a key in the B+ tree and returns an constant iterator
    /// to the key/data slot if found. If unsuccessful it returns end().
    const_iterator find(const key_type &key) const
    {
	const node *n = root;
	if (!n) return end();

	while(!n->isleafnode())
	{
	    const inner_node *inner = static_cast<const inner_node*>(n);
	    int slot = find_lower(inner, key);

	    n = inner->childid[slot];
	}

	const leaf_node *leaf = static_cast<const leaf_node*>(n);

	int slot = find_lower(leaf, key);
	return key_equal(key, leaf->slotkey[slot]) ? const_iterator(leaf, slot) : end();
    }

    /// Tries to locate a key in the B+ tree and returns the number of
    /// identical key entries found.    
    size_type count(const key_type &key) const
    {
	const node *n = root;
	if (!n) return 0;

	while(!n->isleafnode())
	{
	    const inner_node *inner = static_cast<const inner_node*>(n);
	    int slot = find_lower(inner, key);

	    n = inner->childid[slot];
	}

	const leaf_node *leaf = static_cast<const leaf_node*>(n);

	int slot = find_lower(leaf, key);
	size_type num = 0;

	while (leaf && key_equal(key, leaf->slotkey[slot]))
	{
	    ++num;
	    if (++slot >= leaf->slotuse)
	    {
		leaf = leaf->nextleaf;
		slot = 0;
	    }
	}

	return num;
    }

    /// Searches the B+ tree and returns an iterator to the first key less or
    /// equal to the parameter. If unsuccessful it returns end().
    iterator lower_bound(const key_type& key)
    {
	node *n = root;
	if (!n) return end();

	while(!n->isleafnode())
	{
	    const inner_node *inner = static_cast<const inner_node*>(n);
	    int slot = find_lower(inner, key);

	    n = inner->childid[slot];
	}

	leaf_node *leaf = static_cast<leaf_node*>(n);

	int slot = find_lower(leaf, key);
	return iterator(leaf, slot);
    }

    /// Searches the B+ tree and returns an constant iterator to the first key less or
    /// equal to the parameter. If unsuccessful it returns end().
    const_iterator lower_bound(const key_type& key) const
    {
	const node *n = root;
	if (!n) return end();

	while(!n->isleafnode())
	{
	    const inner_node *inner = static_cast<const inner_node*>(n);
	    int slot = find_lower(inner, key);

	    n = inner->childid[slot];
	}

	const leaf_node *leaf = static_cast<const leaf_node*>(n);

	int slot = find_lower(leaf, key);
	return const_iterator(leaf, slot);
    }

    /// Searches the B+ tree and returns an iterator to the first key greater
    /// than the parameter. If unsuccessful it returns end().
    iterator upper_bound(const key_type& key)
    {
	node *n = root;
	if (!n) return end();

	while(!n->isleafnode())
	{
	    const inner_node *inner = static_cast<const inner_node*>(n);
	    int slot = find_upper(inner, key);

	    n = inner->childid[slot];
	}

	leaf_node *leaf = static_cast<leaf_node*>(n);

	int slot = find_upper(leaf, key);
	return iterator(leaf, slot);
    }

    /// Searches the B+ tree and returns an constant iterator to the first key
    /// greater than the parameter. If unsuccessful it returns end().
    const_iterator upper_bound(const key_type& key) const
    {
	const node *n = root;
	if (!n) return end();

	while(!n->isleafnode())
	{
	    const inner_node *inner = static_cast<const inner_node*>(n);
	    int slot = find_upper(inner, key);

	    n = inner->childid[slot];
	}

	const leaf_node *leaf = static_cast<const leaf_node*>(n);

	int slot = find_upper(leaf, key);
	return const_iterator(leaf, slot);
    }

    /// Searches the B+ tree and returns both lower_bound() and upper_bound().
    inline std::pair<iterator, iterator> equal_range(const key_type& key)
    {
	return std::pair<iterator, iterator>(lower_bound(key), upper_bound(key));
    }

    /// Searches the B+ tree and returns both lower_bound() and upper_bound().
    inline std::pair<const_iterator, const_iterator> equal_range(const key_type& key) const
    {
	return std::pair<const_iterator, const_iterator>(lower_bound(key), upper_bound(key));
    }

public:
    // *** B+ Tree Object Comparison Functions

    /// Equality relation of B+ trees of the same type. B+ trees of the same
    /// size and equal elements (both key and data) are considered
    /// equal. Beware of the random ordering of duplicate keys.
    inline bool operator==(const btree_self &other) const
    {
	return (size() == other.size()) && std::equal(begin(), end(), other.begin());
    }

    /// Inequality relation. Based on operator==.
    inline bool operator!=(const btree_self &other) const
    {
	return !(*this == other);
    }

    /// Total ordering relation of B+ trees of the same type. It uses
    /// std::lexicographical_compare() for the actual comparison of elements.
    inline bool operator<(const btree_self &other) const
    {
	return std::lexicographical_compare(begin(), end(), other.begin(), other.end());
    }

    /// Greater relation. Based on operator<.
    inline bool operator>(const btree_self &other) const
    {
	return other < *this;
    }

    /// Less-equal relation. Based on operator<.
    inline bool operator<=(const btree_self &other) const
    {
	return !(other < *this);
    }

    /// Greater-equal relation. Based on operator<.
    inline bool operator>=(const btree_self &other) const
    {
	return !(*this < other);
    }

public:
    /// *** Fast Copy: Assign Operator and Copy Constructors

    /// Assignment operator. All the key/data pairs are copied
    inline btree_self& operator= (const btree_self &other)
    {
	if (this != &other)
	{
	    clear();

	    key_less = other.key_comp();
	    if (other.size() != 0)
	    {
		stats.leaves = stats.innernodes = 0;
		root = copy_recursive(other.root);
		stats = other.stats;
	    }

	    if (selfverify) verify();
	}
	return *this;
    }

    /// Copy constructor. The newly initialized B+ tree object will contain a
    /// copy of all key/data pairs.
    inline btree(const btree_self &other)
	: root(NULL), headleaf(NULL), tailleaf(NULL),
	  stats( other.stats ),
	  key_less( other.key_comp() )
    {
	if (size() > 0)
	{
	    stats.leaves = stats.innernodes = 0;
	    root = copy_recursive(other.root);
	    if (selfverify) verify();
	}
    }
    
private:
    /// Recursively copy nodes from another B+ tree object
    class node* copy_recursive(const node *n)
    {
	if (n->isleafnode())
	{
	    const leaf_node *leaf = static_cast<const leaf_node*>(n);
	    leaf_node *newleaf = allocate_leaf();

	    newleaf->slotuse = leaf->slotuse;
	    std::copy(leaf->slotkey, leaf->slotkey + leaf->slotuse, newleaf->slotkey);
	    std::copy(leaf->slotdata, leaf->slotdata + leaf->slotuse, newleaf->slotdata);

	    if (headleaf == NULL)
	    {
		headleaf = tailleaf = newleaf;
		newleaf->prevleaf = newleaf->nextleaf = NULL;
	    }
	    else
	    {
		newleaf->prevleaf = tailleaf;
		tailleaf->nextleaf = newleaf;
		tailleaf = newleaf;
	    }

	    return newleaf;
	}
	else
	{
	    const inner_node *inner = static_cast<const inner_node*>(n);
	    inner_node *newinner = allocate_inner(inner->level);

	    newinner->slotuse = inner->slotuse;
	    std::copy(inner->slotkey, inner->slotkey + inner->slotuse, newinner->slotkey);

	    for (unsigned short slot = 0; slot <= inner->slotuse; ++slot)
	    {
		newinner->childid[slot] = copy_recursive(inner->childid[slot]);
	    }

	    return newinner;
	}
    }

public:
    // *** Public Insertion Functions

    /// Attempt to insert a key/data pair into the B+ tree. If the tree does not
    /// allow duplicate keys, then the insert may fail if it is already
    /// present.
    inline std::pair<iterator, bool> insert(const pair_type& x)
    {
	return insert_start(x.first, x.second);
    }
    
    /// Attempt to insert a key/data pair into the B+ tree. Beware that if
    /// key_type == data_type, then the template iterator insert() is called
    /// instead. If the tree does not allow duplicate keys, then the insert may
    /// fail if it is already present.
    inline std::pair<iterator, bool> insert(const key_type& key, const data_type& data)
    {
	return insert_start(key, data);
    }

    /// Attempt to insert a key/data pair into the B+ tree. This function is the
    /// same as the other insert, however if key_type == data_type then the
    /// non-template function cannot be called. If the tree does not allow
    /// duplicate keys, then the insert may fail if it is already present.
    inline std::pair<iterator, bool> insert2(const key_type& key, const data_type& data)
    {
	return insert_start(key, data);
    }

    /// Attempt to insert a key/data pair into the B+ tree. The iterator hint
    /// is currently ignored by the B+ tree insertion routine.
    inline iterator insert(iterator /* hint */, const pair_type &x)
    {
	return insert_start(x.first, x.second).first;
    }

    /// Attempt to insert a key/data pair into the B+ tree. The iterator hint is
    /// currently ignored by the B+ tree insertion routine.
    inline iterator insert2(iterator /* hint */, const key_type& key, const data_type& data)
    {
	return insert_start(key, data).first;
    }

    /// Attempt to insert the range [first,last) of value_type pairs into the B+
    /// tree. Each key/data pair is inserted individually.
    template <typename InputIterator>
    inline void insert(InputIterator first, InputIterator last)
    {
	InputIterator iter = first;
	while(iter != last)
	{
	    insert(*iter);
	    ++iter;
	}
    }

private:
    // *** Private Insertion Functions

    /// Start the insertion descent at the current root and handle root
    /// splits. Returns true if the item was inserted
    std::pair<iterator, bool> insert_start(const key_type& key, const data_type& value)
    {
	node *newchild = NULL;
	key_type newkey = key_type();

	if (!root)
	{
	    root = headleaf = tailleaf = allocate_leaf();
	}

	std::pair<iterator, bool> r = insert_descend(root, key, value, &newkey, &newchild);

	if (newchild)
	{
	    inner_node *newroot = allocate_inner(root->level + 1);
	    newroot->slotkey[0] = newkey;

	    newroot->childid[0] = root;
	    newroot->childid[1] = newchild;

	    newroot->slotuse = 1;

	    root = newroot;
	}

	// increment itemcount if the item was inserted
	if (r.second) ++stats.itemcount;

	if (debug)
	    print();

	if (selfverify) {
	    verify();
	    BTREE_ASSERT(exists(key));
	}

	return r;
    }

    /**
     * @brief Insert an item into the B+ tree.
     *
     * Descend down the nodes to a leaf, insert the key/data pair in a free
     * slot. If the node overflows, then it must be split and the new split
     * node inserted into the parent. Unroll / this splitting up to the root.
    */
    std::pair<iterator, bool> insert_descend(node* n,
					     const key_type& key, const data_type& value,
					     key_type* splitkey, node** splitnode)
    {
	if (!n->isleafnode())
	{
	    inner_node *inner = static_cast<inner_node*>(n);

	    key_type newkey = key_type();
	    node *newchild = NULL;

	    int slot = find_lower(inner, key);

	    BTREE_PRINT("btree::insert_descend into " << inner->childid[slot] << std::endl);

	    std::pair<iterator, bool> r = insert_descend(inner->childid[slot],
							 key, value, &newkey, &newchild);

	    if (newchild)
	    {
		BTREE_PRINT("btree::insert_descend newchild with key " << newkey << " node " << newchild << " at slot " << slot << std::endl);

		if (inner->isfull())
		{
		    split_inner_node(inner, splitkey, splitnode, slot);

		    BTREE_PRINT("btree::insert_descend done split_inner: putslot: " << slot << " putkey: " << newkey << " upkey: " << *splitkey << std::endl);

		    if (debug)
		    {
			print_node(inner);
			print_node(*splitnode);
		    }

		    // check if insert slot is in the split sibling node
		    BTREE_PRINT("btree::insert_descend switch: " << slot << " > " << inner->slotuse+1 << std::endl);

		    if (slot == inner->slotuse+1 && inner->slotuse < (*splitnode)->slotuse)
		    {
			// special case when the insert slot matches the split
			// place between the two nodes, then the insert key
			// becomes the split key.

			BTREE_ASSERT(inner->slotuse + 1 < innerslotmax);

			inner_node *splitinner = static_cast<inner_node*>(*splitnode);

			// move the split key and it's datum into the left node
			inner->slotkey[inner->slotuse] = *splitkey;
			inner->childid[inner->slotuse+1] = splitinner->childid[0];
			inner->slotuse++;

			// set new split key and move corresponding datum into right node
			splitinner->childid[0] = newchild;
			*splitkey = newkey;

			return r;
		    }
		    else if (slot >= inner->slotuse+1)
		    {
			// in case the insert slot is in the newly create split
			// node, we reuse the code below.

			slot -= inner->slotuse+1;
			inner = static_cast<inner_node*>(*splitnode);
			BTREE_PRINT("btree::insert_descend switching to splitted node " << inner << " slot " << slot <<std::endl);
		    }
		}

		// put pointer to child node into correct slot
		BTREE_ASSERT(slot >= 0 && slot <= inner->slotuse);

		int i = inner->slotuse;

		while(i > slot) {
		    inner->slotkey[i] = inner->slotkey[i - 1];
		    inner->childid[i + 1] = inner->childid[i];
		    i--;
		}

		inner->slotkey[slot] = newkey;
		inner->childid[slot + 1] = newchild;
		inner->slotuse++;
	    }
	    
	    return r;
	}
        else // n->isleafnode() == true
	{
	    leaf_node *leaf = static_cast<leaf_node*>(n);

	    int slot = find_lower(leaf, key);

	    if (!allow_duplicates && slot < leaf->slotuse && key_equal(key, leaf->slotkey[slot])) {
		return std::pair<iterator, bool>(iterator(leaf, slot), false);
	    }

	    if (leaf->isfull())
	    {
		split_leaf_node(leaf, splitkey, splitnode);

		// check if insert slot is in the split sibling node
		if (slot >= leaf->slotuse)
		{
		    slot -= leaf->slotuse;
		    leaf = static_cast<leaf_node*>(*splitnode);
		}
	    }

	    // put data item into correct data slot

	    int i = leaf->slotuse - 1;
	    BTREE_ASSERT(i + 1 < leafslotmax);

	    while(i >= 0 && key_less(key, leaf->slotkey[i])) {
		leaf->slotkey[i + 1] = leaf->slotkey[i];
		leaf->slotdata[i + 1] = leaf->slotdata[i];
		i--;
	    }
	    
	    leaf->slotkey[i + 1] = key;
	    leaf->slotdata[i + 1] = value;
	    leaf->slotuse++;

	    if (splitnode && leaf != *splitnode && slot == leaf->slotuse-1)
	    {
		// special case: the node was split, and the insert is at the
		// last slot of the old node. then the splitkey must be
		// updated.
		*splitkey = key;
	    }

	    return std::pair<iterator, bool>(iterator(leaf, i + 1), true);
	}
    }

    /// Split up a leaf node into two equally-filled sibling leaves. Returns
    /// the new nodes and it's insertion key in the two parameters.
    void split_leaf_node(leaf_node* leaf, key_type* _newkey, node** _newleaf)
    {
	BTREE_ASSERT(leaf->isfull());

	unsigned int mid = leaf->slotuse / 2;

	BTREE_PRINT("btree::split_leaf_node on " << leaf << std::endl);

	leaf_node *newleaf = allocate_leaf();

	newleaf->slotuse = leaf->slotuse - mid;

	newleaf->nextleaf = leaf->nextleaf;
	if (newleaf->nextleaf == NULL) {
	    BTREE_ASSERT(leaf == tailleaf);
	    tailleaf = newleaf;
	}
	else {
	    newleaf->nextleaf->prevleaf = newleaf;
	}

	for(unsigned int slot = mid; slot < leaf->slotuse; ++slot)
	{
	    unsigned int ni = slot - mid;
	    newleaf->slotkey[ni] = leaf->slotkey[slot];
	    newleaf->slotdata[ni] = leaf->slotdata[slot];
	}
	    
	leaf->slotuse = mid;
	leaf->nextleaf = newleaf;
	newleaf->prevleaf = leaf;

	*_newkey = leaf->slotkey[leaf->slotuse-1];
	*_newleaf = newleaf;
    }

    /// Split up an inner node into two equally-filled sibling nodes. Returns
    /// the new nodes and it's insertion key in the two parameters. Requires
    /// the slot of the item will be inserted, so the nodes will be the same
    /// size after the insert.
    void split_inner_node(inner_node* inner, key_type* _newkey, node** _newinner, unsigned int addslot)
    {
	BTREE_ASSERT(inner->isfull());

	unsigned int mid = inner->slotuse / 2;

	BTREE_PRINT("btree::split_inner: mid " << mid << " addslot " << addslot << std::endl);

	// if the split is uneven and the overflowing item will be put into the
	// larger node, then the smaller split node may underflow
	if (addslot <= mid && mid > inner->slotuse - (mid + 1))
	    mid--;

	BTREE_PRINT("btree::split_inner: mid " << mid << " addslot " << addslot << std::endl);

	BTREE_PRINT("btree::split_inner_node on " << inner << " into two nodes " << mid << " and " << inner->slotuse - (mid + 1) << " sized" << std::endl);

	inner_node *newinner = allocate_inner(inner->level);

	newinner->slotuse = inner->slotuse - (mid + 1);

	for(unsigned int slot = mid + 1; slot < inner->slotuse; ++slot)
	{
	    unsigned int ni = slot - (mid + 1);
	    newinner->slotkey[ni] = inner->slotkey[slot];
	    newinner->childid[ni] = inner->childid[slot];
	}
	newinner->childid[newinner->slotuse] = inner->childid[inner->slotuse];
	    
	inner->slotuse = mid;

	*_newkey = inner->slotkey[mid];
	*_newinner = newinner;
    }

private:
    // *** Support Class Encapsulating Deletion Results

    /// Result flags of recursive deletion.
    enum result_flags_t
    {
	/// Deletion successful and no fix-ups necessary.
	btree_ok = 0,

	/// Deletion not successful because key was not found.
	btree_not_found = 1,

	/// Deletion successful, the last key was updated so parent slotkeys
	/// need updates.
	btree_update_lastkey = 2,

	/// Deletion successful, children nodes were merged and the parent
	/// needs to remove the empty node.
	btree_fixmerge = 4
    };

    /// \internal B+ tree recursive deletion has much information which is
    /// needs to be passed upward.
    struct result_t
    {
	/// Merged result flags
	result_flags_t	flags;

	/// The key to be updated at the parent's slot
	key_type	lastkey;

	/// Constructor of a result with a specific flag, this can also be used
	/// as for implicit conversion.
	inline result_t(result_flags_t f = btree_ok)
	    : flags(f), lastkey()
	{ }

	/// Constructor with a lastkey value.
	inline result_t(result_flags_t f, const key_type &k)
	    : flags(f), lastkey(k)
	{ }

	/// Test if this result object has a given flag set.
	inline bool has(result_flags_t f) const
	{
	    return (flags & f);
	}

	/// Merge two results OR-ing the result flags and overwriting lastkeys.
	inline result_t& operator|= (const result_t &other)
	{
	    flags = result_flags_t(flags | other.flags);

	    // we overwrite existing lastkeys on purpose
	    if (other.has(btree_update_lastkey))
		lastkey = other.lastkey;

	    return *this;
	}
    };

public:
    // *** Public Erase Functions

    /// Erases one (the first) of the key/data pairs associated with the given
    /// key.
    bool erase_one(const key_type &key)
    {
	BTREE_PRINT("btree::erase_one(" << key << ") on btree size " << size() << std::endl);

	if (selfverify) verify();
	
	result_t result = erase_one_descend(key, root, NULL, NULL, NULL, NULL, NULL, 0);

	if (!result.has(btree_not_found))
	    --stats.itemcount;

	if (debug) print();
	if (selfverify) verify();

	return !result.has(btree_not_found);
    }

    /// Erases all the key/data pairs associated with the given key. This is
    /// implemented using erase_one().
    size_type erase(const key_type &key)
    {
	size_type c = 0;

	while( erase_one(key) )
	{
	    ++c;
	    if (!allow_duplicates) break;
	}

	return c;
    }

#ifdef BTREE_TODO
    /// Erase the key/data pair referenced by the iterator.
    void erase(iterator iter)
    {

    }
#endif

#ifdef BTREE_TODO
    /// Erase all key/data pairs in the range [first,last). This function is
    /// currently not implemented by the B+ Tree.
    void erase(iterator /* first */, iterator /* last */)
    {
	abort();
    }
#endif

private:
    // *** Private Erase Functions

    /** @brief Erase one (the first) key/data pair in the B+ tree matching key.
     *
     * Descends down the tree in search of key. During the descent the parent,
     * left and right siblings and their parents are computed and passed
     * down. Once the key/data pair is found, it is removed from the leaf. If
     * the leaf underflows 6 different cases are handled. These cases resolve
     * the underflow by shifting key/data pairs from adjacent sibling nodes,
     * merging two sibling nodes or trimming the tree.
     */
    result_t erase_one_descend(const key_type& key,
			       node *curr,
			       node *left, node *right,
			       inner_node *leftparent, inner_node *rightparent,
			       inner_node *parent, unsigned int parentslot)
    {
	if (curr->isleafnode())
	{
	    leaf_node *leaf = static_cast<leaf_node*>(curr);
	    leaf_node *leftleaf = static_cast<leaf_node*>(left);
	    leaf_node *rightleaf = static_cast<leaf_node*>(right);

	    int slot = find_lower(leaf, key);

	    if (!key_equal(key, leaf->slotkey[slot]))
	    {
		BTREE_PRINT("Could not find key " << key << " to erase." << std::endl);

		return btree_not_found;
	    }

	    BTREE_PRINT("Found key in leaf " << curr << " at slot " << slot << std::endl);

	    for (int i = slot; i < leaf->slotuse - 1; i++)
	    {
		leaf->slotkey[i] = leaf->slotkey[i + 1];
		leaf->slotdata[i] = leaf->slotdata[i + 1];
	    }
	    leaf->slotuse--;

	    result_t myres = btree_ok;

	    // if the last key of the leaf was changed, the parent is notified
	    // and updates the key of this leaf
	    if (slot == leaf->slotuse)
	    {
		if (parent && parentslot < parent->slotuse)
		{
		    BTREE_ASSERT(parent->childid[parentslot] == curr);
		    parent->slotkey[parentslot] = leaf->slotkey[leaf->slotuse - 1];
		}
		else
		{
		    BTREE_PRINT("Scheduling lastkeyupdate: key " << leaf->slotkey[leaf->slotuse - 1] << std::endl);
		    myres |= result_t(btree_update_lastkey, leaf->slotkey[leaf->slotuse - 1]);
		}
	    }

	    if (leaf->isunderflow() && !(leaf == root && leaf->slotuse >= 1))
	    {
		// determine what to do about the underflow

		// case : if this empty leaf is the root, there is no way to
		// correct underflow
		if (leftleaf == NULL && rightleaf == NULL)
		{
		    return btree_ok;
		}
		// case : if both left and right leaves would underflow in case of
		// a shift, then merging is necessary. choose the more local merger
		// with our parent
		else if ( (leftleaf == NULL || leftleaf->isfew()) && (rightleaf == NULL || rightleaf->isfew()) )
		{
		    if (leftparent == parent)
			myres |= merge_leaves(leftleaf, leaf, leftparent);
		    else
			myres |= merge_leaves(leaf, rightleaf, rightparent);
		}
		// case : the right leaf has extra data, so balance right with current
		else if ( (leftleaf != NULL && leftleaf->isfew()) && (rightleaf != NULL && !rightleaf->isfew()) )
		{
		    if (rightparent == parent)
			myres |= shift_left_leaf(leaf, rightleaf, rightparent, parentslot);
		    else
			myres |= merge_leaves(leftleaf, leaf, leftparent);
		}
		// case : the left leaf has extra data, so balance left with current
		else if ( (leftleaf != NULL && !leftleaf->isfew()) && (rightleaf != NULL && rightleaf->isfew()) )
		{
		    if (leftparent == parent)
			shift_right_leaf(leftleaf, leaf, leftparent, parentslot - 1);
		    else
			myres |= merge_leaves(leaf, rightleaf, rightparent);
		}
		// case : both the leaf and right leaves have extra data and our
		// parent, choose the leaf with more data
		else if (leftparent == rightparent)
		{
		    if (leftleaf->slotuse <= rightleaf->slotuse)
			myres |= shift_left_leaf(leaf, rightleaf, rightparent, parentslot);
		    else
			shift_right_leaf(leftleaf, leaf, leftparent, parentslot - 1);
		}
		else
		{
		    if (leftparent == parent)
			shift_right_leaf(leftleaf, leaf, leftparent, parentslot - 1);
		    else
			myres |= shift_left_leaf(leaf, rightleaf, rightparent, parentslot);
		}
	    }

	    return myres;
	}
	else // !curr->isleafnode()
	{
	    inner_node *inner = static_cast<inner_node*>(curr);
	    inner_node *leftinner = static_cast<inner_node*>(left);
	    inner_node *rightinner = static_cast<inner_node*>(right);

	    node *myleft, *myright;
	    inner_node *myleftparent, *myrightparent;

	    int slot = find_lower(inner, key);

	    if (slot == 0) {
		myleft = (left == NULL) ? NULL : (static_cast<inner_node*>(left))->childid[left->slotuse - 1];
		myleftparent = leftparent;
	    }
	    else {
		myleft = inner->childid[slot - 1];
		myleftparent = inner;
	    }

	    if (slot == inner->slotuse) {
		myright = (right == NULL) ? NULL : (static_cast<inner_node*>(right))->childid[0];
		myrightparent = rightparent;
	    }
	    else {
		myright = inner->childid[slot + 1];
		myrightparent = inner;
	    }

	    BTREE_PRINT("erase_one_descend into " << inner->childid[slot] << std::endl);

	    result_t result = erase_one_descend(key,
						inner->childid[slot],
						myleft, myright,
						myleftparent, myrightparent,
						inner, slot);

	    result_t myres = btree_ok;

	    if (result.has(btree_not_found))
	    {
		return result;
	    }

	    if (result.has(btree_update_lastkey))
	    {
		if (parent && parentslot < parent->slotuse)
		{
		    BTREE_PRINT("Fixing lastkeyupdate: key " << result.lastkey << " into parent " << parent << " at parentslot " << parentslot << std::endl);

		    BTREE_ASSERT(parent->childid[parentslot] == curr);
		    parent->slotkey[parentslot] = result.lastkey;
		}
		else
		{
		    BTREE_PRINT("Forwarding lastkeyupdate: key " << result.lastkey << std::endl);
		    myres |= result_t(btree_update_lastkey, result.lastkey);
		}
	    }

	    if (result.has(btree_fixmerge))
	    {
		// either the current node or the next is empty and should be removed
		if (inner->childid[slot]->slotuse != 0)
		    slot++;

		// this is the child slot invalidated by the merge
		BTREE_ASSERT(inner->childid[slot]->slotuse == 0);

		free_node(inner->childid[slot]);

		for(int i = slot; i < inner->slotuse; i++)
		{
		    inner->slotkey[i - 1] = inner->slotkey[i];
		    inner->childid[i] = inner->childid[i + 1];
		}
		inner->slotuse--;

		if (inner->level == 1)
		{
		    // fix split key for children leaves
		    slot--;
		    leaf_node *child = static_cast<leaf_node*>(inner->childid[slot]);
		    inner->slotkey[slot] = child->slotkey[ child->slotuse-1 ];
		}
	    }

	    if (inner->isunderflow() && !(inner == root && inner->slotuse >= 1))
	    {
		// case: the inner node is the root and has just one child. that child becomes the new root
		if (leftinner == NULL && rightinner == NULL)
		{
		    BTREE_ASSERT(inner == root);
		    BTREE_ASSERT(inner->slotuse == 0);

		    root = inner->childid[0];

		    inner->slotuse = 0;
		    free_node(inner);

		    return btree_ok;
		}
		// case : if both left and right leaves would underflow in case of
		// a shift, then merging is necessary. choose the more local merger
		// with our parent
		else if ( (leftinner == NULL || leftinner->isfew()) && (rightinner == NULL || rightinner->isfew()) )
		{
		    if (leftparent == parent)
			myres |= merge_inner(leftinner, inner, leftparent, parentslot - 1);
		    else
			myres |= merge_inner(inner, rightinner, rightparent, parentslot);
		}
		// case : the right leaf has extra data, so balance right with current
		else if ( (leftinner != NULL && leftinner->isfew()) && (rightinner != NULL && !rightinner->isfew()) )
		{
		    if (rightparent == parent)
			shift_left_inner(inner, rightinner, rightparent, parentslot);
		    else
			myres |= merge_inner(leftinner, inner, leftparent, parentslot - 1);
		}
		// case : the left leaf has extra data, so balance left with current
		else if ( (leftinner != NULL && !leftinner->isfew()) && (rightinner != NULL && rightinner->isfew()) )
		{
		    if (leftparent == parent)
			shift_right_inner(leftinner, inner, leftparent, parentslot - 1);
		    else
			myres |= merge_inner(inner, rightinner, rightparent, parentslot);
		}
		// case : both the leaf and right leaves have extra data and our
		// parent, choose the leaf with more data
		else if (leftparent == rightparent)
		{
		    if (leftinner->slotuse <= rightinner->slotuse)
			shift_left_inner(inner, rightinner, rightparent, parentslot);
		    else
			shift_right_inner(leftinner, inner, leftparent, parentslot - 1);
		}
		else
		{
		    if (leftparent == parent)
			shift_right_inner(leftinner, inner, leftparent, parentslot - 1);
		    else
			shift_left_inner(inner, rightinner, rightparent, parentslot);
		}
	    }

	    return myres;
	}
    }

    /// Merge two leaf nodes. The function moves all key/data pairs from right
    /// to left and sets right's slotuse to zero. The right slot is then
    /// removed by the calling parent node.
    result_t merge_leaves(leaf_node* left, leaf_node* right, inner_node* parent)
    {
	BTREE_PRINT("Merge leaf nodes " << left << " and " << right << " with common parent " << parent << "." << std::endl);
	(void)parent;

	BTREE_ASSERT(left->isleafnode() && right->isleafnode());
	BTREE_ASSERT(parent->level == 1);

	BTREE_ASSERT(left->slotuse + right->slotuse < leafslotmax);

	for (unsigned int i = 0; i < right->slotuse; i++)
	{
	    left->slotkey[left->slotuse + i] = right->slotkey[i];
	    left->slotdata[left->slotuse + i] = right->slotdata[i];
	}
	left->slotuse += right->slotuse;

	left->nextleaf = right->nextleaf;
	if (left->nextleaf)
	    left->nextleaf->prevleaf = left;
	else
	    tailleaf = left;

	right->slotuse = 0;

	return btree_fixmerge;
    }

    /// Merge two inner nodes. The function moves all key/childid pairs from
    /// right to left and sets right's slotuse to zero. The right slot is then
    /// removed by the calling parent node.
    static result_t merge_inner(inner_node* left, inner_node* right, inner_node* parent, unsigned int parentslot)
    {
	BTREE_PRINT("Merge inner nodes " << left << " and " << right << " with common parent " << parent << "." << std::endl);

	BTREE_ASSERT(left->level == right->level);
	BTREE_ASSERT(parent->level == left->level + 1);

	BTREE_ASSERT(parent->childid[parentslot] == left);

	BTREE_ASSERT(left->slotuse + right->slotuse < innerslotmax);

	if (selfverify)
	{
	    // find the left node's slot in the parent's children
	    unsigned int leftslot = 0;
	    while(leftslot <= parent->slotuse && parent->childid[leftslot] != left)
		++leftslot;

	    BTREE_ASSERT(leftslot < parent->slotuse);
	    BTREE_ASSERT(parent->childid[leftslot] == left);
	    BTREE_ASSERT(parent->childid[leftslot+1] == right);

	    BTREE_ASSERT(parentslot == leftslot);
	}

	// retrieve the decision key from parent
	left->slotkey[left->slotuse] = parent->slotkey[parentslot];
	left->slotuse++;

        // copy over keys and children from right
	for (unsigned int i = 0; i < right->slotuse; i++)
	{
	    left->slotkey[left->slotuse + i] = right->slotkey[i];
	    left->childid[left->slotuse + i] = right->childid[i];
	}
	left->slotuse += right->slotuse;

	left->childid[left->slotuse] = right->childid[right->slotuse];

	right->slotuse = 0;

	return btree_fixmerge;
    }

    /// Balance two leaf nodes. The function moves key/data pairs from right to
    /// left so that both nodes are equally filled. The parent node is updated
    /// if possible.
    static result_t shift_left_leaf(leaf_node *left, leaf_node *right, inner_node *parent, unsigned int parentslot)
    {
	BTREE_ASSERT(left->isleafnode() && right->isleafnode());
	BTREE_ASSERT(parent->level == 1);

	BTREE_ASSERT(left->nextleaf == right);
	BTREE_ASSERT(left == right->prevleaf);

	BTREE_ASSERT(left->slotuse < right->slotuse);
	BTREE_ASSERT(parent->childid[parentslot] == left);

	unsigned int shiftnum = (right->slotuse - left->slotuse) / 2;

	BTREE_PRINT("Shifting (leaf) " << shiftnum << " entries to left " << left << " from right " << right << " with common parent " << parent << "." << std::endl);

	BTREE_ASSERT(left->slotuse + shiftnum < leafslotmax);

	// copy the first items from the right node to the last slot in the left node.
	for(unsigned int i = 0; i < shiftnum; i++)
	{
	    left->slotkey[left->slotuse + i] = right->slotkey[i];
	    left->slotdata[left->slotuse + i] = right->slotdata[i];
	}
	left->slotuse += shiftnum;
	
	// shift all slots in the right node to the left
    
	right->slotuse -= shiftnum;
	for(int i = 0; i < right->slotuse; i++)
	{
	    right->slotkey[i] = right->slotkey[i + shiftnum];
	    right->slotdata[i] = right->slotdata[i + shiftnum];
	}

	// fixup parent
	if (parentslot < parent->slotuse) {
	    parent->slotkey[parentslot] = left->slotkey[left->slotuse - 1];
	    return btree_ok;
	}
	else { // the update is further up the tree
	    return result_t(btree_update_lastkey, left->slotkey[left->slotuse - 1]);
	}
    }

    /// Balance two inner nodes. The function moves key/data pairs from right
    /// to left so that both nodes are equally filled. The parent node is
    /// updated if possible.
    static void shift_left_inner(inner_node *left, inner_node *right, inner_node *parent, unsigned int parentslot)
    {
	BTREE_ASSERT(left->level == right->level);
	BTREE_ASSERT(parent->level == left->level + 1);

	BTREE_ASSERT(left->slotuse < right->slotuse);
	BTREE_ASSERT(parent->childid[parentslot] == left);

	unsigned int shiftnum = (right->slotuse - left->slotuse) / 2;

	BTREE_PRINT("Shifting (inner) " << shiftnum << " entries to left " << left << " from right " << right << " with common parent " << parent << "." << std::endl);

	BTREE_ASSERT(left->slotuse + shiftnum < innerslotmax);

	if (selfverify)
	{
	    // find the left node's slot in the parent's children and compare to parentslot

	    unsigned int leftslot = 0;
	    while(leftslot <= parent->slotuse && parent->childid[leftslot] != left)
		++leftslot;

	    BTREE_ASSERT(leftslot < parent->slotuse);
	    BTREE_ASSERT(parent->childid[leftslot] == left);
	    BTREE_ASSERT(parent->childid[leftslot+1] == right);

	    BTREE_ASSERT(leftslot == parentslot);
	}

	// copy the parent's decision slotkey and childid to the first new key on the left
	left->slotkey[left->slotuse] = parent->slotkey[parentslot];
	left->slotuse++;

	// copy the other items from the right node to the last slots in the left node.
	for(unsigned int i = 0; i < shiftnum - 1; i++)
	{
	    left->slotkey[left->slotuse + i] = right->slotkey[i];
	    left->childid[left->slotuse + i] = right->childid[i];
	}
	left->slotuse += shiftnum - 1;

	// fixup parent
	parent->slotkey[parentslot] = right->slotkey[shiftnum - 1];
	// last pointer in left
	left->childid[left->slotuse] = right->childid[shiftnum - 1];
	
	// shift all slots in the right node
    
	right->slotuse -= shiftnum;
	for(int i = 0; i < right->slotuse; i++)
	{
	    right->slotkey[i] = right->slotkey[i + shiftnum];
	    right->childid[i] = right->childid[i + shiftnum];
	}
	right->childid[right->slotuse] = right->childid[right->slotuse + shiftnum];
    }

    /// Balance two leaf nodes. The function moves key/data pairs from left to
    /// right so that both nodes are equally filled. The parent node is updated
    /// if possible.
    static void shift_right_leaf(leaf_node *left, leaf_node *right, inner_node *parent, unsigned int parentslot)
    {
	BTREE_ASSERT(left->isleafnode() && right->isleafnode());
	BTREE_ASSERT(parent->level == 1);

	BTREE_ASSERT(left->nextleaf == right);
	BTREE_ASSERT(left == right->prevleaf);
	BTREE_ASSERT(parent->childid[parentslot] == left);

	BTREE_ASSERT(left->slotuse > right->slotuse);

	unsigned int shiftnum = (left->slotuse - right->slotuse) / 2;

	BTREE_PRINT("Shifting (leaf) " << shiftnum << " entries to right " << right << " from left " << left << " with common parent " << parent << "." << std::endl);

	if (selfverify)
	{
	    // find the left node's slot in the parent's children
	    unsigned int leftslot = 0;
	    while(leftslot <= parent->slotuse && parent->childid[leftslot] != left)
		++leftslot;

	    BTREE_ASSERT(leftslot < parent->slotuse);
	    BTREE_ASSERT(parent->childid[leftslot] == left);
	    BTREE_ASSERT(parent->childid[leftslot+1] == right);

	    BTREE_ASSERT(leftslot == parentslot);
	}

	// shift all slots in the right node
    
	BTREE_ASSERT(right->slotuse + shiftnum < leafslotmax);

	for(int i = right->slotuse; i >= 0; i--)
	{
	    right->slotkey[i + shiftnum] = right->slotkey[i];
	    right->slotdata[i + shiftnum] = right->slotdata[i];
	}
	right->slotuse += shiftnum;

	// copy the last items from the left node to the first slot in the right node.
    	for(unsigned int i = 0; i < shiftnum; i++)
	{
	    right->slotkey[i] = left->slotkey[left->slotuse - shiftnum + i];
	    right->slotdata[i] = left->slotdata[left->slotuse - shiftnum + i];
	}
	left->slotuse -= shiftnum;

	parent->slotkey[parentslot] = left->slotkey[left->slotuse-1];
    }

    /// Balance two inner nodes. The function moves key/data pairs from left to
    /// right so that both nodes are equally filled. The parent node is updated
    /// if possible.
    static void shift_right_inner(inner_node *left, inner_node *right, inner_node *parent, unsigned int parentslot)
    {
	BTREE_ASSERT(left->level == right->level);
	BTREE_ASSERT(parent->level == left->level + 1);

	BTREE_ASSERT(left->slotuse > right->slotuse);
	BTREE_ASSERT(parent->childid[parentslot] == left);

	unsigned int shiftnum = (left->slotuse - right->slotuse) / 2;

	BTREE_PRINT("Shifting (leaf) " << shiftnum << " entries to right " << right << " from left " << left << " with common parent " << parent << "." << std::endl);

	if (selfverify)
	{
	    // find the left node's slot in the parent's children
	    unsigned int leftslot = 0;
	    while(leftslot <= parent->slotuse && parent->childid[leftslot] != left)
		++leftslot;

	    BTREE_ASSERT(leftslot < parent->slotuse);
	    BTREE_ASSERT(parent->childid[leftslot] == left);
	    BTREE_ASSERT(parent->childid[leftslot+1] == right);

	    BTREE_ASSERT(leftslot == parentslot);
	}

	// shift all slots in the right node

	BTREE_ASSERT(right->slotuse + shiftnum < innerslotmax);
    
	right->childid[right->slotuse + shiftnum] = right->childid[right->slotuse];
	for(int i = right->slotuse-1; i >= 0; i--)
	{
	    right->slotkey[i + shiftnum] = right->slotkey[i];
	    right->childid[i + shiftnum] = right->childid[i];
	}

	right->slotuse += shiftnum;

	// copy the parent's decision slotkey and childid to the last new key on the right
	right->slotkey[shiftnum - 1] = parent->slotkey[parentslot];
	right->childid[shiftnum - 1] = left->childid[left->slotuse];

	// copy the remaining last items from the left node to the first slot in the right node.
    	for(unsigned int i = 0; i < shiftnum - 1; i++)
	{
	    right->slotkey[i] = left->slotkey[left->slotuse - shiftnum + i + 1];
	    right->childid[i] = left->childid[left->slotuse - shiftnum + i + 1];
	}

	// copy the first to-be-removed key from the left node to the parent's decision slot
	parent->slotkey[parentslot] = left->slotkey[left->slotuse - shiftnum];

	left->slotuse -= shiftnum;
    }

public:
    // *** Debug Printing

    /// Print out the B+ tree structure with keys onto std::cout. This function
    /// requires that the header is compiled with BTREE_PRINT and that key_type
    /// is printable via std::ostream.
    void print() const
    {
	print_node(root, 0, true);
    }

    /// Print out only the leaves via the double linked list.
    void print_leaves() const
    {
	BTREE_PRINT("leaves:" << std::endl);

	const leaf_node *n = headleaf;

	while(n)
	{
	    BTREE_PRINT("  " << n << std::endl);

	    n = n->nextleaf;
	}
    }

private:

    /// Recursively descend down the tree and print out nodes.
    static void print_node(const node* node, unsigned int depth=0, bool recursive=false)
    {
	for(unsigned int i = 0; i < depth; i++) BTREE_PRINT("  ");
	    
	BTREE_PRINT("node " << node << " level " << node->level << " slotuse " << node->slotuse << std::endl);

	if (node->isleafnode())
	{
	    const leaf_node *leafnode = static_cast<const leaf_node*>(node);

	    for(unsigned int i = 0; i < depth; i++) BTREE_PRINT("  ");
	    BTREE_PRINT("  leaf prev " << leafnode->prevleaf << " next " << leafnode->nextleaf << std::endl);

	    for(unsigned int i = 0; i < depth; i++) BTREE_PRINT("  ");

	    for (unsigned int slot = 0; slot < leafnode->slotuse; ++slot)
	    {
		BTREE_PRINT(leafnode->slotkey[slot] << "  "); // << "(data: " << leafnode->slotdata[slot] << ") ";
	    }
	    BTREE_PRINT(std::endl);
	}
	else
	{
	    const inner_node *innernode = static_cast<const inner_node*>(node);

	    for(unsigned int i = 0; i < depth; i++) BTREE_PRINT("  ");

	    for (unsigned short slot = 0; slot < innernode->slotuse; ++slot)
	    {
		BTREE_PRINT("(" << innernode->childid[slot] << ") " << innernode->slotkey[slot] << " ");
	    }
	    BTREE_PRINT("(" << innernode->childid[innernode->slotuse] << ")");
	    BTREE_PRINT(std::endl);

	    if (recursive)
	    {
		for (unsigned short slot = 0; slot < innernode->slotuse + 1; ++slot)
		{
		    print_node(innernode->childid[slot], depth + 1, recursive);
		}
	    }
	}
    }

public:
    // *** Verification of B+ Tree Invariants

    /// Run a thorough verification of all B+ tree invariants. The program
    /// aborts via assert() if something is wrong.
    void verify() const
    {
	key_type minkey, maxkey;
	tree_stats vstats;
	
	if (root)
	{
	    verify_node(root, &minkey, &maxkey, vstats);

	    assert( vstats.itemcount == stats.itemcount );
	    assert( vstats.leaves == stats.leaves );
	    assert( vstats.innernodes == stats.innernodes );
	}

	verify_leaflinks();
    }

private:

    /// Recursively descend down the tree and verify each node
    void verify_node(const node* n, key_type* minkey, key_type* maxkey, tree_stats &vstats) const
    {
	BTREE_PRINT("verifynode " << n << std::endl);

	if (n->isleafnode())
	{
	    const leaf_node *leaf = static_cast<const leaf_node*>(n);

	    assert(leaf == root || !leaf->isunderflow());

	    for(unsigned short slot = 0; slot < leaf->slotuse - 1; ++slot)
	    {
		assert(key_lessequal(leaf->slotkey[slot], leaf->slotkey[slot + 1]));
	    }

	    *minkey = leaf->slotkey[0];
	    *maxkey = leaf->slotkey[leaf->slotuse - 1];

	    vstats.leaves++;
	    vstats.itemcount += leaf->slotuse;
	}
	else // !n->isleafnode()
	{
	    const inner_node *inner = static_cast<const inner_node*>(n);
	    vstats.innernodes++;

	    assert(inner == root || !inner->isunderflow());

	    for(unsigned short slot = 0; slot < inner->slotuse - 1; ++slot)
	    {
		assert(key_lessequal(inner->slotkey[slot], inner->slotkey[slot + 1]));
	    }

	    for(unsigned short slot = 0; slot <= inner->slotuse; ++slot)
	    {
		const node *subnode = inner->childid[slot];
		key_type subminkey = key_type();
		key_type submaxkey = key_type();

		assert(subnode->level + 1 == inner->level);
		verify_node(subnode, &subminkey, &submaxkey, vstats);

		BTREE_PRINT("verify subnode " << subnode << ": " << subminkey << " - " << submaxkey << std::endl);

		if (slot == 0)
		    *minkey = subminkey;
		else
		    assert(key_greaterequal(subminkey, inner->slotkey[slot-1]));

		if (slot == inner->slotuse)
		    *maxkey = submaxkey;
		else
		    assert(key_equal(inner->slotkey[slot], submaxkey));

		if (inner->level == 1 && slot < inner->slotuse)
		{
		    // children are leaves and must be linked together in the
		    // correct order
		    const leaf_node *leafa = static_cast<const leaf_node*>(inner->childid[slot]);
		    const leaf_node *leafb = static_cast<const leaf_node*>(inner->childid[slot + 1]);

		    assert(leafa->nextleaf == leafb);
		    assert(leafa == leafb->prevleaf);
		    (void)leafa; (void)leafb;
		}
		if (inner->level == 2 && slot < inner->slotuse)
		{
		    // verify leaf links between the adjacent inner nodes
		    const inner_node *parenta = static_cast<const inner_node*>(inner->childid[slot]);
		    const inner_node *parentb = static_cast<const inner_node*>(inner->childid[slot+1]);

		    const leaf_node *leafa = static_cast<const leaf_node*>(parenta->childid[parenta->slotuse]);
		    const leaf_node *leafb = static_cast<const leaf_node*>(parentb->childid[0]);

		    assert(leafa->nextleaf == leafb);
		    assert(leafa == leafb->prevleaf);
		    (void)leafa; (void)leafb;
		}
	    }
	}
    }

    /// Verify the double linked list of leaves.
    void verify_leaflinks() const
    {
	const leaf_node *n = headleaf;

	assert(n->level == 0);
	assert(!n || n->prevleaf == NULL);

	unsigned int testcount = 0;

	while(n)
	{
	    assert(n->level == 0);

	    for(unsigned short slot = 0; slot < n->slotuse - 1; ++slot)
	    {
		assert(key_lessequal(n->slotkey[slot], n->slotkey[slot + 1]));
	    }

	    testcount += n->slotuse;

	    if (n->nextleaf)
	    {
		assert(key_lessequal(n->slotkey[n->slotuse-1], n->nextleaf->slotkey[0]));

		assert(n == n->nextleaf->prevleaf);
	    }
	    else
	    {
		assert(tailleaf == n);
	    }

	    n = n->nextleaf;
	}

	assert(testcount == size());
    }

private:
    // *** Dump and Restore of B+ Trees

    /// \internal A header for the binary image containing the base properties
    /// of the B+ tree. These properties have to match the current template
    /// instantiation.
    struct dump_header
    {
	/// "stx-btree", just to stop the restore() function from loading garbage
	char 		signature[12];

	/// Currently 0
	unsigned short	version;

	/// sizeof(key_type)
	unsigned short	key_type_size;

	/// sizeof(data_type)
	unsigned short	data_type_size;

	/// Number of slots in the leaves
	unsigned short	leafslots;

	/// Number of slots in the inner nodes
	unsigned short	innerslots;

	/// Allow duplicates
	bool		allow_duplicates;

	/// The item count of the tree
	size_type	itemcount;

	/// Fill the struct with the current B+ tree's properties, itemcount is
	/// not filled.
	inline void fill()
	{
	    // don't want to include string.h just for this signature
	    *reinterpret_cast<unsigned int*>(signature+0) = 0x2d787473;
	    *reinterpret_cast<unsigned int*>(signature+4) = 0x65727462;
	    *reinterpret_cast<unsigned int*>(signature+8) = 0x00000065;

	    version = 0;
	    key_type_size = sizeof(typename btree_self::key_type);
	    data_type_size = sizeof(typename btree_self::data_type);
	    leafslots = btree_self::leafslotmax;
	    innerslots = btree_self::innerslotmax;
	    allow_duplicates = btree_self::allow_duplicates;
	}

	/// Returns true if the headers have the same vital properties
	inline bool same(const struct dump_header &o) const
	{
	    return (*reinterpret_cast<const unsigned int*>(signature+0) ==
		    *reinterpret_cast<const unsigned int*>(o.signature+0))
		&& (*reinterpret_cast<const unsigned int*>(signature+4) ==
		    *reinterpret_cast<const unsigned int*>(o.signature+4))
		&& (*reinterpret_cast<const unsigned int*>(signature+8) ==
		    *reinterpret_cast<const unsigned int*>(o.signature+8))

		&& (version == o.version)
		&& (key_type_size == o.key_type_size)
		&& (data_type_size == o.data_type_size)
		&& (leafslots == o.leafslots)
		&& (innerslots == o.innerslots)
		&& (allow_duplicates == o.allow_duplicates);
	}
    };

public:

    /// Dump the contents of the B+ tree out onto an ostream as a binary
    /// image. The image contains memory pointers which will be fixed when the
    /// image is restored. For this to work your key_type and data_type must be
    /// integral types and contain no pointers or references.
    void dump(std::ostream &os) const
    {
	struct dump_header header;
	header.fill();
	header.itemcount = size();

	os.write(reinterpret_cast<char*>(&header), sizeof(header));

	if (root)
	    dump_node(os, root);
    }

    /// Restore a binary image of a dumped B+ tree from an istream. The B+ tree
    /// pointers are fixed using the dump order. For dump and restore to work
    /// your key_type and data_type must be integral types and contain no
    /// pointers or references. Returns true if the restore was successful.
    bool restore(std::istream &is)
    {
	struct dump_header fileheader;
	is.read(reinterpret_cast<char*>(&fileheader), sizeof(fileheader));
	if (!is.good()) return false;

	struct dump_header myheader;
	myheader.fill();
	myheader.itemcount = fileheader.itemcount;

	if (!myheader.same(fileheader))
	{
	    BTREE_PRINT("btree::restore: file header does not match instantiation signature." << std::endl);
	    return false;
	}

	clear();

	if (fileheader.itemcount > 0)
	{
	    root = restore_node(is);
	    if (root == NULL) return false;

	    stats.itemcount = fileheader.itemcount;
	}

	if (debug) print();
	if (selfverify) verify();

	return true;
    }

private:

    /// Recursively descend down the tree and dump each node in a precise order
    void dump_node(std::ostream &os, const node* n) const
    {
	BTREE_PRINT("dump_node " << n << std::endl);

	if (n->isleafnode())
	{
	    const leaf_node *leaf = static_cast<const leaf_node*>(n);

	    os.write(reinterpret_cast<const char*>(leaf), sizeof(*leaf));
	}
	else // !n->isleafnode()
	{
	    const inner_node *inner = static_cast<const inner_node*>(n);

	    os.write(reinterpret_cast<const char*>(inner), sizeof(*inner));

	    for(unsigned short slot = 0; slot <= inner->slotuse; ++slot)
	    {
		const node *subnode = inner->childid[slot];
		
		dump_node(os, subnode);
	    }
	}
    }

    /// Read the dump image and construct a tree from the node order in the
    /// serialization.
    node* restore_node(std::istream &is)
    {
	union {
	    node 	top;
	    leaf_node 	leaf;
	    inner_node 	inner;
	} nu;

	// first read only the top of the node
	is.read(reinterpret_cast<char*>(&nu.top), sizeof(nu.top));
	if (!is.good()) return NULL;

	if (nu.top.isleafnode())
	{
	    // read remaining data of leaf node
	    is.read(reinterpret_cast<char*>(&nu.leaf) + sizeof(nu.top), sizeof(nu.leaf) - sizeof(nu.top));
	    if (!is.good()) return NULL;
	    
	    leaf_node *newleaf = allocate_leaf();

	    // copy over all data, the leaf nodes contain only their double linked list pointers
	    *newleaf = nu.leaf;

	    // reconstruct the linked list from the order in the file
	    if (headleaf == NULL) {
		BTREE_ASSERT(newleaf->prevleaf == NULL);
		headleaf = tailleaf = newleaf;
	    }
	    else {
		newleaf->prevleaf = tailleaf;
		tailleaf->nextleaf = newleaf;
		tailleaf = newleaf;
	    }

	    return newleaf;
	}
	else
	{
	    // read remaining data of inner node
	    is.read(reinterpret_cast<char*>(&nu.inner) + sizeof(nu.top), sizeof(nu.inner) - sizeof(nu.top));
	    if (!is.good()) return NULL;

	    inner_node *newinner = allocate_inner(0);

	    // copy over all data, the inner nodes contain only pointers to their children
	    *newinner = nu.inner;

	    for(unsigned short slot = 0; slot <= newinner->slotuse; ++slot)
	    {
		newinner->childid[slot] = restore_node(is);
	    }

	    return newinner;
	}
    }
};

} // namespace stx

#endif // _STX_BTREE_H_
RSS 2.0 Weblog Feed Atom 1.0 Weblog Feed Valid XHTML 1.1 Valid CSS (2.1)
Copyright 2005-2017 Timo Bingmann - Impressum